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ABSTRACT 

Coal Pyrolysis Models for Use in Massively-parallel  
Oxy-fuel-fired Boiler Simulations 

 
Andrew Richards 

Department of Chemical Engineering, BYU 
Doctor of Philosophy 

 
 Accurately modeling key aspects of coal combustion allows for the virtual testing and 
application of new technologies and processes without the need for investments in lab- and pilot-
scale facilities, since such facilities may only be used for a few small tests. However, modeling 
of subprocesses must not only be accurate but computationally efficient. Modeling of coal 
devolatilization reactions and processes are one of the important parts of large-scale simulations 
of coal combustion systems. The work presented here details efforts to improve the modeling of 
coal devolatilization processes in massively-parallel simulations of coal combustors, including: 
(1) devolatilization rate/yield models, (2) modeling various chemical, physical, and 
thermodynamic properties of coal, char, and tar (including structural NMR parameters like 
carbon aromaticity, the elemental composition of coal char and tar, and the heating value of coal-
based and other fuels), and (3) the application of various simplifying assumptions to equilibrium 
calculations of coal devolatilization products using multiple levels of fuel mixture fractions. 
Using several different advanced statistical methods, the models discussed here were developed 
and improved by careful comparison with large sets of experimental data. The advanced 
statistical methods and procedures show large improvements in these models over previous 
work. 
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NOMENCLATURE 

Parameter Description 
𝐴𝐴 Arrhenius pre-exponential factor, used in pyrolysis yield/rate models, see 

Section 2.3.1 and Chapter 4 
𝑎𝑎, 𝑏𝑏, 𝑐𝑐, etc. 1. Fitting coefficients, see Section 2.3.2 and Chapter 6 

2. Fitting coefficients in Utah model ultimate yield curve, see Section 2.3.1 
and Chapter 4 
3. average molar compositions of a generic fuel used for complete 
combustion calculations, see Section 2.3 

𝑎𝑎𝑖𝑖,𝑗𝑗 The number of atoms of element 𝑗𝑗 in component 𝑖𝑖 (for example, a sample fuel 
of benzene, C6H6 would have an 𝑎𝑎𝑖𝑖𝑗𝑗 of 6 for both carbon and hydrogen) 

𝛼𝛼 Stoichiometric amount of oxygen needed for complete combustion 
𝐶𝐶 1. Unreacted or raw coal (see Section 2.3.1 and Chapter 4) 

2. Carbon mass/mole fraction (see Sections 2.3.2, 2.3.3, 2.5, 5, 6, and 7) 
3. Graphite mass/mole fraction, C(s) (see Chapter 8) 

𝑐𝑐0 NMR structural parameter used in the CPD model and other correlation 
applications, corresponds to the number of stable bridges in the parent coal 

𝑐𝑐𝑖𝑖 Fitting coefficients, see Section 2.3 and Chapters 4 and 7 
𝐷𝐷𝐷𝐷 Coal-specific index used in Biagini and Tognotti model, see Section 2.3.1 and 

Chapter 4 
𝐸𝐸 or 𝐸𝐸𝑐𝑐 Arrhenius activation energy, used in pyrolysis yield/rate models, see Section 

2.3.1 and Chapter 4 
𝐸𝐸0 Mean activation energy in distributed activation energy models, see Section 

2.3.1 and Chapter 4 
𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒 Effective activation energy, includes mean activation energy and the 

distribution in the distributed activation energy models 
𝐹𝐹 Modification factor of the Arrhenius pre-exponential factor, used in a few 

pyrolysis rate/yield models, see Section 2.3.1 and Chapter 4 
𝑓𝑓𝑐𝑐 Total or apparent aromatic carbon contribution, includes carbonyl 

contribution 
𝑓𝑓𝑐𝑐′ Corrected or true fraction of aromatic carbon, without the carbonyl 

contribution 
𝑓𝑓𝑖𝑖 Component mixture fraction of component 𝑖𝑖, e.g., mixture fraction of 

methane 
𝐻𝐻 Hydrogen mass/mole fraction 
Δ𝐻𝐻 Enthalpy of, used with heating values (Δ𝐻𝐻𝑐𝑐), heat of vaporization (Δ𝐻𝐻𝑣𝑣𝑐𝑐𝑣𝑣), or 

heat of reaction (Δ𝐻𝐻𝑟𝑟), units of MJ/kg used here 
Infinity norm Maximum absolute error over a domain, see Equation 2-16 
𝐾𝐾 The number of fitted coefficients pus one in a model of interest, used in AIC 

calculations, see Section 2.4.3 
L1 norm A statistical measure of error, is the average absolute error over a domain, see 

Equation 2-14 
L2 norm A statistical measure of error, is the Euclidian norm, shows the root-mean-

squared error (RMSE), see Equation 2-15 
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𝑀𝑀𝑐𝑐𝑐𝑐 NMR structural parameter used in the CPD model and other correlation 
applications, corresponds to the average molecular weight of clusters in a coal 
molecule 

𝑀𝑀𝛿𝛿 NMR structural parameter used in the CPD model and other correlation 
applications, corresponds to the average molecular weight of the side-chains 
or attachments to clusters 

𝑀𝑀𝑖𝑖 Mass of component 𝑖𝑖 in a mixture 
𝑀𝑀𝑐𝑐𝑜𝑜 Mass of oxidizer (e.g., air) 
𝑁𝑁 1. Nitrogen mass/mole fraction 

2. Total number of data points in a data set (statistics) 
3. Total number of components in a mixture 

n 1. Used to tell a generic index value (statistics) 
2. number of moles, e.g., moles of water, moles of component 𝑖𝑖, moles of 
oxidizer, etc. 

𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 Number of fitted coefficients in a model of interest 
𝑁𝑁𝑣𝑣𝑐𝑐𝑟𝑟 Number of independent variables in a model of interest 
𝜈𝜈𝑖𝑖 Stoichiometric coefficient of compound 𝑖𝑖 
𝑂𝑂 Oxygen mass/mole fraction 
𝑝𝑝0 NMR structural parameter used in the CPD model and other correlation 

applications, corresponds to the number of intact bridges in the parent coal 
𝜙𝜙𝑖𝑖 Equivalence ratio of component 𝑖𝑖, see Equation 2-5 
𝑅𝑅 Ideal gas constant 
𝑅𝑅2 Sometimes called coefficient of determination, used to measure goodness of 

fit of a model, see Equation 2-7 
𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 An “adjusted” 𝑅𝑅2 value, used to determine model “utility,” or how well a 

model fits compared to the number of fitted coefficients 
𝑆𝑆 Sulfur mass/mole fraction 
𝜎𝜎𝐸𝐸 Standard deviation of the activation energy in distributed activation energy 

models, Section 2.3.1 and Chapter 4 
𝜎𝜎 + 1 NMR structural parameter used in the CPD model and other correlation 

applications, corresponds to lattice coordination number or total number of 
attachments per cluster 

𝑇𝑇 or 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 Temperature, used in several different chapters. Particle temperature (Chapter 
4), maximum gas temperature (Chapter 6), equilibrium gas temperature 
(Chapter 8) 

𝑇𝑇𝑖𝑖𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒 Ignition temperature, used in the Utah model ultimate yield curve, see Section 
2.3.1 and Chapter 4 

𝑇𝑇𝑔𝑔𝑖𝑖 Reference temperature constant, used in the Biagini and Tognotti model, see 
Section 2.3.1 and Chapter 4 

𝑡𝑡 or 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 Residence time 
𝑉𝑉 Volatiles yield, used in pyrolysis rate/yield models, see Section 2.3.1 and 

Chapter 4 
𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ASTM volatiles yield, found by a standard ASTM test 
𝑉𝑉𝑚𝑚𝑐𝑐𝑜𝑜 Maximum volatiles yield in a set of pyrolysis reaction measurements 
𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 Normalized volatiles yield, ratio of 𝑉𝑉/𝑉𝑉𝑚𝑚𝑐𝑐𝑜𝑜, can range from 0 to 1 
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𝑉𝑉∞ “Prescribed” ultimate volatiles yield, see Section 2.3.1 and Chapter 4 
𝑊𝑊𝑖𝑖 or 𝑊𝑊𝑗𝑗 Molecular weight of component 𝑖𝑖 or element 𝑗𝑗 
𝑋𝑋 Dry, ash-free mass fraction of any element (CHONS), see Appendix C 
𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 A type of extent of reaction (pyrolysis), see Section 2.3.1 and Chapter 4 
𝑌𝑌𝑖𝑖 1. Yield factor for kinetic step 𝑖𝑖, see Section 2.3.1 and Chapter 4 

2. Mass fraction of component 𝑖𝑖 
𝑦𝑦 Observed or experimental value 
𝑦𝑦� Predicted value 
𝑌𝑌𝑣𝑣𝑐𝑐𝑐𝑐 Percent volatiles of the total fuel mixture in mixture fraction analysis, (0 to 

