
Submitted to the 2003 IEEE Conference on Decision and Control

Synchronization of Information in Distributed Multiple

Vehicle Coordinated Control

Randal W. Beard1 Vahram Stepanyan
Department of Electrical and Computer Engineering

Brigham Young University
Provo, UT, 84602

{beard, vahram}@ee.byu.edu

Abstract

Cooperation in multiple vehicle teams requires that
information be shared between team members. If
shared information is not synchronized across the team,
then cooperation is adversely affected. This paper con-
siders the problem of information synchronization in
multiple agent teams. We define notions of asymp-
totic synchronizability and show that a team of agents
is asymptotically synchronizable if and only if the as-
sociated communication topology admits a spanning
tree. A linear synchronization strategy is proposed and
demonstrated via several simulation examples.

1 Introduction

In recent years there has been significant research in
the area of coordinated control of multiple vehicle sys-
tems. Examples include spacecraft formation flying [1,
2, 3], UAV formation flying [4, 5, 6], formation control
for underwater vehicles [7], coordinated rendezvous of
UAVs [8, 9, 10], coordinated path planning [11], task
coordination for UAVs [12, 13, 14, 15, 16], and multiple
robot coordination [17, 18, 19, 20, 21, 22].
Most of the current literature on multiple vehicle co-

operative control assumes perfect and unlimited com-
munication between the agents. However, it has been
recognized that limited communication and informa-
tion flow among vehicles, will significantly impact the
ability to coordinate action [23].
The current trend in cooperative control is to dis-

tribute the decision making among the vehicles [5, 24,
25, 26, 27, 6]. There are several advantages to dis-
tributed decision making including enhanced robust-
ness due to the fact that there is no single point of fail-
ure, and the ability for dynamic role assignment. How-
ever, distributed schemes are usually based on reactive
or behavioral methodologies, which are often difficult
to direct toward specific desired plans. On the other
hand, centralized planning schemes are often more flex-
ible and powerful, enhancing the ability to coordinate
action through deliberative planning techniques.
An obvious remedy is to design a deliberative, cen-

tralized planning scheme, and then to instantiate the
scheme on each vehicle in a decentralized implementa-
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tion [12, 10]. If each vehicle instantiates the same algo-
rithm with identical input data, then each vehicle will
produce the same plan-of-action, and the vehicles will
be “coordinated.” However, if the input data on the ve-
hicles differ, then each instantiation of the centralized
algorithm will produce a different result, adversely af-
fecting the coordination between vehicles. Therefore,
it becomes necessary to synchronize data among the
different vehicles.
Synchronization can take place at either the input

or the output of the coordination algorithm as shown
in Figure 1. Several issues complicate the data syn-
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Figure 1: Data can be synchronized at either the input,
or the output, of the cooperative planning al-
gorithm on each vehicle.

chronization problem. First, the communication links
between vehicle pairs are unreliable and are estab-
lished and broken at random time instances. Second,
the communication links generally have limited range.
Therefore if the separation between vehicles exceeds
a certain distance, then communication will be lost.
Third, there is limited communication bandwidth, thus
limiting the amount of information that can be ex-
changed. The fourth complication is that at each time
instant, the communication topology my not be fully
connected which limits the ability of two vehicles which
are not directly connected to synchronize their informa-
tion.
The objective of this paper is to introduce a scheme

that enables the synchronization of information among



vehicles in the presence of limited and unreliable com-
munication with time-varying topology. As a first step
in this direction we will make the following simplifying
assumptions:

• The information to be synchronized is defined
over the field of real numbers,

• Each agent has a single item of information to be
synchronized,

• The information contained on each vehicle is con-
sidered to be equally reliable, i.e., information is
weighted equally.

The remainder of the paper is organized as follows.
In Section 2 we will state the problem in mathematical
terms. The main results of the paper are contained in
Section 3 which presents a new synchronization filter
and explores some if its properties. Section 4 presents
simulation results, and Section 5 offers conclusions.

