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Abstract

This paper focuses on the problem of cooperatively
searching, using a team of unmanned air vehicles
(UAVs), an area of interest that contains regions of op-
portunity and regions of potential hazard. The objec-
tive of the UAV team is to visit as many opportunities
as possible, while avoiding as many hazards as possible.
To enable cooperation, the UAVs are constrained to
stay within communication range of one another. Col-
lision avoidance is also required. Algorithms for team-
optimal and individually-optimal/team-suboptimal so-
lutions are developed and their computational com-
plexity compared. Simulation results demonstrating
the feasibility of the cooperative search algorithms are
presented.

1 Introduction

Consider the problem where a team of unmanned air
vehicles (UAVs) is given the task of searching a region
with unknown opportunities and hazards. We assume
that each UAV is equipped with sensing capability that
identifies regions of opportunity and regions of hazard
in the immediate look-ahead window of the UAV. We
also assume that the team of UAVs is equipped with
a communication network, and that the connectivity
of the network depends upon the relative distance be-
tween neighboring UAVs. Therefore, maintaining net-
work connectivity constrains the maximum allowable
distance between UAVs. In addition, we assume that
the problem is essentially two dimensional so collision
avoidance must be accounted for explicitly. The con-
trol objective for the team is to maximize the regions of
opportunity visited by the team, while minimizing the
regions of hazard visited by the team, subject to two
path constraints: (1) that the communication network
remains connected at all times, and (2) that there are
no collisions between UAVs.
In our previous work on cooperative control of

UAVs [1, 2] we have used the path planning archi-
tecture shown in Figure 1. The cooperative waypoint
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Figure 1: Path Planning Architecture.

path planner (CWPP) produces waypoint paths for
the UAVs which satisfy the cooperation constraints.
The dynamic trajectory smoother (DTS) smoothes
through the waypoint paths producing time parameter-
ized trajectories which maintain the cooperation con-
straints and also satisfy the kinematic constraints of
the UAV [3, 4]. The trajectory tracker (TT) uses iner-
tial position and heading information to track the tra-
jectory produced by the DTS, and outputs desired alti-
tude, velocity, and heading commands [5]. The physical
UAV is controlled by a low-level autopilot which main-
tains commanded altitude, velocity and heading [6].
In our approach, cooperation constraints such as col-

lision avoidance and maintaining communication con-
nectivity, are handled by the cooperative waypoint
path planner. The primary contribution of this paper
is to describe several designs for the cooperative path
planner given collision avoidance and limited commu-
nication constraints.
Recent work in trajectory generation for single UAVs



includes probabilistic roadmap approaches [7, 8], differ-
ential flatness approaches [9, 10, 11], spline optimiza-
tion approaches [12], and approaches that build on Du-
bin’s circles [13, 14, 15, 4]. Any of these algorithms
could be used in the dynamic trajectory smoothing
block shown in Figure 1.
Cooperative path planning has been addressed in the

robotics literature. Ref. [16] assumes that paths are de-
signed myopically for N robots and then effects coordi-
nation by finding the optimal start times such that the
robots do not collide with each other. A similar idea
is presented in [17], which also allows robot velocities
to be adjusted. Unfortunately, UAVs have minimum
velocity constraints and must be in constant motion.
Therefore the approaches in [16, 17] are not directly
applicable to UAV scenarios.
This paper addresses the cooperative search prob-

lem for UAVs. Cooperative coverage of a priori un-
known rectilinear environments using mobile robots is
discussed in [18]. Ref [19], uses neural networks to di-
rect robots in complex domains with dynamically mov-
ing obstacles.
In recent years, there has been a great deal of work

on cooperative control for UAVs. The cooperative con-
trol problem that has received the most attention is
formation flying [20, 21, 22]. In formation flying, the
UAV trajectories are dynamically coupled through the
physics of close flight. By exploiting the physical struc-
ture of the problem, path planning for formation fly-
ing applications can be reduced to path planning algo-
rithms for single vehicles [23].
Unfortunately, there are many other cooperative