100%), a 𝑌𝑌𝑣𝑣𝑐𝑐𝑐𝑐 of 0% means the fuel is completely char 
𝑍𝑍 Generic distribution variable used in distributed activation energy models, see 

Section 2.3.1 and Chapter 4 
𝑍𝑍𝑗𝑗 Elemental mixture fraction of element 𝑗𝑗 (used here as CHONS elemental 

mixture fractions) 
Abbreviations 
AIC Akaike information criterion, see Section 2.4.3 
AM Aromaticity model, see Table 2-2 
an Coal rank, anthracite 
Aus. Country, Australia 
Avg Average 
bit Coal rank, bituminous 
BT Short for Biagini and Tognotti model, see Section 2.3.1 and Chapter 4 
CFD Computational fluid dynamics 
Col Country, Columbia 
CPD Chemical percolation devolatilization Model, see Section 2.3.1 and Chapter 4 
DAEM Distributed activation energy model, see Section 2.3.1 and Chapter 4 
DAF Dry, ash-free, a basis used in determining mass and mole fractions of 

elements and other measured quantities 
DM Devolatilization model, see Table 2-1 
DMMF Dry, mineral-matter free, a basis used in determining mass and mole fractions 

of elements and other measured quantities 
𝑒𝑒𝑒𝑒𝑓𝑓𝑖𝑖𝑒𝑒𝑒𝑒 Inverse error function used in distributed activation energy models, 

MATLAB has built-in version, see Section 2.3.1 and Chapter 4 
Germ Country, Germany 
HHV Higher heating value, also known as gross calorific value, the heat of 

combustion with liquid water as a product of complete combustion 
HM Heating value model, see Table 2-3 
Indo Country, Indonesia 
LHV Lower heating value, also known as net calorific value, the heat of 

combustion with gaseous water as a product of complete combustion 
Liq Gas Liquids and gaseous fuels 
Man Country, Manchuria 
Meta-an Coal rank, meta-anthracite 
MSE Mean square error, see Equation 2-12 
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NASA-CEA NASA’s Chemical Equilibrium with Applications program (occasionally 
abbreviated as “NASA” in figure legends) 

NMR Nuclear magnetic resonance, used to determine several structural parameters 
of coal and other compounds 

PAH Polycyclic aromatic hydrocarbon, typically used in coal research as a generic 
name for tar precursors 

Prop Propellants and explosives 
RE Relative error, see Equation 2-13 
RF Short for Richards-Fletcher, or the modified two-step model with corrective 

factor, see Section 4.3.7 
RFE Short for Richards-Fletcher Energy, or the modified two-step model with 

distributed activation energy, see Section 4.3.8 
RMSE Root-mean-squared error, see L2 norm 
Semi-an Coal rank, semi-anthracite 
SK Singh and Kakati models, see Table 2-2 
SSE Sum of squared error, see Equation 2-11 
Tomasz Author, Tomaszewicz 
VUQ Field of verification, validation, and uncertainty quantification, uses applied 

statistical methods to compare mathematical model predictions to real-world 
data 

Subscripts 
0 Mixture fraction analysis, denotes a property of the oxidizer stream 
1, 2, 3 Mixture fraction analysis, denotes a property of a fuel stream 
char A parameter of the char 
coal A parameter of the parent or raw coal 
Genetti Indicates an NMR parameter calculated using one of Genetti’s correlations 
𝐻𝐻2𝑂𝑂 Indicates a property of water 
𝑖𝑖 Indicates an index value, used in mixture fraction analysis to specify a fuel 

component 
𝑖𝑖0 Corresponds to a parent coal composition, used in conjunction with 𝑋𝑋 in 

Appendix C 
𝑗𝑗 Mixture fraction analysis, an index value corresponding to element 𝑗𝑗, (e.g., 

CHONS) 
𝑜𝑜𝑜𝑜 A value corresponding to the oxidizer component, mixture fraction analysis 
refit Corresponds to NMR structural parameters using a re-fit of Genetti’s original 

correlations 
𝑠𝑠𝑡𝑡𝑜𝑜𝑖𝑖𝑐𝑐ℎ A property at stoichiometric conditions 
tar A parameter of the tar 
vap A parameter of vaporization (e.g., Δ𝐻𝐻𝑣𝑣𝑐𝑐𝑣𝑣 is enthalpy of vaporization) 
Superscripts 
1, 2, 3 Mixture fraction comparison, denotes elemental mixture fractions of a one-, 

two-, or three-mixture fraction method 
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1 INTRODUCTION 

Many cultures have myths as to the origin of fire. Perhaps one of the best known in 

modern times is the Greek myth of Prometheus, who stole fire from the gods to bring to humans 

(Weinberg, 1975). No matter how man’s pursuit of fire started, it has fascinated us for many 

thousands of years. Coal combustion research, by comparison, is a much more modern endeavor, 

with coal being used as a fuel in Europe in the 4th century BC and some reports in China as early 

as 1000 BC (Miller, 2017b). The U.S. Energy Information Agency puts out an Annual Energy 

Review (updated every month) with an overview of how much energy is produced in the U.S. 

from each source. In the first seven months of the year 2020, approximately 79 percent of the 

total energy in the U.S. came from fossil fuels, with almost 25 percent of the total energy from 

coal alone (EIA, 2020). While the percentage of energy production by coal has decreased in 

recent years, coal is still an important part of energy resources both in the U.S. and worldwide. 

Coal reactions were modeled early in the 1960s, however, comprehensive models of coal 

combustion systems were not developed until the late 1970s to early 1980s (Smoot and Smith, 

1985). While these early models represented a large step in coal research, modeling efforts have 

improved greatly to produce modern simulations of coal combustion applications that include 

multiple physics-based models to accurately reflect the chemical and physical processes of coal. 

Of particular interest is the process of coal devolatilization, which is the first major reaction that 

occurs in coal combustion (after any moisture loss due to particle heating). Many researchers 
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over the years have worked on efforts to improve modeling of coal devolatilization processes, 

detailed in the Literature Review chapter of this dissertation. 

The work detailed in this dissertation details efforts to further improve various aspects of 

coal devolatilization modeling in massively-parallel simulations of coal combustors, including 

improvement in the following aspects of the devolatilization reaction: (1) devolatilization 

rate/yield models, (2) modeling various chemical, physical, and thermodynamic properties of 

coal, char, and tar (including structural NMR parameters like carbon aromaticity, the elemental 

composition of coal char and tar, and the heating value of coal-based and other fuels), and (3) the 

application of various simplifying assumptions to equilibrium calculations of coal 

devolatilization products using multiple levels of fuel mixture fractions. This research benefitted 

from several different statistical methods used to compare model predictions to real-world 

values. 
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2 LITERATURE REVIEW 

 The following literature review explores prior work done on coal pyrolysis modeling 

efforts, starting with pyrolysis rate/yield models, followed by the elemental and structural 

composition of coal and other coal-based fuels like char and tar, and finally some 

thermochemical properties and equilibrium states of coal-based and other fuels. This review also 

summarizes some of the key statistical methods used here. This review also summarizes the 

extensive searches of the literature for experimental data sets for the various modeling efforts 

discussed and presented here. 

 Coal Reactions 

 The chemical and physical structure of coal and its products has been the subject of a 

large history of research (Smoot and Smith, 1985; Smith et al., 1994). Coal is made up of organic 

matter that has been fossilized through a process called coalification. The organic material that 

eventually turns into coal is widely varied, and this variability remains in the coal as it forms. 

This variability comes in the form of a complex mix of aromatic structures, aliphatic bridges, and 

side chain groups. Because of this variability, no one coal molecule can be used to describe coal, 

either physically or in a combustion reaction mechanism. Several researchers have proposed 

potential “model” compounds of a coal molecule, which can be used to describe an “average” 

coal molecule. Figure 2-1 shows one of these proposed coal molecules, reprinted with 

permission from (Serio et al., 1987). Copyright (1987) American Chemical Society. 
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Figure 2-1. A proposed depiction of a coal molecule. 

 

 In large-scale simulations and modeling of coal science, average compositions, 

structures, and physical properties tend to be used in the place of complex reaction mechanisms 

and bulky molecular models (Smoot, 1981; Smoot et al., 1984; Williams et al., 2002). These 

average values can be found using a wide variety of standard tests, performed the same way 

every time. Details of the chemical composition can be found in a set of tests called a proximate 

(more general information, such as moisture and volatile content, etc.) and ultimate (elemental 

compositions of both organic and inorganic parts of a coal sample) analyses. 

 With the extra complexity in physical and chemical structure comes a more complex 

reaction scheme. Coal combustion is typically divided into several main reaction steps:  primary 

pyrolysis, secondary pyrolysis, and char conversion. Figure 2-2 shows a simplified depiction of a 

coal combustion process. In reality, these reaction steps are generally much more complex than 

depicted here. These reactions are discussed at greater length below. 