2 Problem Statement

In this section we formally state the problem ad-
dressed in this paper. To make our statements precise
we will use terminology from graph theory [28]. Let
A = {Ai|i = 1, 2, ..., N} be a set of N agents whose
actions are to be coordinated in some fashion. We as-
sume that communication between agents can be both
unidirectional and bidirectional. Let G be a directed
graph with N vertices representing the agents and with
edges representing unidirectional communication links
between agents. Agents Ai is said to be a neighbor
of agent Aj if there is a directed link from Ai to Aj .
The graph G is called complete (fully connected) if ev-
ery pair of agents are neighbors of each other. If G is
complete, then the group of agents is also called com-
plete. A path is a sequence of distinct vertices such
that consecutive vertices are neighbors. If there is a
path between any two vertices of a graph, then G is
said to be connected. If G is connected, then the group
of agents is said to be connected. A directed tree is a
directed graph, where every vertex, except the root, has
exactly one parent. A spanning tree of a directed graph
is a tree formed by graph edges that connect all the ver-
tices of the graph.The communication topology at time
t will be represented by the adjacency matrix [29] G(t),
where

Gij(t) =

{

1, if there is an edge from Aj to Ai

0, otherwise
.

We will assume that G(t) is piecewise constant in time,
but that changes in the elements of G(t) occurs ran-
domly in time. As an example, the directed graph
shown in Figure 2, has an adjacency matrix

G =











0 0 0 0 1
1 0 0 0 1
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0










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Figure 2: A directed graph and its spanning tree.

The double arrows in Figure 2 constitute a spanning
tree of the graph.
Associated with each agent is an information variable

xi, i = 1, . . . , N . To simplify notation, in this paper we
will assume that xi(t) ∈ IR, and that xi(t) are contin-
uously differentiable functions in time. A link from Aj

to Ai implies that xj is communicated to Ai.

Definition 2.1 The set of agents A is said to be
synchronized at time t0, if t ≥ t0 implies that
‖xi(t)− xj(t)‖ = 0 for each (i, j) = 1, . . . , N . The
set of agents A is said to be globally asymptoti-
cally synchronized if for any xi(0), i = 1, . . . , N ,
‖xi(t)− xj(t)‖ → 0 as t → ∞ for each (i, j) =
1, . . . , N . The set A is said to be globally asymptoti-
cally synchronizable if there exists an information up-
date strategy for each xi, i = 1, . . . , N that globally
asymptotically synchronizes A.

In this paper we provide necessary and sufficient con-
ditions under which A is globally asymptotically syn-
chronizable, and propose a simple information update
strategy that globally asymptotically synchronizes A
under these conditions.

3 Synchronization Filter

In this paper we will assume that the information
variables are updated according to a continuous update
law of the form

ẋi = fi (x1, . . . , xN , G(t)) . (1)

Let x = (x1, . . . , xN ) be the collection of information
variables, then Equation (1) can be written as

ẋ = f (x, G(t)) . (2)

Let
S = {x ∈ IRN : x1 = x2 = ... = xN},

then the following theorem follows directly from Defi-
nition 2.1

Theorem 3.1 The set of agents A is globally asymp-
totically synchronizable if and only if S is a positively
invariant set of system (2).

In the remainder of the paper we will assume that the
communication graph G is not time-varying. We will



show by construction that A is asymptotically synchro-
nizable if and only if G has a spanning tree. Toward
that end, we propose using the linear update scheme

ẋi =

N
∑

j=1

σijGji (xj − xi) , i = 1, 2, ..N, (3)

where σij are positive constants. The essential idea
is that if there is a communication link from Aj to
Ai (i.e., Gij = 1), then agent Ai will update its in-
formation variable in the direction of the information
variable of agent Aj . The constants σij represent the
magnitude of the update and are a function of the rel-
ative confidence that agents Ai and Aj have that their
information variables are correct. For example, if agent
Ai has much higher confidence that xi is correct then
agent Aj ’s confidence that xj is correct, then σij will
be small, effecting a small movement from xi to xj . On
the other hand, if agent Ai has much lower confidence
that xi is correct then agent Aj ’s confidence that xj is
correct, then σij will be large, effecting a large move-
ment from xi to xj . In this paper we will assume that
σij is a positive constant that is specified a priori. In
future work, we plan to relax this assumption and allow
σij to vary as information is synchronized.
Writing the system of equations (3) in matrix form

gives

ẋ =





















−

(

∑N
j=1 σ1jG1j

)

σ12G12 · · · σ1NG1N

σ21G21 −

(

∑N
j=1 σ2jG2j

)

· · · σ2NG2N

.