control problems that do not admit solutions that are
extensions of single vehicle solutions. These include
cooperative rendezvous [24, 25], coordinated target as-
signment and intercept [26, 1], multiple task alloca-
tion [27, 28], and ISR scenarios [29].
The full solution to many of these cooperative control

problems are NP-hard. While formation flying prob-
lems can be solved efficiently using numerical methods,
there is a need to identify other classes of cooperative
control problems that can also be solved efficiently.
This paper is a step in that direction. In particular,
we show that the class of cooperative search problems,
where the vehicles are assumed to maintain a relative
front temporally, and nearest neighbors spatially, can
be solved efficiently using dynamic programming tech-
niques.
The paper is organized as follows. In Section 2 we de-

fine the problem in mathematical terms. To facilitate
the discussion, we also introduce two example prob-
lem scenarios. These examples will be used through-
out the paper to illustrate the algorithms as they are
introduced. In Section 3 we present an algorithm that
solves the global optimization problem introduced in
Section 2. Fortunately the algorithm is polynomial in
the number of vehicles, but unfortunately it is expo-
nential in the look-ahead window. In Section 4 we
introduce an information reduction scheme based on
individual best paths. The reduction scheme is used
in Section 5 to produce a suboptimal search algorithm

based on a best-leader approach and in Section 6 to
derive a second cooperative search algorithm that re-
sembles the global optimal. The computational com-
plexity of both approaches is shown to be polynomial
in the input data. Conclusions are given in Section 7.

2 Problem Definition and Notation

In this section we will introduce the notation and
define two example problem scenarios that will be used
to illustrate the ideas throughout the paper.
Consider a team of vehicles performing a coopera-

tive search problems where the velocities of the vehicles
are adjusted so that they move through the search do-
main maintaining a uniform longitudinal front. Since
the motion in the longitudinal direction is uniform, the
group dynamics are encapsulated in the lateral motion.
Consider the discrete time dynamics

xn[k + 1] = f(xn[k], un[k]), n = 1, . . . , N, (1)

where xn[k] ∈ X and un[k] ∈ U . We will assume that
U is a finite set of options. We will assume that the
agents are initially ordered such that

x1[0] < x2[0] < · · · < xN [0],

and that it is desirable to maintain this ordering
throughout the scenario. We will assume that the
agents are at constant altitude and therefore have a
collision avoidance constraint which can be quantified
as

A < xn+1[k]− xn[k], n = 1, . . . , N − 1. (2)

We will also assume that the vehicles need to maintain
communication connectivity and that connectivity is a
function of relative lateral distance. The communica-
tion connectivity constraint can be quantified as

xn+1[k]− xn[k] < A, n = 1, . . . , N − 1. (3)

Let R(x, `) denote the set in X that is reachable
from x after ` decisions. The reachable set can be con-
structed recursively as

R(x, 0) = {x}

R(x, `) = {ξ ∈ X : ξ = f(z, u), z ∈ R(x, `− 1), u ∈ U} .

A path p(x, `) is a sequence of state-control pairs, i.e.,

p(x, `) =

((

ξ[1]
ν[0]

)

,

(

ξ[2]
ν[1]

)

, · · · ,

(

ξ[`]
ν[`− 1]

))

,

where ξ[1] = f(x, ν[0]) and ξ[j + 1] = ξ[j] + ν[j] for
j = 1, . . . , ` − 1. Let P(x, `) be the set of all paths of
length ` starting at x. We will assume that P(x, `) is
a finite set that can be enumerated as

P(x, `) =
{

p1(x, `), · · · ,p|P|(x, `)
}

.

Two paths are called feasible, denoted
(

p(1)(x, `),p(2)(y, `)
)

∈ F , if

A < y − x < A

A < ξ(2)[j]− ξ(1)[j] < A , j = 1, . . . , `.



In other words, two paths are feasible if they satisfy
both the dynamics constraints (1) as well as the state
constraints (2) and (3). Note that by definition, the
order matters. In fact

(

p(1),p(2)
)

∈ F =⇒
(

p(2),p(1)
)

6∈ F .