 In coal research, several terms are used that may mean slightly different things in other 

fields of research. Parent coal refers to the raw, unreacted coal. The parent coal can be either 

pulverized to a fine powder (typical for industrial applications) or kept in larger chunks (for 

applications such as steel-making and smaller, less efficient power generation purposes). As heat  
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Figure 2-2. Simplified representation of coal particle reactions 

 

is applied, inherent moisture evaporates at fairly low temperatures. At higher temperatures, the 

coal goes through what is called primary pyrolysis, which is a thermal decomposition reaction, 

meaning heat breaks apart weaker chemical bonds in the coal causing small molecules to 

vaporize into what are called the total volatiles. These total volatiles are broken into two main 

categories:  tar (molecules that condense into a sticky liquid at room temperature) and light gases 

(molecules that remain as gas at room temperature). After primary pyrolysis (frequently called 

devolatilization), the solid that remains behind that is called char. These three compounds (char, 

tar, and light gases) make up the primary products of primary pyrolysis, which can then further 

react in various ways. These products can further completely oxidize with O2 to form 

combustion products, or they can gasify with CO2 and water vapor to form CO and H2. Some of 

the tar can combine to form soot (Smoot and Smith, 1985; Smith et al., 1994). 

2.1.1 Primary Pyrolysis 

 Pyrolysis generally occurs and is studied in an inert atmosphere, with little to no oxidizer 

present (Smith et al., 1994). With the coal introduced into a heated atmosphere, weaker bonds 
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start to break and release light gas molecules (from some of the smaller side-chains). As the 

particle temperature rises, some of the more stable bonds (aliphatic bridges between aromatic 

clusters) start to break and form a thick, viscous liquid called metaplast inside the coal structure. 

This liquid can further decompose as the coal temperature continues to rise, releasing more 

volatile compounds from the coal. As the temperature continues to rise and the pyrolysis reaction 

nears a quasi-steady state, the remaining liquid metaplast starts to reform some bonds in a 

process called cross-linking. When enough bonds have been reformed between the liquid 

metaplast and solid coal, the solid remaining is called the char. 

2.1.2 Char Reactions 

 Two main sets of reactions occur during the char combustion phase:  oxidation and 

gasification. These heterogeneous reactions typically occur with or just after primary pyrolysis, 

depending mainly on reaction temperatures (Saito et al., 1991). Oxidation and gasification may 

occur simultaneously, but the rates will depend on gas compositions near the coal. Oxidation 

reactions occur when O2 diffuses to the surface of the coal and reacts primarily with carbon to 

form CO and CO2 which can then diffuse back to the bulk gas. Gasification reactions tend to be a 

bit more complex, and occur when other gases (mainly CO2, H2O, and H2) diffuse to the surface 

to also react with carbon in the coal, forming CO, H2, and CH radicals that may further react and 

form other small molecules or oxidize to form CO2 and H2O (Smith et al., 1994). Primary 

pyrolysis conditions (particle temperature history, gas compositions, etc.) can also affect char 

structure and chemical reactivity (Gale et al., 1993; Gale et al., 1995a; Gale et al., 1995b; Gale et 

al., 1996). 
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2.1.3 Secondary Pyrolysis 

 Secondary pyrolysis tends to be a catch-all for any reaction occurring with primary 

pyrolysis products at higher temperatures and residence times in the coal combustion reaction. 

These reactions depend on the products of primary pyrolysis (Solomon et al., 1993). One of the 

main reasons secondary pyrolysis is a hot topic in coal research is soot chemistry. Soot is made 

up of small particles (from 25 nm and larger) that are formed in fuel-rich portions of the reaction 

environment. Soot highly contributes to radiative heat transfer in a coal boiler, especially near 

the burner region. Small particles of soot are formed from soot pre-cursors, more generally 

known as polycyclic aromatic hydrocarbons (PAHs). Coal tar is considered to be the largest 

contributor to coal-based soot in coal systems since the tar consists of a large number of different 

PAH compounds. Like the other “solids” in a coal reaction, soot particles can gasify or oxidize 

(Ma, 1996) along with other complex chemical and physical changes (Josephson et al., 2017). 

 Oxy-fuel Combustion 

 Environmental concerns about coal pollution (especially CO2 emissions) have led to 

improvements in carbon capture and storage. Throughout history, most combustion applications 

have used air to burn various fuels, which leads to a large amount of N2 in exhaust streams. It 

can be expensive and difficult to separate CO2 from an exhaust gas that consists primarily of N2. 

One idea to mitigate this cost is to use an air separator to burn fuels with pure O2 (Buhre et al., 

2005). This type of combustion without background N2 is called oxy-fuel combustion. When 

oxy-fuel combustion is used in coal systems, the exhaust gas includes mainly carbon dioxide and 

steam, with a small amount of particulate matter, fuel NOx, and SOx. These compounds can be 

removed before the carbon dioxide is captured. Some industrial applications of oxy-fuel 
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combustion use pure O2 in the boiler and others recycle part of the exhaust gas stream to dilute 

the O2 atmosphere to reduce operating temperatures. Many researchers have conducted 

experiments using different compositions of O2 and exhaust gas (Buhre et al., 2005; Toftegaard 

et al., 2010; Chen et al., 2012b; Chen et al., 2014; Lei et al., 2014; Liu et al., 2014a, b; Warzecha 

and Boguslawski, 2014; Yi et al., 2014; Bhuiyan and Naser, 2015; Liu et al., 2015; Muto et al., 

2015; Rebola and Azevedo, 2015; Liu et al., 2017). 

 Oxy-fuel combustion was first proposed by two main groups of researchers in the early 

1980s. Frederick Horn and Meyer Steinberg (in 1982) proposed an oxy-fuel fired power plant to 

assist in oil well production and recovery, developing the idea to help with environmental 

concerns, particularly with greenhouse gas mitigation (Steinberg, 1992). In their study, Horn and 

Steinberg concluded that removing CO2 in this way expends less energy and is less expensive 

than other processes. The second group, Abraham et al. (also in 1982), independently proposed 

an oxy-fuel combustion process for oil recovery (Abraham et al., 1982). 

 Oxy-fuel combustion environments have three main benefits:  (1) the ability to capture 

and remove CO2 emissions, (2) reduced NOx emissions (Chen et al., 2014), and (3) higher 

reactor efficiency from higher oxygen concentrations and higher combustion temperatures as a 

result (Toftegaard et al., 2010). However, higher reaction temperatures may also cause materials 

problems (more exotic metals to handle higher temperatures) unless recycled exhaust is utilized. 

 Modeling Pyrolysis Behavior 

 Large-scale simulations of coal boilers, gasifiers, and other combustion processes require 

adequate submodels to represent the different aspects of the simulation (Alvarez et al., 2013). 

These simulations must accurately describe the pyrolysis behavior of coal particles in a 
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numerically efficient manner. Modeling of pyrolysis behavior typically falls in one of three main 

coal pyrolysis modeling groups: (1) pyrolysis yield/rate models, (2) elemental composition of 

pyrolysis products, and (3) physical and chemical properties during gas-phase equilibrium 

reactions. Some comprehensive models even attempt to combine more than one of these main 

groups. 

2.3.1 Yield/Rate Models 

 Most devolatilization yield and rate models are categorized as either a global kinetic 

model or a network (or mechanistic) model. There are three main network models in coal 

science:  the chemical percolation devolatilization (CPD) model (Grant et al., 1989; Fletcher et 

al., 1992b), the FLASHCHAIN model (Niksa, 1988), and the FG-DVC model (Solomon et al., 

1988). The CPD model is preferred because of its availability, ease of use, computational speed, 

and high versatility. There is one major trade-off between the two model types:  computational 

speed versus predictive capabilities. Network models sacrifice computational speed for greater 

predictive capabilities whereas the global models are the opposite. Extra computational 

complexity (Smith et al., 1994) of these network models directly impacts the amount of time 

required to run complex simulations (Brewster et al., 1995), and because of this extra time, 

global models are generally preferred for large-scale simulations. One of the main disadvantages 

of global models is that they typically do not apply to as broad a range of coal types and 

temperature histories as network models do, and therefore need to be optimized (or fit) to trusted 

data or predictions. 

 The CPD model is based on the chemical structure of the parent coal (Grant et al., 1989; 

Fletcher et al., 1992b). Coal structure is approximated by aromatic clusters connected by 
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aliphatic bridges with attachments to these aromatic clusters including some side chains. 