.

.

.

.

.

σN1GN1 σN2GN2 · · · −

(

∑N
j=1 σNjGNj

)





















x.

(4)

To simplify notation let B be a square matrix with
Bij = σijGij and let Π be a diagonal matrix with πii =
∑N

j=1 σijGij . Therefore Equation (4) becomes

ẋ = (B −Π)x. (5)

Note that S is invariant under Eq. (5). We need to show
that in fact S is positively invariant under Eq. (5).
To motivate our main result, we will consider sev-

eral academic examples. Consider the communication
graph shown in Figure 3. If σij = 1 for all i, j, then
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Figure 3: Communication network with four agents.

B −Π is of the form

B −Π =







−1 0 1 0
0 −2 1 1
0 1 −2 1
0 0 0 0






. (6)

Note that B−Π has one zero eigenvalue (corresponding
to S-invariance), and three eigenvalues at −1, −1, and

−3. Therefore system (5) for this example renders S
positively invariant. Also note that the graph in this
example has a spanning tree with corresponding B−Π
matrix equal to

B −Π =







−1 0 1 0
0 −1 1 0
0 0 −1 1
0 0 0 0






, (7)

which has eigenvalues at 0, −1, −1, −1. Therefore
adding new edges to a tree does not change the prop-
erties of eigenvalues, i.e. there is one zero eigenvalue
and others in the open left half plane.
Consider the graph shown in Figure 4, which has an

isolated agent. In this case we have
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Figure 4: A single isolated agent.

B −Π =







−1 0 −1 0
1 −2 1 0
0 1 −1 0
0 0 0 0






.

Note that if agent Ai is isolated, then both the i
throw

and the ithcolumn of B − Π will be zero. In this case,
B−Π has two zero eigenvalues and two negative eigen-
values. Therefore, in this case S is not positively invari-
ant. Intuitively it is clear that agent A4 cannot syn-
chronize its information variable with the (A1, A2, A3)
group. Isolated agents are indicated in the structure of
B − Π by an ithrow and column being simultaneously
equal to zero.
Another case which is not globally asymptotically

synchronizable is shown in Figure 5. In this case we
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Figure 5: Graph with two leaders.

have

B −Π =







−1 1 1 0
0 0 0 0
0 0 −1 1
0 0 0 0






.

Again B−Π has two zero eigenvalues with the two neg-
ative eigenvalues, and the corresponding system does
not render S positively invariant. It is intuitively clear



that a group with two leaders cannot be asymptoti-
cally synchronized since the leaders do not have any
mechanism to synchronize their information variables
between themselves. The multiple leader scenario is
indicated by more that one zero row in B −Π.
As a final example of graphs that are not asymptot-

ically synchronizable, consider the case where G con-
tains two or more connected subgroups that are dis-
connected from each other, e.g., Figure 6. In this case
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Figure 6: Communication network with two disconnected
subgroups.

we have

B −Π =







−1 1 0 0
1 −1 0 0
0 0 −1 1
0 0 0 0






,

which has two eigenvalues equal to zero.
The following lemma shows that the existence of a

spanning tree of G is necessary and sufficient for A to
be asymptotically synchronizable.

Theorem 3.2 The group of agents A is globally
asymptotically synchronizable if and only if the asso-
ciated communication graph G has a spanning tree.

Proof: (Sufficiency.) Without loss of generality, re-
number the agents such that they are numbers succes-
sively according to their depth in the spanning tree,
with the root numbered as agent A1. In other words,
children of A1 are numbered A2 to Aq1

, children of A2

to Aq1
are labeled Aq1+1 to Aq2

and so on.

Let Ĝ be the adjacency matrix associated with the
spanning tree of G, and consider the information up-
date scheme

ẋi =

N
∑

j=1

Ĝji (xj − xi) , i = 1, 2, ..N.

