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Abstract— As a distributed solution to multi-agent coordi-
nation, consensus or agreement problems have been studied
extensively in the literature. This paper provides a survey of
consensus problems in multi-agent cooperative control with the
goal of promoting research in this area. Theoretical results
regarding consensus seeking under both time-invariant and
dynamically changing information exchange topologies are
summarized. Applications of consensus protocols to multi-
agent coordination are investigated. Future research directions
and open problems are also proposed.

I. INTRODUCTION

Cooperative control for multi-agent systems can be cat-
egorized as either formation control problems with appli-
cations to mobile robots, unmanned air vehicles (UAVs),
autonomous underwater vehicles (AUVs), satellites, air-
craft, spacecraft, and automated highway systems, or non-
formation cooperative control problems such as task assign-
ment, payload transport, role assignment, air traffic control,
timing, and search. The cooperative control of multi-agent
systems poses significant theoretical and practical chal-
lenges. For cooperative control strategies to be successful,
numerous issues must be addressed, including the definition
and management of shared information among a group of
agents to facilitate the coordination of these agents.

In cooperative control problems, shared information may
take the form of common objectives, common control
algorithms, relative position information, or a world map.
Information necessary for cooperation may be shared in
a variety of ways. For example, relative position sensors
may enable vehicles to construct state information for other
vehicles [1], knowledge may be communicated between
vehicles using a wireless network [2], or joint knowledge
might be pre-programmed into the vehicles before a mission
begins [3]. For cooperative control strategies to be effective,
a team of agents must be able to respond to unanticipated
situations or changes in the environment that are sensed
as a cooperative task is carried out. As the environment
changes, the agents on the team must be in agreement as
to what changes took place. A direct consequence of the
assumption that shared information is a necessary condition
for coordination is that cooperation requires that the group
of agents reach consensus on the coordination data. In other
words, the instantiation of the coordination data on each
agent must asymptotically approach a sufficiently common
value.

Convergence to a common value is called the consensus
or agreement problem in the literature. Although consensus
problems have a history in computer science (e.g. [4]), we
will focus on their applications in cooperative control of
multi-agent systems in this paper. The main purpose of this
paper is to summarize the recent progress of consensus
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problems in the cooperative control community with the
goal to facilitate research in this area.

II. BACKGROUND AND PROBLEM STATEMENT

A. Graph Theory
It is natural to model information exchange between

agents in a cooperative team by directed/undirected graphs
(e.g. [5]). A digraph (directed graph) consists of a pair
(N , E), where N is a finite nonempty set of nodes and
E ∈ N 2 is a set of ordered pairs of nodes, called edges.
As a comparison, the pairs of nodes in an undirected graph
are unordered. A directed path is a sequence of ordered
edges of the form (vi1 , vi2), (vi2 , vi3), · · · , where vij

∈ N ,
in a digraph. An undirected path in an undirected graph is
defined analogously, where (vij

, vik
) implies (vik

, vij
). A

digraph is called strongly connected if there is a directed
path from every node to every other node. An undirected
graph is called connected if there is a path between any
distinct pair of nodes. A directed tree is a digraph, where
every node, except the root, has exactly one parent. A
spanning tree of a digraph is a directed tree formed by
graph edges that connect all the nodes of the graph. We say
that a graph has (or contains) a spanning tree if there exists
a spanning tree that is a subset of the graph. Note that the
condition that a digraph has a spanning tree is equivalent
to the case that there exists a node having a directed path
to all other nodes.

The adjacency matrix A = [aij ] of a weighted digraph is
defined as aii = 0 and aij > 0 if (j, i) ∈ E where i �= j.
The Laplacian matrix of the weighted digraph is defined as
L = [�ij ], where �ii =

∑
j aij and �ij = −aij where i �= j.

For an undirected graph, the Laplacian matrix is symmetric
positive semi-definite.

B. Matrix Theory
Below we summarize some notation from nonnegative

matrix theory (c.f. [6], [7]) which are important for studying
consensus problems.