Quantitative measurements of coal chemical structure were performed using solid-state 13C 

NMR (Fletcher et al., 1990) and are used directly in the CPD model. Not all coals (or other fuels) 

have available NMR data, so Genetti et al. (1999) developed correlations for these NMR 

parameters based on ultimate and proximate analyses. Also included in the CPD model are rates 

for bridge breaking and side chain release, percolation lattice statistics to relate the number of 

broken bridges to the distribution of clusters that detach from the lattice, vapor-liquid 

equilibrium to determine the sizes of detached clusters that vaporize to form tar, and crosslinking 

of non-vaporized detached fragments that become part of the char. The CPD model has been 

widely tested and has been shown to agree with pyrolysis data for a wide range of coals, heating 

rates, temperatures, and pressures (Fletcher et al., 1992a; Fletcher et al., 1992b; Genetti and 

Fletcher, 1999; Genetti et al., 1999; Genetti, 1999; Sheng and Azevedo, 2000; Tian et al., 2001; 

Veras et al., 2002; Jupudi et al., 2009; Fletcher et al., 2012; Jovanovic et al., 2012; Lewis and 

Fletcher, 2013; Li et al., 2013; Goshayeshi and Sutherland, 2014; Herce et al., 2014; Yan et al., 

2014b; Yang et al., 2014a; Yang et al., 2014b; Fletcher et al., 2015; Li et al., 2015; Rebola and 

Azevedo, 2015; Wang et al., 2015; Yang et al., 2015; Fletcher, 2019). 

 Global models fall broadly into three main categories:  one-step kinetic models, two-step 

kinetic models, and distributed activation energy models. The number of steps in each model 

type refers to the number of kinetic pathways that the reaction can take; for example, a two-step 

model has two competing reaction pathways that the reaction can take to completion. While 

these models are generally fit to experimental data, several researchers have attempted to fit 

several simple global models to more complex network models. Ko et al., (1988) developed a 

correlation for the activation energy and pre-exponential factor of a one-step model to fit results 
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from a distributed activation energy model. Zhao et al. (1997) suggested using the FG-DVC 

model to generate coefficients for a one-step devolatilization model at a nominal condition in a 

CFD model, followed by iteratively generating coefficients if the nominal condition does not 

match the conditions in the simulation. Niksa (Niksa et al., 2003; Liu and Niksa, 2004) 

developed a method for a given heating rate to determine coefficients for a one-step 

devolatilization model from PC Coal Lab using his FLASHCHAIN network model and other 

similar char chemistry models. Li et al. (2013) also developed a package to interface with 

computational fluid dynamics software to develop coefficients for a one-step devolatilization 

model based on several different network models for coal combustion, called Carbonaceous 

Chemistry for Computational Modeling, nicknamed C3M. Hashimoto and Shirai (2014) used an 

iterative technique to generate coal devolatilization rate parameters for a CFD model, taking the 

particle temperature history from each previous CFD particle trajectory to determine rate 

parameters for the next iteration. 

 Several global kinetic models were considered for this work. The model forms are shown 

in Table 2-1. Each global devolatilization model is labeled with a model number DM-# to 

distinguish them from non-devolatilization models presented later. 

 The single first-order model (DM-1 in Table 2-1) is one of the simplest devolatilization 

rate and yield models and is based on simple Arrhenius kinetics. Many researchers have used this 

simple model over the years (Badzioch and Hawksley, 1970; Anthony et al., 1975; Kobayashi et 

al., 1977; Solomon and Colket, 1979), and it continues to be a go-to model even now, mainly due 

to its simplicity and ability to fit experimental data well. 

 Yamamoto et al. (2011) modified the single first-order model to expand the predictive 

capabilities of the first-order model without adding too much computational complexity. 
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Table 2-1. Global kinetic coal devolatilization models 

Model 
Number 

Name Source Model Form 

DM-1 Single First-
Order 

(Badzioch and 
Hawksley, 1970; 
Anthony et al., 
1975; Kobayashi et 
al., 1977; Solomon 
and Colket, 1979)  

𝑑𝑑(𝑉𝑉)
𝑑𝑑𝑡𝑡

= 𝐴𝐴 ⋅ 𝑒𝑒−
𝐸𝐸
𝑅𝑅𝐴𝐴 ⋅ (𝑉𝑉∞ − 𝑉𝑉) 

DM-2 Yamamoto (Yamamoto et al., 
2011; Pedel, 2012; 
Pedel et al., 2012) 

𝑑𝑑(𝐶𝐶)
𝑑𝑑𝑡𝑡

= −𝐹𝐹 ⋅ 𝐴𝐴 ⋅ 𝑒𝑒−
𝐸𝐸
𝑅𝑅𝐴𝐴 ⋅ 𝐶𝐶 

𝐹𝐹 = 𝑒𝑒∑ 𝑐𝑐𝑖𝑖(𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝑖𝑖5
𝑖𝑖=0  

𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 1 − 𝐶𝐶 
𝑉𝑉 = 𝑉𝑉∞ ⋅ 𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

DM-3 Biagini and 
Tognotti 
(BT) 

(Biagini and 
Tognotti, 2014) 

𝑑𝑑(𝑉𝑉)
𝑑𝑑𝑡𝑡

= 𝐴𝐴 ⋅ 𝑒𝑒−
𝐸𝐸
𝑅𝑅𝐴𝐴 ⋅ (𝑉𝑉∞ − 𝑉𝑉) 

𝑉𝑉∞ = 1 − 𝑒𝑒−𝐷𝐷𝐷𝐷⋅
𝐴𝐴
𝐴𝐴𝑠𝑠𝑠𝑠 

DM-4 Distributed 
Activation 
Energy 
(DAEM) 

(Anthony and 
Howard, 1976; 
Lakshmanan and 
White, 1994; Cai et 
al., 2014; Soria-
Verdugo et al., 
2014) 

𝑑𝑑(𝑉𝑉)
𝑑𝑑𝑡𝑡

= 𝐴𝐴 ⋅ 𝑒𝑒
−𝐸𝐸𝑐𝑐−𝜎𝜎𝐸𝐸⋅𝑍𝑍

𝑅𝑅𝐴𝐴 ⋅ (𝑉𝑉∞ − 𝑉𝑉) 

𝑍𝑍 = 𝑒𝑒𝑒𝑒𝑓𝑓𝑖𝑖𝑒𝑒𝑒𝑒�1 − 2 ⋅ (𝑉𝑉∞ − 𝑉𝑉)� 

DM-5 Modified 
Biagini and 
Tognotti 
(also called 
Utah model) 

(Schroeder, 2015) 𝑑𝑑(𝑉𝑉)
𝑑𝑑𝑡𝑡

= 𝐴𝐴 ⋅ 𝑒𝑒
−𝐸𝐸0−𝜎𝜎𝑐𝑐⋅𝑍𝑍

𝐴𝐴 ⋅ (𝑉𝑉∞ − 𝑉𝑉) 

𝑉𝑉∞ =
𝑎𝑎
2
⋅ �1 − tanh�(𝑏𝑏 + 𝑐𝑐 ⋅ 𝑎𝑎)

⋅
𝑇𝑇𝑖𝑖𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒 − 𝑇𝑇

𝑇𝑇
+ (𝑑𝑑 + 𝑒𝑒 ⋅ 𝑎𝑎)�� 

𝑍𝑍 = √2 ⋅ 𝑒𝑒𝑒𝑒𝑓𝑓𝑖𝑖𝑒𝑒𝑒𝑒 �1 − 2 ⋅
𝑉𝑉∞ − 𝑉𝑉
𝑎𝑎 � 

DM-6 Simple Two-
Step 

(Kobayashi et al., 
1977; Ubhayakar et 
al., 1977) 

𝑑𝑑(𝐶𝐶)
𝑑𝑑𝑡𝑡

= −�𝐴𝐴1 ⋅ 𝑒𝑒
−𝐸𝐸1𝑅𝑅𝐴𝐴 + 𝐴𝐴2 ⋅ 𝑒𝑒

−𝐸𝐸2𝑅𝑅𝐴𝐴� ⋅ 𝐶𝐶 
𝑑𝑑(𝑉𝑉)
𝑑𝑑𝑡𝑡

= �𝑌𝑌1 ⋅ 𝐴𝐴1 ⋅ 𝑒𝑒
−𝐸𝐸1𝑅𝑅𝐴𝐴 + 𝑌𝑌2 ⋅ 𝐴𝐴2 ⋅ 𝑒𝑒

−𝐸𝐸2𝑅𝑅𝐴𝐴� ⋅ 𝐶𝐶 

 

Yamamoto’s modified first-order model (DM-2) uses a modification factor to the pre-

exponential factor in the rate law. In addition, the Yamamoto model uses a type of conversion 

factor, 𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 to determine how far the pyrolysis reaction has progressed. This model also 
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introduces the idea of “unreacted” coal, which is not a measured value, but is instead used in 

conjunction with the conversion factor to show extent of reaction (Pedel, 2012; Pedel et al., 

2012). 

