Conclusion

Estimating Parking Spot Occupancy

David M.W. Landry and Matthew R. Morin

Department of Electrical and Computer Engineering Brigham Young University

> Stochastic Processes Project 5 December 2013

> > Brigham Young University

< <p>O > < <p>O >

Landry and Morin

Conclusion

Outline

1 Introduction

2 Analytical Model

- Spatial and Temporal Distribution
- Expected Time to Destination
- 3 Simulation Results

4 Conclusion

Landry and Morin

Brigham Young University

Conclusion

Outline

1 Introduction

2 Analytical Model

- Spatial and Temporal Distribution
- Expected Time to Destination

3 Simulation Results

4 Conclusion

Landry and Morin

Parking Occupancy

Brigham Young University

Simulation Results

Conclusion

Everybody Parks

Figure: Google Earth. BYU Parking Lot 1A. 40°15′4.49″N and 111°38′58.37″W. Image Taken: Jun 17, 2010. Accessed: Nov 11, 2013.

Landry and Morin

Brigham Young University

Conclusion

Outline

1 Introduction

2 Analytical Model

- Spatial and Temporal Distribution
- Expected Time to Destination

3 Simulation Results

4 Conclusion

Landry and Morin

Parking Occupancy

Brigham Young University

Simulation Results

Conclusion

Spatial and Temporal Distribution

1 Introduction

2 Analytical Model

- Spatial and Temporal Distribution
- Expected Time to Destination

3 Simulation Results

4 Conclusion

Landry and Morin

Parking Occupancy

Brigham Young University

Simulation Results

Conclusion

Spatial and Temporal Distribution

- Each parking space is a Bernoulli random variable
 The marked billing of a second parked by the second pa
- The probability of occupancy, *p*, changes with
 - distance from the point of interest
 - time of day

Landry and Morin

Brigham Young University

Image: A matrix

Simulation Results

Conclusion

Spatial and Temporal Distribution

Distance

Landry and Morin

Simulation Results

Conclusion

Spatial and Temporal Distribution

Time of Day

Landry and Morin

Brigham Young University

Simulation Results

Conclusion

Spatial and Temporal Distribution

Joint Distribution

Simulation Results

Conclusion

Spatial and Temporal Distribution

Fermi-Dirac - An Alernate Distribution

Brigham Young University

Landry and Morin

Simulation Results

Conclusion

Expected Time to Destination

1 Introduction

2 Analytical Model

- Spatial and Temporal Distribution
- Expected Time to Destination
- 3 Simulation Results

4 Conclusion

Landry and Morin

Brigham Young University

< A

Introduction

Analytical Model

Simulation Results

Conclusion

Expected Time to Destination

$T_{total} = \rho T_o + (1 - \rho) T_u \tag{1}$

Landry and Morin

Brigham Young University

<ロ> < 四 > < 四 > < 回 > < 回 > < 回

Simulation Results

Conclusion

Expected Time to Destination

 T_o is the wait time for a space to open up plus the walking time to reach the point of interest

Landry and Morin

Introduction

Analytical Model

Simulation Results

Conclusion

Expected Time to Destination

 T_o

$Y = min(X_1, X_2..., X_N)$ (2)

Landry and Morin

Brigham Young University

(ロ) (四) (日) (日) (日)

Simulation Results

Conclusion

Expected Time to Destination

T_o - Derived pdf for Wait Time

$$f_Y(x) = N f_X(x) (1 - F_X(x))^{N-1}$$
 (3)

Brigham Young University

- 王

ヘロト ヘロト ヘヨト

Landry and Morin

Simulation Results

Conclusion

Expected Time to Destination

To - Expected Wait Time

$$E[Y] = \int_{-\infty}^{\infty} x N f_X(x) (1 - F_X(x))^{N-1} dx$$
 (4)

Brigham Young University

▲口 > ▲圖 > ▲ 国 > ▲ 国

Landry and Morin

Simulation Results

Conclusion

(5)

Expected Time to Destination

$T_o - E$ xpected Distance

$$d_o = rac{1}{N}\sum_i^N d_i$$

Landry and Morin

Introduction

Analytical Model

Simulation Results

Conclusion

Expected Time to Destination

$$T_o = E[Y] + \frac{d_o}{v} \tag{6}$$

Landry and Morin

Brigham Young University

э

<ロ> <四> <四> <三</p>

Simulation Results

Conclusion

Expected Time to Destination

T_u - Which Spot?

$$p_u = (1 - p_n) \prod_{i=1}^{n-1} p_i, n > 1$$
 (7)

Landry and Morin

Brigham Young University

æ

<ロ> <四> <四> <三</p>

Simulation Results

Conclusion

Expected Time to Destination

$\overline{T_u}$ - Expected Distance

$$E[d_u] = \sum_{j=1}^N d_j \rho_{u,j} \tag{8}$$

Landry and Morin

Brigham Young University

Simulation Results

Conclusion

Expected Time to Destination

 T_u

$$T_u = \frac{E[d]}{v}$$

æ

(9)

Brigham Young University

<ロ> <四> <四> <三</p>

Landry and Morin

Conclusion

Outline

1 Introduction

2 Analytical Model

- Spatial and Temporal Distribution
- Expected Time to Destination

3 Simulation Results

4 Conclusion

Landry and Morin

Brigham Young University

Simulation Results

Conclusion

Retail Parking Example

Brigham Young University

Landry and Morin

Simulation Results

Street Parking - Time to Point of Interest

Brigham Young University

Landry and Morin

Simulation Results

So which street should I park on?

Landry and Morin

Brigham Young University

Conclusion

Outline

1 Introduction

2 Analytical Model

- Spatial and Temporal Distribution
- Expected Time to Destination

3 Simulation Results

4 Conclusion

Landry and Morin

Brigham Young University

Conclusion

Who knew you could have so much fun with parking lots?

Landry and Morin

Brigham Young University

< 口 > < 🗗

Simulation Results

Conclusion

And Have Fun Parking

Figure: Munroe, Randall. "Parking". xkcd. Licensed under CC BY-NC 2.5

Landry and Morin

Brigham Young University