Let Mn(IR) represent the set of all n × n real matrices.
Given a matrix A = [aij ] ∈ Mn(IR), the digraph of A,
denoted by Γ(A), is the digraph on n vertices vi, i ∈ I,
such that there is a directed edge in Γ(A) from vj to vi if
and only if aij �= 0 (c.f. [7]).

A matrix is nonnegative (positive) if all its entries are
nonnegative (positive). A vector is nonnegative (positive)
if all its elements are nonnegative (positive). Furthermore,
if all its row sums are +1, the matrix is said to be a
(row) stochastic matrix [7]. A stochastic matrix P is called
indecomposable and aperiodic (SIA) if limk→∞ P k = 1νT ,
where 1 is a column vector of all ones and ν is some column
vector [8].

The well-known Perron-Frobenius Theorem states that if
a nonnegative matrix A is irreducible, that is, the digraph
of matrix A is strongly connected, then ρ(A) is a simple
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eigenvalue of A associated with a positive eigenvector,
where ρ(·) denotes the spectral radius of a matrix.

If a nonnegative matrix A is primitive, that is, A is
irreducible and ρ(A) is a unique eigenvalue of maximum
modulus, then limk→∞[ρ(A)−1Ak] → wνT , where ν and
w are left and right positive eigenvectors of matrix A
associated with eigenvalue ρ(A) satisfying wT ν = 1 [7].

The classical result in Markov chains states that if a
stochastic matrix A satisfies Am > 0 for some positive
integer m, then limk→∞ Ak → 1νT , where ν is a positive
column vector satisfying 1T ν = 1 [9]. In fact, the condition
Am > 0 for some positive integer m is equivalent to
the condition that A is irreducible and ρ(A) is a unique
eigenvalue of maximum modulus.

C. Consensus Protocols

Let xi be the information state of the ith agent. The
information state represents information that needs be coor-
dinated between agents. The information state may be agent
position, velocity, oscillation phase, decision variable, and
so on.

As described in [2], [10], [11], [12], [13], [14], a
continuous-time consensus protocol can be summarized as

ẋi(t) = −
∑

j∈Ji(t)

αij(t)(xi(t) − xj(t)), (1)

where Ji(t) represents the set of agents whose information
is available to agent i at time t and αij(t) denotes a
positive time-varying weighting factor. In other words, the
information state of each agent is driven toward the states of
its (possibly time-varying) neighbors at each time. Note that
some agents may not have any information exchange with
other agents during some time intervals. The continuous-
time linear consensus protocol (1) can be written in matrix
form as ẋ = −Lx, where L is the graph Laplacian and
x = [x1, · · · , xn]T .

Correspondingly, a discrete-time consensus protocol as
proposed in [10], [15], [13] can be summarized as

xi[k + 1] =
∑

j∈Ji[k] {i}
βij [k]xj [k], (2)

where
∑

j∈Ji[k] {i} βij [k] = 1, and βij [k] > 0 for j ∈
Ji[k]

⋃{i}. In other words, the next state of each agent is
updated as the weighted average of its current state and the
current states of its (possibly time-varying) neighbors. Note
that an agent simply maintains its current state if it has no
information exchange with other agents at a certain time
step. The discrete-time linear consensus protocol (2) can be
written in matrix form as x[k +1] = D[k]x[k], where D[k]
is a stochastic matrix with positive diagonal entries.

Consensus is said to be achieved for a team of agents if
‖xi − xj‖ → 0 as t → ∞, ∀i �= j.

III. THEORETICAL ASPECTS OF CONSENSUS PROBLEMS

In this section, we review recent theoretical progress of
consensus problems for multi-agent systems.

A. Convergence Analysis for A Time-invariant Information
Exchange Topology

Under a time-invariant information exchange topology,
it is assumed that if one agent can access another agent’s
information at one time, it can obtain information from that
agent all the time.