 Biagini and Tognotti (2014) also modified the single first-order model like Yamamoto, 

but instead of going after the Arrhenius kinetics, they modified the yield factor, 𝑉𝑉∞ (DM-3 in 

Table 2-1). They correlated some extra parameters in this yield factor in an effort to make the 

single first-order model more predictive of a wider range of coals. One of the main drawbacks of 

most first-order models is the fact that they use a “prescribed” yield factor, or  

𝑉𝑉∞, which must be fit to each condition and changes with both coal type and combustion 

conditions. By correlating this yield factor, Biagini and Tognotti tried to improve overall utility 

of the single first-order model without significantly increasing the model complexity. 

 The distributed activation energy model (DAEM) has been very popular in coal pyrolysis 

(Anthony and Howard, 1976) as well as biomass and other types of solid fuels (Lakshmanan and 

White, 1994; Hillier and Fletcher, 2011; Cai et al., 2014). This type of model is set apart from 

other one-step models in the idea of a distributed activation energy, or the idea that aliphatic 

bridge bonds in coal broken during pyrolysis have a range of bond-breaking energies. The 

classical DAEM model (Anthony and Howard, 1976) was developed with parallel activation 

energies so that all reaction pathways are possible over the whole reaction. This isn’t quite true 

to reality since the lowest activation energies generally react first. The CPD model (Fletcher et 

al., 1992a) also uses a distributed activation energy to describe a variability in activation 

energies, however, a sequential distributed activation energy is used. This sequential method 

uses an inverse error function to calculate an effective activation energy, 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒, from a Gaussian 

(or normal) distribution function based on the extent of reaction. In testing, the sequential 
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method seems to work as well as the parallel method and is much easier to implement and much 

faster computationally. There are a number of different forms of the distributed activation energy 

model, with Anthony and Howard using a Gaussian distribution (1976), while others use 

different forms or distributions (Lakshmanan and White, 1994; Cai et al., 2014; Soria-Verdugo et 

al., 2014). The distributed activation energy model more closely conforms to the physical reality 

of coal pyrolysis reactions by using a variable activation energy over the course of the reaction, 

and very closely models experimental results. The simple DAEM here uses the sequential 

method proposed by the CPD model rather than the parallel method in the classical DAEM. 

 The modified Biagini and Tognotti model (DM-5 in Table 2-1), also called the Utah 

model, is largely a combination of the original Biagini and Tognotti model and the distributed 

activation energy model. Schroeder (2015) proposed this modification to include the sequential 

distributed activation energy to further exhibit the correct ultimate volatiles yield at different 

temperatures and heating rates. The Utah model not only modifies the activation energy, but 

further modifies the yield factor 𝑉𝑉∞ to include extra parameters that are fit to long residence time 

predictions from network models or experimental data. This modification is included to ensure 

model functionality with widely variable time steps, especially when small time steps are not 

possible in a simulation, eliminating numerical instabilities. One of the key disadvantages of the 

Utah model is the need for long residence time data to fit the coefficients on the yield curve, 

which are not always available before a simulation. 

 The original two-step model (Kobayashi et al., 1977) was proposed to allow the final 

volatiles yield to vary with heating rate and temperature history. This model uses two competing 

kinetic steps with widely varying activation energies. This allows one step to prevail at lower 

temperatures and the other step at higher temperatures. Both the original Kobayashi parameters 
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as well as those taken from Ubhayakar et al. (1977) are often used in large-scale simulations, 

however, greater accuracy can be achieved by re-fitting the coefficients to experimental data. 

Like the Yamamoto model, the two-step models use the concept of “raw coal” that reacts to form 

volatiles and char. The raw coal starts as one and goes to zero upon completion of the pyrolysis 

reaction. The simple two-step model uses Arrhenius kinetics along with two yield factors. 

2.3.1.1 Factors Affecting Pyrolysis Yields 

 There are a number of factors affecting the overall pyrolysis yields of coal, both 

condition- and coal-specific factors. Coal-specific factors include primarily coal rank, structure, 

and chemical composition, and condition-specific factors include pyrolysis gas composition (N2, 

CO2, argon, H2, etc.) and temperature history (encapsulated mostly by particle heating rate and 

residence time). Experiments suggest that as particle heating rate increases, the temperature at 

which devolatilization happens also increases (Anthony et al., 1975; Saxena, 1990; Yan et al., 

2014a). In addition, as heating rate increases, the ultimate volatiles yield, or final volatiles 

fraction after devolatilization, also increases (Jamaluddin et al., 1986; Gibbins-Matham and 

Kandiyoti, 1988). These trends are shown in Figure 2-3, with curves generated using the CPD 

model with Sufco coal chemical compositions and NMR parameters. 

 

Figure 2-3. Trends with increasing heating rate:  a) pyrolysis temperature increases  
and b) ultimate volatiles yield increases log-linearly. 
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 While these figures show the yield curves for the total volatiles (which include tar and 

light gases), coal tar follows similar curves, although to a lower final yield. Ultimately, it is very 

important to accurately model pyrolysis rates and yields in large-scale coal combustion 

simulations since the rates influence several aspects of coal combustion such as particle swelling 

and char reactivity (Solomon et al., 1992). 

2.3.2 Elemental and Chemical Composition of Coal Pyrolysis Products 

 While current areas of coal research have advanced the understanding of processes 

involved in coal pyrolysis, not enough is known about the elemental and chemical compositions 

of the products of coal pyrolysis, especially the tar species. Few experimentalists collect tar 

during coal pyrolysis reactions, and even fewer analyze the collected tar for species or elemental 

composition and properties. Accurately knowing or predicting these compositions can greatly 

influence the overall accuracy and utility of large-scale simulations, however, the detailed 

species composition of coal volatiles is often too complex to use in large-scale simulations. For 

this reason, many simulations often use a simpler average elemental composition combined with 

equilibrium analysis to generate the necessary chemical and turbulence interactions in a coal 

combustion system. 

 Volatiles contain a greater fraction of hydrogen and oxygen than the char, meaning the 

volatiles become enriched in hydrogen and oxygen while the char becomes enriched in carbon 

(Fletcher and Hardesty, 1992; Smith et al., 1994; Watt, 1996). The distribution of elements into 

combustion products is highly influenced by both combustion conditions and parent fuel 

properties. The distribution of nitrogen and sulfur in the combustion products are of particular 

interest (even if they are small fractions in the parent fuel), since they can influence the NOx and 

SOx compositions of the flue gas (Cai et al., 1993). 
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 Accurately predicting tar species yields is very difficult in coal pyrolysis since coal tar is 

made up of a large number of different species (Pielsticker et al., 2017a). The key network 

models (CPD, FLASHCHAIN, and FG-DVC) predict the key light gas components, usually the 

lightest hydrocarbons, and then lump the remainder into an “other hydrocarbons” category. Some 

models even lump the tar and light gases together and use a global volatiles combustion rate 

(Backreedy et al., 2006). Other approaches use approximations or simple surrogates (like 

methane) in place of pyrolysis products (see Section 2.3.4 for more detail on these simplified 

approaches). All these assumptions lead to modeling that is inconsistent with the measured 

elemental compositions of char and tar (Pugmire et al., 1991; Perry et al., 2000). 

 Many of the same factors that affect pyrolysis yields also affect the chemical 

compositions of the char and tar. Different coals have different parent coal compositions and 

structures, which significantly influence primary pyrolysis product yields and compositions (Xu 

and Tomita, 1987a). Coal type also influences the general structural makeup of the coal and tar 

molecules that are sometimes measured by NMR solid-state spectroscopy (Solum et al., 1989; 

Fletcher and Hardesty, 1992; Watt, 1996; Watt et al., 1996; Hambly, 1998; Hambly et al., 1998; 

Genetti et al., 1999; Perry, 1999; Perry et al., 2000). The thermal environment (i.e. gas 

temperature, residence time, particle heating rate, etc.) that the coal particle experiences also 

impacts the yields and compositions of char, tar, and light gases (Xu and Tomita, 1987b). 