Let B̂ = Ĝ and Π̂ be the diagonal matrix with π̂ii =
∑N

j=1 Ĝij , giving

ẋ =
(

B̂ − Π̂
)

x. (8)

Since the root A1 has no parents, the first row of
B̂ − Π̂ will be equal to zero. Since each remaining
node has at most one parent, the diagonal elements
of B̂ − Π̂ will be equal to −1. The renumbering of
agents was performed such that if Aq is a child of Ap

then q < p which implies that B̂ − Π̂ will be lower
triangular. Therefore B̂− Π̂ as one eigenvalue at 0 and

the remaining eigenvalues at −1, which implies that S
is positively invariant.
(Necessity.) Suppose that A is asymptotically syn-

chronizable but that G does not have a spanning tree.
Then there exist at least two agents Ai and Aj such
that there is no path in G that contains both Ai and
Aj . Therefore it is impossible to synchronize data be-
tween these two agents which implies that A is not
asymptotically synchronizable.

The proof of Theorem 3.2 was constructive in that
equation (8) can be used to asymptotically synchronize
the group. However, it may be the case that many of
the connections are being ignored. The update law in
Eq. (3) accounts for all known connections. The issue
is whether Eq. (3) globally asymptotically synchronizes
A when G has a spanning tree. The following theorem
partially answers the question.

Definition 3.3 A graph G is said to be of Class LAS
if one of the following conditions holds:

1. G is a tree,

2. There exists a spanning tree of G such that the
root of the spanning tree is the child of at least
one other edge in G.

3. There exists a spanning tree of G such that the
root of the spanning tree has at least N − 2 chil-
dren.

Note that the graphs in Figures 2 and 3 are of class
LAS, whereas the graphs in Figures 4, 5, and 6 are
not.

Theorem 3.4 The group of agents A is globally
asymptotically synchronizable using the update law (3)
if its associated communication graph G is of class
LAS.

Proof: If G is a tree, then the proof is identical to
the sufficiency part of the proof of Theorem 3.2.
Otherwise, using the spanning tree of G, re-number

the nodes as described in the proof of Theorem 3.2.
Subsequently, perform the following change of variables

y1 = x1,

yi = xi, i = 2, . . . , N,

where T is the associated transformation matrix, where
tj1 = 1, j = 1, . . . , N and tii = −1, i = 1, . . . , N and
zeros otherwise. Letting P = T (B − Π)T−1 and y =
(y1, . . . , yN )

T we have

y = Py.

Suppose that case 2 in definition 3.3 holds. Then
there is an edge in G that returns to the root of the
spanning tree which implies that B −Π does not have
a zero row. After the state transformation, we can
compute the structure of the matrix P as follows.



Elements in the first column of matrix P can be cal-
culated as

pi1 =
N
∑

r=1

N
∑

l=1

tir(bil − πrl)t
−1
l1

=

N
∑

l=1

ti1(b1l − π1l)t
−1
l1 +

N
∑

l=1

tii(bil − πil)t
−1
l1

=

N
∑

l=1

(b1l − π1l)t
−1
l1 −

N
∑

l=1

(bil − πil)t
−1
l1 .

Recalling the definition of matrix Π and that the first
column of T−1 consists of ones we get for i = 1, . . . , N

pi1 =
N
∑

l=1

(bil − πrl)−
N
∑

l=1

(bil − πil)

=

N
∑

l=1

b1l − π11 −

N
∑

l=1

bil + πii

= 0.

For the other columns of matrix P we calculate as fol-
lows:

pij =

N
∑

r=1

N
∑

l=1

tir(bil − πrl)t
−1
lj

=

N
∑

l=1

ti1(b1l − π1l)t
−1
lj +

N
∑

l=1

tii(bil − πil)t
−1
lj

=

N
∑

l=1

(b1l − π1l)t
−1
lj −

N
∑

l=1

(bil − πil)t
−1
lj .

In the jth column of matrix T−1 there is only one
nonzero element, namely t−1

jj = −1, therefore for each

(i, j) = 1, . . . , N we have

pij = −b1j + π1j + bij − πij

= bij − b1j − πij .