Each possible state for the vehicles has a return
value, where positive return indicates an opportunity
and negative return represents a hazard. Let R(ξ) rep-
resent the return of state ξ. We will assume that at
each time instant k, the vehicles can sense the return
value of each state of its reachable set, L decisions into
the future. With a slight abuse of notation, we will
denote the return of a path by

R(p(x, `)) =

`−1
∑

j=0

R(ξj+1).

Example 1. Following [7, 8], assume that each UAV
is designed with five motion primitives designated as
u−2, u−1, u0, u1, u2, where uq maintains a heading an-

gle of qψ̂ radians. A discrete dynamic model of the
transition in lateral position as the motion primitives
are followed for T seconds can be written as

xn[k + 1] = xn[k] + un[k], n = 1, . . . , N, (4)

where un[k] ∈ U = {−2,−1, 0, 1, 2}, and the initial
states xn[0] are integers. It is assumed that the longi-
tudinal motion is described by

yn[k + 1] = yn[k] + 1.

Assuming a look-ahead window of L = 5, the set of
possible paths is shown in Figure 2. The blue dot is
the UAV, the red dots are opportunities and the green
dots are hazards. The magenta lines are the possible

paths. The size of P is |P| = |U|
L
= 55 = 3125.

10 20 30 40 50 60 70 80 90 100
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 2: Look-ahead window for Example 1, and possible
path set.

Example 2. As a second example, consider the coop-
erative search problem using a team of three UAVs fly-
ing over a field of targets and threats. Figure 3 shows
an example scenario with threats shown as dots and
targets depicted by diamonds. The cooperation objec-
tive for the team is to view as many targets as pos-
sible while simultaneously avoiding the threats. Each
UAV has a downward looking sensor with a footprint
of width w. If a UAV comes within a horizontal dis-
tance of w/2 of a target, the target is considered to
have been viewed or sensed by the UAV. Again we
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Figure 3: Example 2 problem scenario.

assume that the UAVs maintain relative longitudinal
alignment, but are free to move laterally to maximize
the number of targets sensed. A Voronoi graph is con-
structed from the threat and vehicle locations. Epp-
stein’s k-best paths algorithm [30] is used to produce
a set of candidate waypoint paths which is used as the
decision set U . Therefore |U| = k, where k is a pa-
rameter that we can set. In this paper we use k = 50.
In gauging the utility of a path, the primary objective
is the number of targets sensed. A secondary objec-
tive is path length. In this example, if two paths result
in the same number of targets sensed, the shorter of
the two would be deemed the more optimal selection.
The dynamics given by Eq. (1) represent the transition
from the beginning of the first waypoint of u[k] to the
last waypoint in u[k]. For this example, the look-ahead
window will be L = 1, meaning we look-ahead one path
at a time. The path constraints (2) and (3) are checked
by sampling the waypoint path along constant intervals
in time. The set of possible paths for a single UAV are
shown in Figure 4.

If the collision avoidance and communication con-
straints are ignored, then each agent could solve the
myopic optimization problem represented by maximiz-
ing the value function

Vn(xn[k]) = max
p∈P(xn[k],L)

R(p). (5)

It is well known that the solution to this myopic op-
timization problem can be found efficiently using dy-
namic programming [31].
Letting x[k] = (x1[k], . . . , xN [k])

T , the team opti-
mization problem can therefore be stated as

V (x[k]) = max
p(n)∈P(n)

(p(n+1),p(n))∈F

N
∑

n=1

R(p(n)), (6)
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Figure 4: Possible path set for Example 2.

where P(n) = P(xn[k], L) and p
(n) = p(xn[k], L).

3 Global Solution

This section presents a computational algorithm that
computes the optimal solution to (6). Note that enu-
merating all possible options has computational com-

plexity of ©
(

|U|
LN
)

. We will show that the colli-

sion avoidance and communication constraints reduce
to complexity of enumerating all solutions to polyno-
mial in the number of vehicles N .
Consider the algorithm.

Algorithm 3.1 (Optimal for N = 2.)

Input. x1[k], x2[k], R(ξ) for each ξ ∈ R(xn[k], `), n =
1, 2, ` = 1, . . . , L.