2.3.2.1 Coal Aromaticity 

 Coal aromaticity has been measured using NMR spectroscopy and has frequently been 

used in correlations of other coal properties. Several correlations have been developed to predict 

coal aromaticity based on proximate and ultimate analyses. These correlations are found in Table 

2-2. 
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Table 2-2. Correlations of Coal Aromaticity 

Model 
Number 

Name Source Model Form 

AM-1 Gerstein (Gerstein 
et al., 
1982)  

𝑓𝑓𝑐𝑐′ = 0.0159𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 0.564 

AM-2 Ko (Ko et al., 
1989) 𝑓𝑓𝑐𝑐 = 0.830526 − 2.008147 �

𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∗

100 �

+ 2.241218 �
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∗

100 �
2

 

AM-3 Maroto-
Valer 

(Maroto-
Valer et 
al., 1998)  

𝑓𝑓𝑐𝑐 = 1.22 − 0.58 �
𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

� 

AM-4 SK1 (Singh 
and 
Kakati, 
2003) 

𝑓𝑓𝑐𝑐1 = 1.202913 − 0.0126𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴∗  

AM-5 SK2 (Singh 
and 
Kakati, 
2003) 

𝑓𝑓𝑐𝑐2 = 1.36396 − 0.53715�
𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼

𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼 � − 0.7846�
𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼

𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼 � 

AM-6 SK3 (Singh 
and 
Kakati, 
2003) 

𝑓𝑓𝑐𝑐3 = 1.365615 − 0.51187�
𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼

𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼 �

− 0.02108�
𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼

𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼 � − 0.78645�
𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼

𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼 � 

AM-7 SK4 (Singh 
and 
Kakati, 
2003) 

𝑓𝑓𝑐𝑐4 = 174.4405 + 621.6823�
𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼

𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼 �

− 856.495�
𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼

𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼 � − 629.617�
𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼

𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼 �

− 9.133897𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴∗  
* variables are on a wt.% dry, mineral-matter-free basis 
α elemental ratios are on an atomic basis 
 
 These model forms were chosen to use here because they are based on proximate and 

ultimate analyses of the coal. Other researchers developed correlations based on other fuel 

properties such as vitrinite reflectance (Carr and Williamson, 1990). Some of these models were 

developed to predict the true or corrected aromatic carbon content (𝑓𝑓𝑐𝑐′), while others were 

developed to correlate the total aromatic carbon contribution (𝑓𝑓𝑐𝑐), which is sometimes called the 
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apparent aromaticity. The main difference between the two aromaticities is that the apparent or 

total aromaticity includes contributions from carbonyl groups. This artificially inflates the 

aromaticity value which is why the true aromaticity is preferred in structural modeling. 

2.3.3 Enthalpy of Combustion of Coal and Other Fuels 

 Another key physical property of coal and other fuels is the enthalpy, or heat, of 

combustion (also called a heating value), which is a measure of the reaction enthalpy of the 

combustion reaction. While the heating value can be measured using calorimetry, this can be 

expensive and time-intensive to measure for each fuel of interest. In addition, most complex 

fuels change composition over the course of the entire combustion reaction (Fletcher and 

Hardesty, 1992). Accurately knowing the heating value of coal-based fuels and other traditional 

and non-traditional fuels can improve the computation of local gas temperatures in large-scale 

simulations. 

 A number of correlations of the heating value of coal have been developed for a limited 

number of coals based on characteristics of coal such as elemental organic composition 

(CHONS) and volatile matter, as reviewed by van Krevelen (1993) and Channiwala and Parikh 

(2002). Some of these correlations and others have been reviewed for other fuels and a limited 

number of coal chars (Sciazko, 2013; Mathews et al., 2014). Some of the most widely used 

heating value correlations based on the organic elemental composition of the parent fuel are 

found in Table 2-3. 

 Original coefficients for each of these models are found in the cited literature for each 

model. All models are tuned to predict the higher heating value with units of kJ/kg on a DAF 

basis. All elemental compositions used in these models must also be on a wt.% DAF basis. Some 
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Table 2-3. Heating Value Correlations 

Number Model Name Units Model Form 
HM-1 Dulong (Van Krevelen, 1993; 

Sciazko, 2013) 
kJ/kg Δ𝐻𝐻𝑐𝑐 = 𝑎𝑎𝐶𝐶 + 𝑏𝑏 �𝐻𝐻 −

𝑂𝑂
8�

+ 𝑐𝑐𝑆𝑆 

HM-2 Strache-Lant, D’Huart, Boie  
(Strache and Lant, 1924; 
D’Huart, 1930; Boie, 1953; Van 
Krevelen, 1993; Channiwala 
and Parikh, 2002; Sciazko, 
2013)  

kJ/kg Δ𝐻𝐻𝑐𝑐 = 𝑎𝑎𝐶𝐶 + 𝑏𝑏𝐻𝐻 + 𝑐𝑐𝑂𝑂 + 𝑑𝑑𝑆𝑆 

HM-3 Steuer (Steuer, 1926; 
Channiwala and Parikh, 2002)  

kJ/kg Δ𝐻𝐻𝑐𝑐 = 𝑎𝑎 �𝐶𝐶 −
3
8
𝑂𝑂� + 𝑏𝑏 �

3
8
𝑂𝑂� + 𝑐𝑐 �𝐻𝐻 −

1
16

𝑂𝑂� + 𝑑𝑑𝑆𝑆 

HM-4 Seylor (Seylor, 1938; Van 
Krevelen, 1993; Channiwala 
and Parikh, 2002) 

kJ/kg Δ𝐻𝐻𝑐𝑐 = 𝑎𝑎𝐶𝐶 + 𝑏𝑏𝐻𝐻 + 𝑐𝑐𝑂𝑂2 + 𝑑𝑑 

HM-5 Gumz, Channiwala-Parikh 
(Gumz, 1938; Channiwala and 
Parikh, 2002; Sciazko, 2013) 

kJ/kg Δ𝐻𝐻𝑐𝑐 = 𝑎𝑎𝐶𝐶 + 𝑏𝑏𝐻𝐻 + 𝑐𝑐𝑁𝑁 + 𝑑𝑑𝑆𝑆 + 𝑒𝑒𝑂𝑂 

HM-6 Dulong-Berthelot (Grabosky 
and Bain, 1981; Channiwala 
and Parikh, 2002)  

kJ/kg 
Δ𝐻𝐻𝑐𝑐 = 𝑎𝑎𝐶𝐶 + 𝑏𝑏𝐻𝐻 −

𝑐𝑐(𝑁𝑁 + 𝑂𝑂 − 1)
8

+ 𝑑𝑑𝑆𝑆 

HM-7 IGT (IGT, 1978; Channiwala 
and Parikh, 2002) 

kJ/kg Δ𝐻𝐻𝑐𝑐 = 𝑎𝑎𝐶𝐶 + 𝑏𝑏𝐻𝐻 + 𝑐𝑐 + 𝑑𝑑(𝑂𝑂 + 𝑁𝑁) 

HM-8 VDI (Ocheduszko, 1967; 
Sciazko, 2013) 

kJ/kg Δ𝐻𝐻𝑐𝑐 = 𝑎𝑎𝐶𝐶 + 𝑏𝑏 �𝐻𝐻 −
𝑂𝑂
8�

+ 𝑐𝑐𝑆𝑆 + 𝑑𝑑𝐻𝐻 

HM-9 Mott-Spooner (Van Krevelen, 
1993; Channiwala and Parikh, 
2002) 

kJ/kg Δ𝐻𝐻𝑐𝑐 = �
𝑎𝑎𝐶𝐶 + 𝑏𝑏𝐻𝐻 + 𝑐𝑐𝑂𝑂 + 𝑑𝑑𝑆𝑆, 𝑂𝑂 < 15%

𝑎𝑎𝐶𝐶 + 𝑏𝑏𝐻𝐻 + 𝑒𝑒𝑂𝑂 + 𝑓𝑓𝑂𝑂2 + 𝑔𝑔𝑆𝑆, 𝑂𝑂 > 15% 

HM-10 Given et al. (Given et al., 1986; 
Van Krevelen, 1993) 

kJ/kg Δ𝐻𝐻𝑐𝑐 = 𝑎𝑎𝐶𝐶 + 𝑏𝑏𝐻𝐻 + 𝑐𝑐𝑂𝑂 + 𝑑𝑑𝑆𝑆 + 𝑒𝑒 
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of the models have been combined (HM-2 and HM-5) since they have the same mathematical 

form, however, their original coefficients are different in each cited article. 

 Several other correlations (Demirbaş, 1997, 1998, 2001; Mathews et al., 2014; Go and 

Conag, 2018) have been developed using other coal- or fuel-specific properties (including fixed 

carbon, volatile matter, ash content, etc.), but these models are not as desirable because of a lack 

of complete proximate analyses in the literature. Some other models use bond energies and 

functional groups to determine a heating value (Kaiho et al., 2019). Bond energy models are not 

explored here because they require a functional group breakdown, typically involving advanced 

spectroscopy (NMR, FTIR, MS, etc.), which are too expensive to perform for many new fuels, 

especially fuels as complex as coal. Other approaches use the heats of formation of the parent 

fuel and products of combustion or pyrolysis to calculate the heat of reaction (Merrick, 1983), 

but heats of formation are not generally available for complex fuels. 

 Fuel heating values are particularly useful in calculating the enthalpies of formation of 

the fuel. These are not usually known, but can be calculated by assuming complete combustion, 

which is shown in Equation 2-1. 