For the continuous-time consensus protocol (1), it is
straightforward to see that L1 = 0 and all eigenvalues of
the Laplacian matrix L have non-negative real parts from
Gershgorin’s disc theorem. If zero is a simple eigenvalue
of L, it is known that x converges to the kernel of L, that
is, span{1}, which in turn implies that ‖xi − xj‖ → 0.

It is well-known that zero is a simple eigenvalue of L if
the graph of L is strongly connected [16]. However, this is
only a sufficient condition rather than a necessary one. We
have the formal statement that zero is a simple eigenvalue of
the Laplacian matrix if and only if its digraph has a spanning
tree. This conclusion was shown in [17] by an induction
approach while the same result is proven independently
in [18] by a constructive approach. As a result, under a time-
invariant information exchange topology, the continuous-
time protocol achieves consensus asymptotically if and only
if the information exchange topology has a spanning tree.

For the discrete-time consensus protocol (2), it can be
shown that all eigenvalues of D that are not equal to
one are within the open unit circle from Gershgorin’s disc
theorem. If one is a simple eigenvalue of D and all other
eigenvalues have modulus less than one, it is known that
limk→∞ Dk → 1νT , where ν is a column vector. This
implies that ‖xi − xj‖ → 0.

The well-known Perron-Frobenius theorem states that one
is a simple eigenvalue of a stochastic matrix if the graph of
the matrix is strongly connected. Similar to the continuous-
time case, this is only a sufficient condition rather than
a necessary one. Ref. [13] shows that for a nonnegative
matrix with identical positive row sums, the row sum of
the matrix is a simple eigenvalue if and only if the digraph
of the matrix has a spanning tree. In other words, a matrix
may be reducible but retains its spectral radius as a simple
eigenvalue. Furthermore, if the matrix has a spanning tree
and positive diagonal entries, it is shown that the spectral
radius of the matrix is the unique eigenvalue of maximum
modulus. We have the formal statement that one is a unique
eigenvalue of modulus one for the stochastic matrix D if
and only if its digraph has a spanning tree [13]. As a result,
under a time-invariant information exchange topology, the
discrete-time protocol achieves consensus asymptotically
if and only if the information exchange topology has a
spanning tree.

B. Equilibrium State Under a Time-invariant Topology
Now that we know under what conditions the consensus

protocols converge, the next step is to find the equilibrium
state to which the consensus protocols converge.

In the case that the information exchange topology has
a spanning tree, we know that limt→∞ e−Lt → 1νT and
limk→∞ Dk → 1µT , where ν = [ν1, · · · , νn]T and µ =
[µ1, · · · , µn]T are non-negative left eigenvectors of L and
D corresponding to eigenvalues 0 and 1 respectively satisfy-
ing

∑
νj =

∑
µj = 1. As a result, x(t) → ∑

νjxj(0) and
x[k] → ∑

µjxj [0]. That is, the final equilibrium state is a
weighted average of each agent’s initial condition. However,
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it is not clear whether each agent will contribute to the final
equilibrium state.

In the case that the information exchange topology is
strongly connected, we know that all νj and µj are posi-
tive [7]. Therefore, each agent’s initial condition contributes
to the final consensus equilibrium in this case. Furthermore,
if νi = νj = 1

n and µi = µj = 1
n , where i �= j,

the final consensus equilibrium will be the average of
each agent’s initial condition, which is called “average
consensus” in [11]. As shown in [11], average consensus
is achieved if the information exchange topology is both
strongly connected and balanced. In the case that the
information exchange topology has a spanning tree, the final
consensus value is equal to the weighted average of initial
conditions of those agents that have a directed path to all
the other agents [17]. While the requirement of having a
spanning tree is less stringent than being strongly connected
and balanced, the final consensus value may be in favor of
some agents and may not be an average.

C. Convergence Analysis for Dynamic Information Ex-
change Topologies

Although consensus problems are significantly simplified
by assuming a time-invariant information exchange topol-
ogy, the information exchange topology between agents
may change dynamically in reality. For instance, communi-
cation links between agents may be unreliable due to distur-
bances and/or subject to communication range limitations.
If information is being exchanged by direct sensing, the
locally visible neighbors of an agent will likely change over
time.