Step 1. Construct P(1) = P(x1[k], L), P(2) =
P(x2[k], L).

Step 2. Compute the matrix M = {mij} where

mij =

{

R(p
(1)
i ) +R(p

(2)
j ), if (p

(1)
i ,p

(2)
j ) ∈ F

−∞, otherwise,

where i = 1, . . . ,
∣

∣P(1)
∣

∣, and j = 1, . . . ,
∣

∣P(2)
∣

∣.

Step 3. Compute (i∗, j∗) = argmaxmij .

Return. p
(1)
i∗ and p

(2)
j∗ .

Lemma 3.2 If N = 2, Algorithm 3.1 returns the
global optimal solution to problem (6). The computa-

tional complexity is ©
(

L |U|
2L
)

.

Proof: The sets P(n), n = 1, 2 contain all possible
paths for the two vehicles. Therefore M contains a
finite return for each possible pair of feasible paths.

Therefore Step 3 is simply a search over all feasible
paths, and is therefore globally optimal.

The size of P(n) is |U|
L
. Each path requires L com-

putations. Therefore step 1 is ©
(

2L |U|
L
)

. Each fea-

sibility check requires L additions and 2L compares.

This must be done for |U|
2L
possible path combina-

tions so step 2 is©
(

3L |U|
2L
)

. Step 3 is a search over

|U|
2L
elements and is therefore ©

(

|U|
2L
)

. Therefore

the total algorithm is

©
(

(3L+ 1) |U|
2L
+ 2L |U|

L
)

=©
(

L |U|
2L
)

.

Each of the vehicles has a specific neighbor on its
right and left. This structure can be exploited to find
the global team optimal with teams of N agents, by N
repeated applications of Algorithm 3.1.

Algorithm 3.3 (Optimal)

Input. x[k] = (x1[k], x2[k], . . . , xN [k]), R(ξ) for each
ξ ∈ R(xn[k], `), n = 1, . . . , N , ` = 1, . . . , L.

Step 1. Construct P(n) = P(xn[k], L), n = 1, . . . , N .

Compute µ(1) =
(

R(p
(1)
1 ), . . . , R(p

(1)

|P(1)|
)
)

.

Step 2. For n from 2 to N do

2a. Compute the matrix M (n) = {m
(n)
ij } where

m
(n)
ij =

{

µ
(n−1)
i +R(p

(n)
j ), if (p

(n−1)
i ,p

(n)
j ) ∈ F

−∞, otherwise,

where i = 1, . . . ,
∣

∣P(n−1)
∣

∣, and j = 1, . . . ,
∣

∣P(n)
∣

∣.

2b. Compute

µ(n) =
(

maxim
(n)
i1 , . . . , maxim

(n)

i|P(n)|

)

I(n) =
(

argmaxim
(n)
i1 , . . . , argmaxim

(n)

i|P(n)|
.
)

Step 3. Compute i(N)∗ = argmaxµ(N).

Step 4. For n from N − 1 down to 1 do

4a. i(n)∗ = I(n+1)
(

i(n+1)∗
)

.

Return. p
(n)

i(n)∗ , n = 1, . . . , N .

Lemma 3.4 Algorithm 3.3 returns the global optimal
solution to problem (6). The computational complexity

is ©
(

NL |U|
2L
)

.

Proof: The key observation is that the paths of vehi-
cle n are only constrained by vehicles n− 1 and n+ 1.
Therefore, path feasibility only needs to be checked be-
tween successive vehicles. The matrixM (2) in Step 2 is
an enumeration of the return of all feasible paths of ve-
hicles 1 and 2, without regard for the remaining N − 2



vehicles. The ith element of µ(2) is the optimal return

of the (1, 2)-team given that vehicle 2 takes path p
(2)
i .