 𝐶𝐶𝑐𝑐𝐻𝐻𝑏𝑏𝑂𝑂𝑐𝑐𝑁𝑁𝑑𝑑𝑆𝑆𝑒𝑒 + 𝛼𝛼𝑂𝑂2 → 𝑎𝑎𝐶𝐶𝑂𝑂2 + 𝑏𝑏
2
𝐻𝐻2𝑂𝑂 + 𝑑𝑑

2
𝑁𝑁2 + 𝑒𝑒𝑆𝑆𝑂𝑂2 (2-1) 

 

where 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑, and 𝑒𝑒 are stoichiometric coefficients based on the elemental composition of the 

fuel and 𝛼𝛼 is the stoichiometric amount of oxygen needed for complete combustion, as calculated 

in Equation 2-2. This stoichiometric amount of oxygen can then be added to the correct 

percentage of nitrogen to determine the total amount of air necessary for complete combustion in 

air. 

 𝛼𝛼 = 𝑎𝑎 + 𝑏𝑏
4
− 𝑐𝑐

2
+ 𝑒𝑒 (2-2) 
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 Fuel heating values can be reported in one of two formats:  a higher heating value (HHV) 

where the heating value is calculated by assuming the water formed from combustion is a liquid, 

and a lower heating value (LHV) where the heating value is calculated by assuming water is a 

vapor. An LHV can be converted to an HHV using the enthalpy of vaporization of water, as 

shown in Equation 2-3. 

 𝐻𝐻𝐻𝐻𝑉𝑉 = 𝐿𝐿𝐻𝐻𝑉𝑉 + 𝑒𝑒𝐻𝐻2𝑂𝑂,𝑐𝑐𝑐𝑐𝑚𝑚𝑏𝑏Δ𝐻𝐻𝑣𝑣𝑐𝑐𝑣𝑣 (2-3) 
 

where Δ𝐻𝐻𝑣𝑣𝑐𝑐𝑣𝑣 is the heat of vaporization of water (40.65 kJ/g-mole) and 𝑒𝑒𝐻𝐻2𝑂𝑂,𝑐𝑐𝑐𝑐𝑚𝑚𝑏𝑏 is the moles of 

water produced by complete combustion of one kilogram of fuel. 

2.3.4 Mixture Fractions and Equilibrium Modeling 

 Gas-phase reactions are an integral part of coal combustion simulations, and influence the 

bulk gas composition, local gas temperature, and can have implications on fluid flow, heat 

transfer, and mass transfer (Smoot and Smith, 1985). Simplifying assumptions are often used in 

large-scale simulations to decrease computational complexity, especially if computational 

resources are limited. 

 Many of the simplifying assumptions used in gas-phase equilibrium of coal systems deal 

with simplifying coal-based fuel compositions, particularly the compositions of pyrolysis 

products (char, tar, and other volatile gases). Frequently coal char is modeled as pure carbon with 

the thermochemical properties of either graphite (Barnhart and Laurendeau, 1982; Barnhart et 

al., 1982; Borghi et al., 1985; Bhuiyan and Naser, 2015; Vascellari et al., 2015; Rieth et al., 

2017b; Bhunia et al., 2018; Wen et al., 2018) or of the parent coal (Backreedy et al., 1999; 

Bradley et al., 2006; Van Essendelft et al., 2014; Tufano et al., 2019). This is perhaps useful in 

heterogenous char reactions since oxidation and gasification reactions primarily target the carbon 
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in the char. However, this approach falls short in calculating other combustion products (i.e., 

H2O and other hydrogen-based products), since the char retains some hydrogen and other atoms 

such as oxygen, nitrogen, and sulfur (Fletcher and Hardesty, 1992; Pielsticker et al., 2017a). 

 Other simulations have simplified the compositions and energies of the volatile species, 

often using one or more of several simple hydrocarbons in the place of the more complex tars 

and other volatile gases. Some simulations use methane in the place of the total volatiles 

(Bradley et al., 2006; Jovanovic et al., 2012; Al-Abbas et al., 2013; Costa et al., 2014; Cui et al., 

2014; Hashimoto and Shirai, 2014; Bhuiyan and Naser, 2015; Guo et al., 2015; Rabaçal et al., 

2015; Watanabe and Yamamoto, 2015; Lisandy et al., 2016; Wen et al., 2016; Watanabe et al., 

2017; Wen et al., 2018) or other simple C2 hydrocarbons (Vascellari et al., 2017). Other 

approaches use a mix of common pyrolysis gases (CH4, C6H6, CO, CO2, H2, N2, H2S, etc.) in 

variable quantities to ensure elemental balance between the original coal and gaseous species 

(Veras et al., 1999; Costa et al., 2014; Hashimoto and Shirai, 2014; Messig et al., 2017). Some 

even use constant generic hydrocarbon estimates (CxHyOz) to better approximate volatile species 

(Backreedy et al., 1999; Backreedy et al., 2006; Jovanovic et al., 2012; Franchetti et al., 2013; 

Rabaçal et al., 2015; Rebola and Azevedo, 2015; Vascellari et al., 2015; Tufano et al., 2019), 

often approximated using the composition of the original coal. While these simplified 

approaches may be appropriate for smaller-scale or simplified calculations, they may be 

inadequate for accurate large-scale simulations, especially since inaccuracies in CO2 and H2O 

gas compositions greatly affect other parts of the coal combustion system like radiative heat 

transfer (Chen and Ghoniem, 2012). Volatile gases released during coal pyrolysis do contain 

many of these simple hydrocarbons, but the total volatiles tend to be much more complex, 

particularly the tar species (Theron and le Roux, 2015; Pielsticker et al., 2017a). 
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 Equilibrium modeling can take a variety of forms, usually including variables to help 

with mixing and reacting streams. Large scale simulations can use flamelet modeling and 

progress variables (Xu et al., 2013; Goshayeshi and Sutherland, 2014; Knappstein et al., 2017; 

Rieth et al., 2017b; Rieth et al., 2019), mixture fractions (Brewster et al., 1988; Flores and 

Fletcher, 2000; Pedel et al., 2013; Stollinger et al., 2013a, b; Rieth et al., 2016; Wen et al., 

2017b), full equilibrium (Smoot, 1981), approximations to equilibrium such as the water-gas 

shift reactions (Radulovic et al., 1995), detailed kinetic mechanisms of simpler hydrocarbon 

fuels such as GRI3.0 (Cui et al., 2014; Goshayeshi and Sutherland, 2014; Guo et al., 2015; 

Tufano et al., 2016; Knappstein et al., 2017; Wen et al., 2019), or even a combination of several 

of these different approaches (Watanabe and Yamamoto, 2015; Rieth et al., 2016; Rieth et al., 

2017b; Watanabe et al., 2017; Rieth et al., 2019). 

2.3.4.1 Mixture Fractions 

 A common assumption in simulations of large combustors is that the gas-phase reactions 

are limited by mixing of fuel and oxidizer species. The temperatures in these combustors are 

often very high (1800-2200 K), so gas-phase chemical reactions are very fast, approaching 

equilibrium quickly. Most large-scale combustor simulations do not have the computational 

resources (i.e., computational time and storage) to use detailed or even global reaction schemes, 

hence the popularity of mixture fraction approaches (Smoot and Smith, 1985) or the use of the 

eddy breakup scheme (Magnussen and Hjertager, 1977) which takes the minimum of the mixing 

rate and a single simplified global reaction rate. 

 At its most simple definition, a mixture fraction analysis involves defining a reacting 

system (e.g., combustion of a hydrocarbon fuel with air) into two types of streams—one that 

includes all fuels and another that includes the oxidizing gases. In most gas-phase combustion 
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reactions of simple hydrocarbon fuels, mixture fractions can be considered “conserved scalars,” 

which means that the mixture fraction does not change with reacting conditions (assuming no 

loss or gain of thermal energy). Conserved scalars simplify reacting flow calculations and can be 

anything from elemental mass fractions to enthalpies of the different reacting streams, as long as 

it is a stream property that remains the same throughout the reacting system (Turns, 2012). This 

approach is a simple way to track material when it mixes and reacts to equilibrium. 

 Mixture fractions in coal-based systems are not usually considered conserved scalars 

because the mixture fractions typically include a separate source term to describe the addition of 

material into the gas phase from a solid coal particle (Smoot and Smith, 1985; Flores and 

Fletcher, 2000). This source term is necessary because coal combustion is not a homogeneous 

reaction that occurs only in the gas phase, but instead involves a complex reaction between a 

solid coal particle and other background gases (Smith et al., 1994). While using a source term is 

helpful in describing the physical processes of a coal combustion reaction, it can complicate 

transport and reaction equations, making a mixture fraction description of coal combustion 

difficult to incorporate into large-scale simulations. 