Many research efforts on the coordination of multiple
autonomous agents under switching information exchange
topologies are motivated by Viscek’s model [19]. Viscek’s
model can be thought of as a special case of a distributed
behavioral model proposed in [20], where computer anima-
tions are used to generate the aggregate motions of a group
of animals.

One approach to tackling switching topologies is the
algebraic graph, which typically associates graph topolo-
gies with the algebraic structure of the corresponding
matrices of those graphs. Notice that the solution of
the discrete-time and continuous-time consensus proto-
cols can be written as x[k] = D[k] · · ·D[1]D[0]x[0] and
x(t) = Φ(t, 0)x(0) respectively, where Φ(t, 0) is the
transition matrix corresponding to −L(t). Consensus can
be reached if limk→∞ D[k] · · ·D[1]D[0] → 1νT and
limt→∞ Φ(t, 0) → 1µT , where ν and µ are column vectors.
In the special case that L(t) is piecewise constant with
dwell times τj = tj+1 − tj , consensus can be reached
if limt→∞ e−L(tj)(t−tj)e−L(tj−1)τj−1 · · · e−L(t0)τ0 → 1µT .
Equivalently, we can study the property of infinite products
of stochastic matrices.

The classical result in [8] demonstrates the property of the
infinite products of certain categories. The main result of [8]
can be summarized as follows. Let S = {S1, S2, · · · , Sk}
be a finite set of SIA matrices with the property that for each
sequence Si1 , Si2 , · · · , Sij of positive length, the matrix
product Sij Sij−1 · · ·Si1 is SIA. Then for each infinite
sequence Si1 , Si2 , · · · there exists a column vector ν such
that limj→∞ Sij Sij−1 · · ·Si1 = 1νT . From the concluding
remarks in [8], we see that in the case that S is an

infinite set, λ(W ) < 1, where W = Sk1Sk2 · · ·SkNt+1 ,
λ(W ) = 1−mini1,i2

∑
j min(wi1j , wi2j), and Nt is defined

as the number of different types of all n×n SIA matrices.
Furthermore, if there exists a constant 0 ≤ d < 1 satisfying
λ(W ) ≤ d, then the above limit result of an infinite
sequence also holds.

In the case that the union of undirected information
exchange graphs across a bounded time interval is con-
nected, the product of D matrices across such an interval
is SIA [10]. Using the above result for finite S in [8],
Ref. [10] provides a theoretical explanation for consensus
of the heading angles of a group of agents using nearest
neighbor rules under undirected switching information ex-
change topologies. It is shown that consensus is achieved
asymptotically if the union of the information exchange
graphs for the team is connected most of the time as the
system evolves. This result is further discussed in [21]
and [22]. Taking into account the fact that sensors may have
a limited field of view, the authors in [12] use digraphs to
derive consensus seeking results under switching informa-
tion exchange topologies. It is shown that consensus using
the continuous-time linear protocol can be achieved if in
each uniformly bounded time interval there exists at least
one piecewise constant switching topology being strongly
connected. Ref. [13] further extends the previous results
to the case that consensus can be achieved asymptotically
if the union of the directed information exchange graphs
for the group has a spanning tree frequently enough as the
system evolves.

A common feature in the above analysis is that L(t) is
assumed to be piecewise constant for the continuous-time
consensus protocol. However, it is possible that L(t) may be
time-varying to reflect the relative confidence of each agent
about its information state, that is, the weighting factors
αij may be time-varying. In fact, in the case that L(t) is
piecewise continuous and each nonzero entry �ij , where
i �= j, is uniformly lower and upper bounded, consensus
is reached asymptotically using the continuous-time con-
sensus protocol if there exist infinitely many consecutive
uniformly bounded time intervals such that the union of the
information exchange graph across each such interval has
a spanning tree [23].