The ith element of I(2) is the corresponding index of
the optimal path for vehicle 1. Note that if a path for
vehicle 2 is selected in the future, then I (2) returns the
optimal path for vehicle 1.
The (i, j)th element of the matrix M (3) is the re-

turn for selecting path p
(3)
j for vehicle 3, as well as

the return for selection p
(2)
i for vehicle 2 and the

corresponding optimal path for vehicle 1, given that

(p
(3)
j ,p

(2)
i ) ∈ F . Note that only paths that are feasible

for the (1, 2, 3)-team have finite values in M (3). There-
fore the ith element of µ(3) is the optimal return for the

(1, 2, 3)-team given that path p
(3)
i is selected for vehi-

cles 3, and the ith element of I(3) is the corresponding
index for the optimal path for vehicle 2.
Continuing in this way we arrive at M (N) whose

(i, j)th element is the return for selecting path p
(N)
j

for vehicle N , as well as the return for selecting p
(N−1)
i

for vehicle N −1, and the corresponding optimal paths

for vehicles 1, . . . , N−2, given that (p
(N)
j ,p

(N−1)
i ) ∈ F .

Note that only paths that are feasible for the en-
tire team have finite values in M (N). Therefore the
ith element of µ(N) is the optimal return for the team

given that path p
(N)
i is selected for vehicles N . Step 3

then picks the optimal path for vehicle N , given the ef-
fects of the group constraints (2) and (3). The optimal
path indices for each vehicle can then be found using
Step 4.
Following the proof of Lemma 3.2 the computa-

tion of P(n), n = 1, . . . , N is ©
(

2NL |U|
L
)

. Com-

putation of µ(1) is ©
(

|U|
L
)

. The construction of

M (n), n = 1, . . . , N is ©
(

3(N − 1)L |U|
2L
)

. Con-

struction of both µ(n) and I(n) is ©
(

(N − 1) |U|
2L
)

.

Step 3 is©
(

|U|
L
)

and step 4 is© (N − 1). Therefore

the total algorithm is

©
(

(N − 1)(3L+ 1) |U|
2L
+ 2(N + 1) |U|

L
+N − 1

)

=©
(

NL |U|
2L
)

.

Of course Algorithm 3.3 is only realizable for small
|U| and small L. In Section 4 we will introduce an
information reduction scheme that will be used to de-
rive two (suboptimal) algorithms whose complexity is
polynomial in N , L, and |U|.
Example 2, (continued). Figure 5 shows results ob-
tained using Algorithm (3.3). In this example, the sen-
sor width was 1 km. The UAVs were required to stay
within 2 km of each other to maintain communication
and could come no closer than 0.2 km to avoid col-
lision. Using the team-optimal algorithm, 10 targets
were sensed by the UAVs. It should be pointed out
that targets can be sensed by more than one UAV with

each detection contributing to the team total. To pro-
duce these results, the 50 best paths for each UAV were
considered. For three UAVs and 50 paths, execution of
the algorithm required 13.3 seconds. In comparison, a
brute force global search through the 503 possible path
combinations required 522 seconds. Clearly, the need
to consider feasibility only between successive vehicles
reduces the computational burden significantly.
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Figure 5: Example 2 problem scenario.

4 Best Path Reduction

The enumeration of feasible joint paths represented
in step 2 in Algorithm 3.3 is computationally undesir-
able. In this section we present a (suboptimal) ap-
proach that results in feasible joint options without
enumerating all possible paths.
The key observation is that the myopic optimization

problem (5) can be solved efficiently using dynamic pro-
gramming. Define

J∗(x[q], q)
4
= max

u[j]∈U

j=q,...,L−1

L−1
∑

j=q

R (f(x[j], u[j])) ,

where x[j + 1] = f(x[j], u[j]). Then, using standard
dynamic programming arguments, it is straightforward
to show that

Vn(xn[k]) = J∗ (xn[k], 0)

and that J∗ satisfies the recursion

J∗ (x[q], q) = max
u[q]∈U

{R(f(x[q], u[q])) + J∗ (f(x[q], u[q]))} ,

with boundary constraint

J∗ (x[L− 1], L− 1) = max
u[L−1]∈U

R (f(x[L− 1], u[L− 1])) .

Letting C(x) be the set of optimal paths from x to
R(x, L), then C(x) can be found via the following al-
gorithm.