Case 2 implies that there are no row of B that equal
zeros. We show that in this case the (N − 1)th order
minor P11 of matrix P corresponding to the element p11

is strictly diagonally dominant. Taking into account
that πij = 0 if i 6= j we can write

n
∑

j=2,j 6=i

|pij | =

n
∑

j=2,j 6=i

|bij − b1j | (9)

<

n
∑

j=2,j 6=i

bij

<=
n
∑

j=2,j 6=i

bij + bi1

= πii − bii

<= |bij − b1j − πij |

= |pii| ,

which means that matrix P11 is strictly diagonally dom-
inant with the negative diagonal elements bii−b1i−πii.
Therefore all eigenvalues of P11 are in the left-half of
the complex plane. Since the characteristic equation of
P can be written as

det(λI − P ) = λ1det(λI − P11)

we see that P has one zero eigenvalue and N −1 eigen-
values in the left half plane, which implies that S is
positively invariant.
Suppose that case 3 in definition 3.3 holds, then

bj1 6= 0 for at least N − 2 values of index j = 2, . . . , N .
Performing the same change of variables described in
case 2, we can see from Eq. (9) that P11 is either strictly
diagonally dominant or that

n
∑

j=2,j 6=i

|pij | = |pii|

for exactly one row, with strict inequality for the other
rows. In both cases det(A) 6= 0 [30]. Therefore accord-
ing to the Gershgorin Circle theorem it has negative
eigenvalues which implies that S is positively invari-
ant.

Corollary 3.5 Connectivity of A implies global
asymptotic synchronizability of A.

4 Simulation Results

In this section we present simulation results that il-
lustrate our synchronization scheme. As a first exam-
ple, consider the three agent scenarios shown in Fig-
ure 7. The top-left graph is a tree. The top-right
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Figure 7: Three agent communication scenarios.

graph is connected in a ring topology and the bottom-
left graph is fully connected. All three cases are of
class LAS. The bottom-right graph does not have a
spanning tree and therefore cannot be asymptotically
synchronized.
Figure 8 shows simulation plots corresponding to

the communication scenarios shown in Figure 7, us-
ing update law (3). The synchronization gain is set to
σij = 1 for all i, j ∈ [1, N ], and the initial conditions
for the information states are x1(0) = 0.2, x2(0) = 0.5,
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Figure 8: Three agent simulation plots.

x3(0) = 0.8. Note that in case (a), both A2 and A3 are
synchronizing to A1. However, agent A1 is not receiv-
ing communication from either A2 or A3. Therefore x1

remains constant, while x2 and x3 converge to x1. In
case (b), agents receive information in a ring topology.
Therefore A2 is synchronizing to A1, A3 is synchroniz-
ing to A2, and A1 is synchronizing to A3. In case (c),
the agents are fully connected. Note that the time con-
stant for synchronization is quicker than with the ring
topology. In case (d), a single spanning tree does not
exist so the group of agents cannot be globally asymp-
totically synchronized. In this case, x1 converges to the
average value of x2 and x3.
As a second example we simulate ten agents con-

nected in a ring topology with initial information vari-
ables equal to i ∗ 0.1, i = 1, . . . , 10. Simulation results
are shown in Figure 8. In subplots (a) and (c), the syn-
chronization gains were set to σij = 1. In subplots (b)
and (d), the synchronization gains were set to σij = 10.
In subplots (a) and (b), the information variables were
updated according to Equation (3). In subplots (c)
and (d), a zero-mean, unit covariance random variable
was added to Equation (3) for each agent. Note that
although each information variable is begin driven by
a random process, the set of agents is synchronized
within a prescribed bound, which is dependent on the
synchronization gain σij .

5 Conclusions

This paper has considered the problem of synchro-
nizing data among a group of agents connected via
a communication network. We have defined notions
of global asymptotic synchronizability and have shown
that a group of agents is globally asymptotically syn-
chronizable if and only if there exists a spanning tree of
the communication graph. We also proposed a linear
synchronization filter that exploits the communication
structure and asymptotically synchronizes a large class
of communication topologies. Several examples were
presented to illustrate the results.
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Figure 9: Ten agent simulation plots.
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