In contrast to the algebraic graph approach, nonlinear
tools are used by some other researchers to study con-
sensus problems. For the discrete-time consensus protocol,
a set-valued function V is defined as V (x1, · · · , xn) =
(conv{x1, · · · , xn})n, where conv{x1, · · · , xn} denotes the
convex hull of xi, i = 1, · · · , n [15]. It is shown that
under some conditions V is non-increasing over time and V
indeed approaches a singleton set x1(t) = · · · = xn(t) =
constant, which implies that consensus is reached. Using
the set-valued Lyapunov theory, Ref. [15] shows that the
discrete-time linear protocol is uniformly globally attractive
with respect to the collection of equilibrium solutions
x1(t) = · · · = xn(t) = constant if and only if there exists a
T ≥ 0 such that there is a node that has a directed path to
all the other nodes across each interval of length T . For the
continuous-time consensus protocol, a Lyapunov function
candidate is proposed as V (x) = max{x1, · · · , xn} −
min{x1, · · · , xn} in [14]. It is shown that V (x) decreases
over a sufficient length of time intervals. In the case that
L(t) is piecewise continuous and each nonzero entry �ij ,
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where i �= j, is uniformly lower and upper bounded, the
equilibrium set x1 = · · · = xn = constant is uniformly
exponentially stable if there is an index k ∈ {1, · · · , n} and
an interval length T > 0 such that for all t the digraph of∫ t+T

t
(−L(s))ds has the property that node k has a directed

path to all the other nodes.
In addition, in [24], nonlinear contraction theory is

used to study synchronization and schooling applications,
which are related to the consensus problem. In particular,
the continuous-time consensus protocol is analyzed under
undirected switching information exchange topologies. It
is shown that consensus is reached asymptotically if there
exists an infinite sequence of bounded intervals such that
the union of the graphs across each interval is connected,
which recovered the result shown in [10].

D. Relative Information Uncertainty
In practical applications of multi-agent systems, there

are many cases where some individuals on the team will
have access to better information than others. In cases
like these the consensus algorithm needs to be biased to
favor agents with better information. As a result, weighting
factors in Eqs. (1)-(2) should be adjusted to reflect agent
certainty about its information. For example, large αij and
βij indicates that agent j has a high degree of confidence
about its information while small αij and βij indicates low
confidence.

Certainty information can be encoded into each agent by
means of covariance matrix Pi = E[(xi − xf )(xi − xf )T ],
where xf represents the final consensus value. Motivated
by the continuous-time Kalman filter, the weighting factors
can be updated as follows [23]:

Ṗi = −Pi

j∈Ji(t)

(Pj + Ωij)
−1 Pi +Q, αij = Pi(Pj +Ωij)

−1,

where Q denotes the covariance of the process noise and
Ωij denotes the covariance of transmission or communica-
tion noise between agent j and agent i.

E. Communication Delays
In the case that information is exchanged between agents

through communications, time delays of the communication
channels need to be considered.

Let τij denote the time delay for information communi-
cated from agent j to agent i. The continuous-time consen-
sus protocol is now denoted by ẋi =

∑
i∈Ji(t)

αij [xj(t −
τij) − xi(t − τij)]. In the simplest case where τij = τ
and the communication topology is fixed, undirected, and
connected, average-consensus is achieved if and only if τ ∈
[0, π

2λmax(L) ), where L is the graph Laplacian matrix [11].
Consider another case where the time delay only af-

fects the information state that is being transmitted. The
continuous-time consensus protocol is denoted as ẋi =∑

i∈Ji(t)
αij [xj(t−τij)−xi(t)]. In the case where τij = τ

and the communication topology is directed and switching,
the consensus result for switching topologies described
previously is still valid for an arbitrary time delay τ [14].

F. Consensus Synthesis
In the above discussions, we analyze the properties of

consensus protocols given beforehand. On some occasions,

we may want to generate consensus protocols that satisfy
certain properties or optimize some performance criteria.

For example, in a network with a large number of agents,
it may be desirable to solve the fastest distributed linear
averaging (FDLA) problem defined as follows [25].