Algorithm 4.1 (Best Myopic Paths)

Input. x[k], R(ξ) for each ξ ∈ R(x[k], `), ` = 1, . . . , L.

Step 1. For ` from 0 to L do

1a. Compute R(x, `).

Step 2. For ` from L− 1 down to 1 do

2a. Compute J∗(ξ, `) at each ξ ∈ R(x, `) storing the
associated decisions variables.

Step 3. Using the stored decision variables, construct
the optimal paths from x to ξ ∈ R(x, L).

Return. C(x).

Lemma 4.2 Algorithm 4.1 returns the set of optimal
paths from x ∈ X to each ξ ∈ R(x, L). The computa-

tional complexity is ©
(

L |U|
L
)

. If

A1: X ⊂ Z, U ⊂ Z, R(x, `) ⊂ R(x, `+ 1),

where Z is the set of integers, then the computational
complexity is ©

(

L2 |U|
)

.

Proof: The first statement follows from standard dy-
namic programming arguments [31].
If no assumptions are made on X and U , then

each ξ generates |U| new states. Therefore there

are |U|
L
states in R(x, L), which implies that step 1

is ©
(

|U|
L
)

. Under assumption A1, there are only

|U| + (|U| − 1)(` − 1) new states generated at stage `,
which implies that step 1 is © (L |U|). Step 2 must be
computed at each ξ in the look-ahead window. In gen-

eral this requires ©
(

∑L
`=1 |U|

`
)

computations. Un-

der assumption A1, there are ©
(

∑L
`=1 `

)

computa-

tions. Step three requires L computations for each

ξ ∈ R(x, L) therefore in general it is©
(

L |U|
L
)

, under

assumption A1 it is ©
(

L2 |U|
)

,

Example 1, (continued). Example 1 satisfies as-
sumption A1. The best paths for a particular x are
shown in Figure 6.
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Figure 6: Best myopic paths for Example 1.

The best path from x is then

p∗(x) = max
p∈C(x)

R(p).

To address the team-optimization problem we need
to introduce the notion of a path constrained reachable

set. Suppose that x ∈ X and y ∈ X where y < x
satisfy constraints (2) and (3), and let py = p(y, L) be
a path from y, then the py-path constrained reachable
set from x is defined recursively as:

R(x, 0|py) = {x}

R(x, `|py) = {ξ ∈ X : ξ = f(z, u), z ∈ R(x, `− 1|py),

u ∈ U , A < ξ − ξy[`] < A
}

.

Using Algorithm 4.1, with R(x[k], `) replaced by
R(x[k], `|py) we can compute the best myopic paths
from x[k] given the constraints imposed by py.
Example 1, (continued). The best constrained
paths for x are shown in Figure 7 given a particular
path py.
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Figure 7: Best constrained myopic paths for Example 1.

Define C(x|p) be the set of constrained best paths
from x to the set R(x, L|p). The key idea to the reduc-
tions schemes introduced in this paper is to use C(x|p)
instead of the full enumeration of paths P(x, L) used
in Algorithm 3.3. Since computation of C(x|p) will be
used to construct our cooperative search schemes, we
need the following algorithm and lemma.

Algorithm 4.3 (Best Constrained Paths)

Input. x[k], p(y, L), R(ξ) for each ξ ∈ R(x[k], `), ` =
1, . . . , L.

Step 1. For ` from 0 to L do

1a. Compute R(x, `|p(y, L)).

Step 2. For ` from L− 1 down to 1 do

2a. Compute J∗(ξ, `) at each ξ ∈ R(x, `|p(y, L)) stor-
ing the associated decisions variables.

Step 3. Using the stored decision variables, construct
the optimal paths from x to ξ ∈ R(x, L|p(y, L)).

Return. C(x|p(y, L)).

Lemma 4.4 Algorithm 4.3 computes the best con-
strained paths from x to R(x, L|p(y, L)). If assump-
tion A1 holds then the computational complexity is
©
(

L2(A−A)
)

.

