ECEn 487 - Introduction to Digital Signal Processing

Winter 2013

Quiz 3

1. (2 pts) Suppose you have a signal $x_c(t) = \cos(2\pi \cdot 100t)$. Suppose you sample the signal at a period of $T = 10^{-3}$ seconds and get x[n]. What is the Discrete-Time Fourier Transform of x[n]?

2. (2 pts) Now, suppose you play back x[n] at a rate of $T = 3 \times 10^{-3}$ with perfect reconstruction to get $r_c(t)$. What is $r_c(t)$?

3. (2 pts) Suppose you take x[n] and you downsample it by a factor of 3 to get y[n]. What is the resulting Discrete-Time Fourier Transform of y[n]?

4. (2 pts) Suppose you take x[n] and you upsample it by a factor of 4 to get z[n]. What is the resulting Discrete-Time Fourier Transform of z[n]?

5. (2 pts) Suppose that you sample $x_c(t)$ from Problem 1 at a rate of $T = 3 \times 10^{-1}$ to get g[n]. What is the resulting Discrete-Time Fourier Transform of g[n]?