Let W = [Wij ] ∈ Mn(IR) such that Wij = 0 if there is
no information exchange between agent i and agent j. Given
x[k +1] = Wx[k], the FDLA problem is to find the weight
matrix W that guarantees the fastest convergence speed to
the average consensus value. In contrast to discrete-time
consensus protocol (2), the weighting factors Wij above
are allowed to be negative. In fact, as shown in [25], the
optimal weighting factors may sometimes be negative. With
an additional constraint that Wij = Wji, the FDLA problem
can be simplified as a semi-definite program and solved
accordingly [25].

More generally, consider an interconnected network of
n agents with dynamics given by ẋi =

∑n
j=1 Aijxj +

B
(1)
i wi + B

(2)
i ui, where xi ∈ IRn denotes the state,

wi ∈ IRm denotes the disturbance, and ui ∈ IRr denotes
the control input with i = 1, · · · , n. Ref. [26] focuses
on synthesizing a state feedback controller that guarantees
consensus for the closed loop system without disturbance
as well as a state feedback controller that achieves not
only consensus but optimal H2 performance for disturbance
attenuation. Necessary and sufficient convex conditions are
derived for the existence of such state feedback controllers.

G. Other Issues
Under certain circumstances, it is desirable to construct

nonlinear consensus protocols as shown in [11], [27], [24].
Agreement problems are also studied from a stochastic

point of view in [28], which relies on graph theoretic results
developed in [29].

Furthermore, dynamic consensus problems are studied
in [30], which focuses on how to achieve and analyze
tracking of linear consensus on time-varying inputs.

IV. MULTI-AGENT COORDINATION VIA CONSENSUS
SCHEMES

In this section, we investigate applications of the consen-
sus schemes to multi-agent coordination.

A. Vehicle Formations
Consensus schemes have been extensively applied to

achieve vehicle formations. In [2], information exchange
techniques are studied to improve stability margins and
vehicle formation performance. The authors also derive a
Nyquist-like stability criterion for formation stabilization. It
is argued that vehicle formations can be achieved through
reaching consensus on the center point of the formation.
In [31], a decentralized control strategy is implemented to
maintain multiple robot formations, where each robot only
needs position information of its two neighbors. Ref. [18]
studies the formation stabilization problem of multiple
unicycles using a consensus scheme, where results are given
for formation stabilization of the unicycles to a point, a line,
and a general formation pattern. In addition, the simplified
pursuit strategy for wheeled-vehicle formations in [32] can
be thought of as a special case of the continuous-time
linear consensus protocol, where the information exchange
topology is a uni-directional ring. In [33], a network of
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vehicles are required to achieve a polygonal formation
by exchanging information among themselves, where sto-
chastic disturbance is introduced to the communication
graph and the effect of stochastic loss of information is
studied by Monte Carlo simulations. In [34], a general
framework is provided to analyze both consensus problems
and formation stabilization problems, where the effect of
formation switching is addressed for both single integrator
dynamics and general plant dynamics. In addition, double
integrator dynamics are applied in [35] to study formation
stabilization problems in the general framework of sens-
ing/communication architectures, which is related to the
consensus problems.

B. Attitude Alignment
In [36], formation control laws are presented for main-

taining attitude alignment among a group of spacecraft,
where the attitude of each spacecraft is synchronized with
its two adjacent neighbors via a bi-directional communica-
tion topology. Similarly, the bi-directional communication
topology is used in [37] to synchronize instantiations of
group level information, the formation state, among mul-
tiple spacecraft. Ref. [38] considers the attitude alignment
problem for a team of UAVs using nonlinear decentralized
consensus protocols, where input constraints are also taken
into account.

C. Rendezvous Problem
The rendezvous problem requires that each agent arrive

at a location simultaneously. In [39], consensus seeking
ideas are applied to a rendezvous problem for a group
of mobile autonomous agents, where both the synchronous
case and the asynchronous case are considered. In [17], the
“meet for dinner” problem is addressed in the context of
consensus seeking. A similar idea is extended for multiple
UAVs to converge on the boundary of a radar detection area
simultaneously to maximize the element of surprise [40].