Proof: The path constraints reduce the number of
options at each stage from |U| to at most A−A. Sum-
ming over L stages implies the complexity of step 1 is
©
(

L(A−A)
)

. The remainder of the proof follows the

proof of 4.2 with |U| replaced by A−A.



5 Best Leader Cooperative Search

The most obvious cooperative search scheme using
best constrained paths is a leader-following type search.
For example, the first vehicle may plan its best myopic
path, without consideration for the team. This path is
passed to the second vehicle which plans its best path
constrained to the first vehicles path. This is then re-
peated until the N th vehicle plans its best path con-
strained to the path selected by vehicle N − 1.
The selection of the first vehicle as leader was, of

course, arbitrary. An alternative would be to select
the second vehicle as the leader, and then to find the
best paths for the first and third vehicles constrained
to the second vehicle. The fourth vehicle then plans its
best path constrained to the third vehicle and so on.
The following algorithm computes the team cost

when each vehicle is acting as leader, and then selects
the best leader.

Algorithm 5.1 (Best Leader Search)

Input. x[k], p(y, L), R(ξ) for each ξ ∈ R(xn[k], `),
` = 1, . . . , L, n = 1, . . . , N .

Step 1. For n from 1 to N do

1a. Compute C(xn[k]).

1b. Determine p∗n = maxp∈C(xn[k])R(p): the best my-
opic path for vehicle n.

1c. For n̂ from n+ 1 to N do

1c-i. Compute C(xn̂|pn̂−1).

1c-ii. Determine p∗n̂ = maxp∈C(xn̂|pn̂−1)R(p): the best
constrained path for vehicle n̂.

1d. For n̂ from n− 1 down to 1 do

1d-i. Compute C(xn̂|pn̂+1).

1d-ii. Determine p∗n̂ = maxp∈C(xn̂|pn̂+1)R(p): the best
constrained path for vehicle n̂.

1e. Compute mn =
∑N

n̂=1R(p
∗
n̂).

Step 2. Determine the best leader: n∗ = argmaxmn.

Return. Team paths associated with leader n∗.

Lemma 5.2 Algorithm 5.1 computes the best leader
approximation to (6). If assumption A1 holds, then
the computational complexity is ©

(

N2L2 |U|
)

.

Proof: From Lemmas 4.2 and 4.4, it is clear that
steps 1a, 1c-i, and 1d-i, are ©

(

L2 |U|
)

each. Steps 1b,
1c-ii, and 1d-ii are searches over at most L |U| elements.
Therefore step 1 is ©

(

N
[

L2 |U|+ (N − 1)L2 |U|
])

=

©
(

N2L2 |U|
)

. Since step 2 is© (N), the lemma holds.

Example 1, (continued). Algorithm 5.1 was im-
plemented in Example 1 for a seven UAV team. The
results are shown in Figure 8. The paths below the
UAVs are paths that have been flown, the paths above

the UAVs are currently planned paths. As the UAVs
make decisions and advance via Eq. (1) new opportu-
nities and hazards present themselves on the horizon.
Future paths are re-planned at each stage. Algorithm 8
requires approximately 1.6 seconds per stage.
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Figure 8: Best leader solution for Example 1.

Example 2, (continued). Figures 5 and 9 illus-
trate results obtained using the best leader cooperative
search. Using this algorithm, 9 targets were sensed.
Comparing the optimal result with the best leader re-
sult shown in Figure 5, the paths for UAVs 2 and 3
differ only slightly. In the optimal result, UAV 2 takes
a longer (individually suboptimal) path to the left of
the uppermost target. By doing so, UAV 3 is able
to view this same target while satisfying the collision
constraints. Using the leader-follower approach, the
UAVs make myopic decisions that do not account for
this coupling. Leader-follower solutions with each of
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Figure 9: Example 2 leader-follower paths.

the UAVs as leader are shown in Figure 9. The best-
leader solution results with UAV 1 as the leader. In
this scenario, the solutions with UAV 2 and UAV 3 as
leaders are identical. With UAV 2 as leader, it selfishly
takes the path that yields the highest payoff. In doing
so, it pushes UAV 1 to the left away from higher payoff
paths that would better benefit the team.
With each UAV having 50 path options, the compu-

tational time for this algorithm is 1.2 seconds. This is
a significant improvement over the optimal approach



of Algorithm 3.3. Even greater advantages would be
evident for greater numbers of vehicles or path op-
tions. For this particular scenario, repeated testing has
shown that with randomly generated threat and target
locations, the best-leader approach frequently finds the
globally optimal solution.