D. Coordinated Decision Making
In multi-agent systems, distributed decision making has

an advantage over centralized decision making in the sense
that a decision maker is not required to access information
from all the other decision makers. In [27], a distributed
consensus protocol is introduced to coordinate orders of a
network of buyers. The authors prove that distributed pro-
tocols can achieve the same coordination as the centralized
decision making process. Ref. [41] considers a scenario of
multiple distributed noisy sensors observing a single event,
where those sensors need to reach consensus about the event
after exchanging messages through a network. The authors
apply belief propagation as a message passing strategy to
solve a distributed hypothesis testing problem for a pre-
specified network connectivity.

E. Flocking
In [42], [43], [44], the authors study the flocking phenom-

enon observed in [20] by constructing local control laws
that allow a group of mobile agents to align their velocities,
move with a common speed and achieve desired inter-agent
distances while avoiding collisions with each other under a
fixed topology and switching topologies respectively. These
results extend some results reported in [45].

F. Coupled Oscillators
Ref. [46] studies connections between phase models of

coupled oscillators and kinematic models of groups of
self-propelled particles. The authors develop analysis and
design tools for stabilization of collective motions based on
previous results for coupled oscillators. In [47], the authors
analyze the stability of classic Kuramoto model of coupled
nonlinear oscillators. It is proved that for couplings above
a critical value, all the oscillators synchronize in the case
of identical and uncertain natural frequencies.

G. Robot Position Synchronization
In [48], a linear continuous-time consensus-like scheme

is proposed to solve the problem of position synchronization
of multiple cooperative robot systems, where only position
measurements are required and the controller is shown to
be semi-globally exponentially stable.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We have reviewed consensus protocols in the current
literature. Since much research on consensus problems is
ongoing, this survey is by no means complete.

In the current literature, most consensus problems are
studied in the context of single integrator dynamics. Some
results from single integrator dynamics imply that the same
results may be extended to double integrator dynamics or
more complicated dynamics. As a result, the same frame-
work of consensus-seeking for single integrator dynamics
may be applied to decentralized robot, spacecraft, and
UAV formation flying scenarios, where the communication
topologies between spacecraft/UAV could be switching with
time. The study of consensus problems for a team of agents
with more complicated nonlinear dynamics and a team
of heterogenous agents is an interesting topic for future
research.

Most research in consensus problems assumes that the
final consensus value to be reached is inherently constant,
which may not be the case in the sense that the information
state of each agent may be dynamically evolving in time
according to some inherent dynamics, as happens in some
formation control problems where the formation is moving
through space. It will be interesting to study consensus
problems where the final consensus value evolves with time
or as a function of vehicle/environmental dynamics.

Furthermore, consensus problems may be studied from a
stochastic point of view to take into account the case that at
each time instance the existence of an information exchange
link between agents may be probabilistic.

In the current literature, most research activities focus on
theoretical study of consensus problems and most results are
demonstrated via simulations except for a few experimental
results of multiple mobile robot coordination with strongly
connected time-invariant sensing/communication topolo-
gies. Experimental implementation of consensus schemes
for multiple agent systems is a key element of research
in the future. Furthermore, issues like disturbances, time-
delay, communication/sensor noise, and model uncertainties
should also be taken into account. Future research may
be involved in studying how communication noise and
inconsistent time-delay from different neighboring agents
affect consensus for the whole system under dynamically
changing information exchange topologies.
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Several other key problems that need to be addressed are
as follows.

1) How does a group of agents form consensus when
the data is (a) continuous versus discrete in time, (b)
quantized in amplitude, or (c) originates from sources
with variable reliability?

2) How does one design consensus protocols that not
only account for control input constraints but also
make use of system dynamics to converge on an
optimal solution with respect to an objective?

3) How do we make the team objectives invariant with
respect to the consensus seeking problem? In other
words, as consensus is being formed, the agents
must act on the best information available to them
at the time. One way of viewing this is that the
individuals understand the team objectives differently.
Under what conditions will the “design” objectives be
satisfied?
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