6 Optimal Best Path Cooperative Search

The weakness of the best leader approach is that
the team paths are based on the best myopic paths
of the individuals. There may be circumstances where
the team is best served having each individual choos-
ing individually suboptimal paths. One idea is to use
Algorithm 3.3, with the modification that instead of
searching over all possible pairwise feasible paths in P,
we limit the search to (pairwise feasible by construc-
tion) paths in C. In other words, instead of searching
over all possible paths, we limit the search to optimal
paths to the reachable set R(·, L).

Algorithm 6.1 (Optimal Best Path Search)

Input. x[k], R(ξ) for each ξ ∈ R(xn[k], `), n =
1, . . . , N , ` = 1, . . . , L.

Step 1. Construct C(1) = C(xn[k], L).

Compute µ(1) =
(

R(p
(1)
1 ), . . . , R(p

(1)

|C(1)|
)
)

.

Step 2. For n from 2 to N do

2a. For i from 1 to
∣

∣C(n−1)
∣

∣ do

2a-i. Construct C
(n)
i

4
= C(xn[k], L|p

(n−1)
i ).

2a-ii. For j from 1 to
∣

∣

∣
C

(n)
i

∣

∣

∣
do

2a-ii(1). Compute

m
(n)
ij =

{

µ
(n−1)
i +R(p

(n)
j|i ), if (p

(n−1)
i ,p

(n)
j|i ) ∈ F

−∞, otherwise,

where p
(n)
j|i is the jth element of C

(n)
i .

2b. Compute

µ(n) =
(

maxim
(n)
i1 , . . . , maxim

(n)

i|C(n)|

)

I(n) =
(

argmaxim
(n)
i1 , . . . , argmaxim

(n)

i|C(n)|
.
)

2c. Let C(n) be the set of paths for vehicle n that cor-
respond to the indices stored in I(n).

Step 3. Compute i(N)∗ = argmaxµ(N).

Step 4. For n from N − 1 down to 1 do

4a. i(n)∗ = I(n+1)
(

i(n+1)∗
)

.

Return. p
(n)

i(n)∗ , n = 1, . . . , N .

Lemma 6.2 Let Joptimal be the team return computed
by Algorithm 3.3, Jbest-leader be the team return com-
puted by Algorithm 5.1, and Jbest-paths be the team re-
turn computed by Algorithm 6.1, then

Jbest-leader ≤ Jbest-paths ≤ Joptimal.

The computational complexity of Algorithm 6.1 is

©
(

NL2 |U|
2
)

.

Proof: Similar to the proofs of the other lemmas.

Example 1, (continued). Algorithm 6.1 was im-
plemented in Example 1 for a seven UAV team. The
results are shown in Figure 10. The paths below the
UAVs are paths that have been flown, the paths above
the UAVs are currently planned paths. As the UAVs
make decisions and advance via Eq. (1) new opportuni-
ties and hazards present themselves on the horizon. Fu-
ture paths are re-planned at each stage. Algorithm 10
requires approximately 4.6 seconds per stage.
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Figure 10: Optimal best paths solution for Example 1.

7 Conclusions

The problem of cooperative search by a team of
UAVs with collision-avoidance and communication-
range constraints has been considered. An algorithm
for finding team-optimal paths by considering feasible
paths for neighboring UAVs was developed. Two sub-
optimal, but computationally efficient approaches were
developed: the best leader and optimal best path co-
operative search algorithms. These algorithms were
tested on two example cooperative search problems.
Depending on the characteristics of a search prob-
lem (such as the number of vehicles, the number of
stages, and the number of possible paths considered)
and the computational resources available, these algo-
rithms provide a spectrum of solutions with potential
for real-time implementation.
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