 The mixture fractions used in this dissertation are slightly different from those used 

traditionally in simple hydrocarbon reactions and from previous work on coal-gas mixture 

fractions. For this reason, an overview of the mixture fractions and other equations is shown 

here. Chapter 8 details the derivation of the complete mixture fraction analysis using these 

generalized equations. While there are multiple ways of defining a mixture fraction, including 

the widely used Bilger’s mixture fraction (Bilger et al., 1990; Bilger, 1993; Peters, 2000), this 

dissertation explores two main types of mixture fractions. The first is a more traditional form of 

mixture fraction (named here as a “component” or “fuel” mixture fraction and labeled as 𝑓𝑓𝑖𝑖 to 
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avoid confusion with other mixture fractions) which is the mass fraction of material originating 

in each stream. This component mixture fraction, 𝑓𝑓𝑖𝑖, is calculated by dividing the mass of one 

fuel stream (e.g., gas generated by a coal molecule) by the total mass of the mixture (Turns, 

2012), shown in general form in Equation 2-4. Turns (2012) mainly details the mixture fraction 

of a one-mixture fraction system, however, a combustion system can be comprised of more than 

one fuel stream, so the component mixture fraction can be extended to two or more in a system 

(Fox, 2003). The extension of the component mixture fraction to one-, two-, and three-mixture 

fraction coal combustion systems is discussed in greater detail in Chapter 8. 

 𝑓𝑓𝑖𝑖 = 𝐴𝐴𝑖𝑖
𝐴𝐴0+∑ 𝐴𝐴𝑖𝑖

𝑁𝑁
𝑖𝑖=1

 (2-4) 

 

where 𝑓𝑓𝑖𝑖 is the component mixture fraction of component 𝑖𝑖 (coal, char, tar, oxidizer, etc.), 𝑀𝑀𝑖𝑖 is 

the total mass of species 𝑖𝑖, 𝑀𝑀0 is the total mass of the oxidizer component (e.g., air), and 𝑁𝑁 

indicates the total number of fuel components. The sum of all component mixture fractions 

(including the oxidizer mixture fraction) adds to one, and the total number of fuel mixture 

fractions to completely describe a reacting system is 𝑁𝑁. 

 This type of component mixture fraction is commonly used in combustion modeling 

applications to describe a system of one fuel stream and one oxidizer stream—otherwise known 

as a one-mixture fraction system. While one-mixture fraction systems are common in many types 

of gas-phase combustion applications (e.g., methane, ethylene, and other simpler fuels with air), 

this type of component mixture fraction can be extended to two, three, or even more (Fox, 2003). 

 The second type of mixture fraction explored in this dissertation is called the “elemental” 

mixture fraction and labeled as 𝑍𝑍𝑗𝑗 to distinguish from the component mixture fraction. This type 

of mixture fraction describes the total mass fraction of each element in the reacting system 
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(Peters, 2000; Poinsot and Veynante, 2005). The elemental mixture fraction is shown in Equation 

2-5. 

 𝑍𝑍𝑗𝑗 = 𝑊𝑊𝑗𝑗 ∑
𝑐𝑐𝑖𝑖𝑖𝑖𝑌𝑌𝑖𝑖
𝑊𝑊𝑖𝑖

𝑁𝑁
𝑖𝑖=1  (2-5) 

 

where 𝑍𝑍𝑗𝑗 is the elemental mixture fraction of element 𝑗𝑗 (i.e., carbon, hydrogen, etc.), 𝑊𝑊𝑗𝑗 is the 

molecular weight of element 𝑗𝑗, 𝑊𝑊𝑖𝑖 is the molecular weight of component 𝑖𝑖 (including oxidizer 

and all fuels), 𝑌𝑌𝑖𝑖 is the mass fraction of component 𝑖𝑖 (the component mixture fraction), and 𝑎𝑎𝑖𝑖𝑗𝑗 is 

the number of atoms of element 𝑗𝑗 in component 𝑖𝑖 (for example, a sample fuel of benzene, C6H6 

would have an 𝑎𝑎𝑖𝑖𝑗𝑗 of 6 for both carbon and hydrogen). In most simple hydrocarbon combustion 

systems, the total number of primary elements is four (CHON), however, in coal combustion 

applications, sulfur is present, leading to five total elemental mixture fractions to describe the 

primary organic elements (CHONS) present in the fuel and oxidizer streams. Like the component 

mixture fraction, the elemental mixture fractions sum to one. The elemental mixture fractions are 

defined here to not include a source term that adds material to the gas phase from a 

heterogeneous reaction (like coal and char combustion). If a source term were to be incorporated 

directly with the elemental mixture fractions, they would have to be re-normalized to again sum 

to one. 

 Another useful parameter in combustion modeling is the equivalence ratio (Turns, 2012), 

which is shown in Equation 2-6. The equivalence ratio relates the fuel-to-oxidizer ratio of a 

mixture to its stoichiometric fuel-to-oxidizer ratio. 

 𝜙𝜙𝑖𝑖 =
𝑛𝑛𝑖𝑖
𝑛𝑛𝑐𝑐𝑜𝑜

�
𝑛𝑛𝑖𝑖
𝑛𝑛𝑐𝑐𝑜𝑜

�
𝑠𝑠𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐ℎ

 (2-6) 
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where 𝜙𝜙𝑖𝑖 is the equivalence ratio of fuel 𝑖𝑖, 𝑒𝑒𝑖𝑖 is the number of moles of fuel 𝑖𝑖, 𝑒𝑒𝑐𝑐𝑜𝑜 is the moles 

of oxidizer (i.e., air), and the subscript 𝑠𝑠𝑡𝑡𝑜𝑜𝑖𝑖𝑐𝑐ℎ is the oxidizer-to-fuel ratio at stoichiometric 

proportions. The equivalence ratio or component mixture fraction can be used to determine the 

total moles of oxidizer in the system if the moles of fuel are fixed to a constant value. 

2.3.4.2 Equilibrium Codes 

 Two widely-used chemical equilibrium programs for combustion systems are used here:  

the stand-alone version of the NASA-CEA program (Gordon and McBride, 1994; McBride and 

Gordon, 1996) and the Python interface of Cantera (Goodwin et al., 2018). Both programs 

calculate equilibrium states based on an input of initial conditions, including chemical and 

thermodynamic properties of reactants, relying primarily on Gibbs free energy minimization. 

Both programs also use similar thermodynamic property models with polynomial representations 

of heat capacity, enthalpy, and entropy states of chemical species. Additionally, both programs 

calculate an adiabatic equilibrium temperature, which can be used as a comparison between 

fuels, however, real combustion systems are never truly adiabatic. Large-scale simulations would 

take this into account by including a heat loss term. The NASA-CEA code is not set up to 

directly deal with any heat loss in a real system (to include any heat loss, the enthalpies of 

formation of each component would need to be adjusted before calculating equilibrium states of 

different fuels, potentially involving an iterative process to correctly address heat loss), however, 

Cantera is flexible enough that it could be used in conjunction with stand-alone research codes 

that adequately address heat loss concerns. Modifications were made to Cantera to adequately 

address the complexity of coal-based fuels. These modifications are discussed at greater length in 

Chapter 8. 
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2.3.5 Turbulent Mixing 

 Gas-phase chemical reactions can exhibit a wide range of different behaviors. In most 

industrial applications, coal combustion typically behaves as turbulent, non-premixed 

combustion (Turns, 2012). In non-premixed (or diffusion) flames, combustion occurs at the 

boundary between fuel and oxidizer (Poinsot and Veynante, 2005), like the well-known Burke-

Schumann Flames (Burke and Schumann, 1928). Turbulence (quantified by sufficiently high 

Reynolds numbers) causes shear forces in the fluid, which in turn produces vorticity that is 

stochastic in nature, changing in both time and location (Smoot and Smith, 1985). These 

vortexes are typically called eddies in combustion modeling. Eddies are important in accurately 

modeling the combustion behavior of gaseous fuels, and in most cases of turbulent, non-

premixed flames, the observed reaction rate is limited by mixing (meaning the actual chemical 

reaction rate is much faster than the rate of mixing), which occurs in eddies locally (Poinsot and 

Veynante, 2005). 

 Due to the stochastic nature of eddy mixing, the local composition (species and 

elemental) of the eddies changes based on a number of different variables, including time, 

position in the flow, flow characteristics (momentum, velocity, temperature, etc.), and other 

variables (Bird et al., 2007). Solid fuels like coal make this even more difficult by including a 

source of mass from both pyrolysis and char combustion/gasification reactions (Smoot and 

Smith, 1985). For practical coal combustion modeling, this means that the elemental and species 

compositions are very different depending on local conditions. 

 Statistics/VUQ 

 The topic of verification, validation, and uncertainty quantification (VUQ) is becoming 

more prevalent in a lot of research areas and particularly combustion modeling. Verification and 
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validation might mean different things to different people. This dissertation uses the definition 

from Oberkampf and Barone (2006), in that verification refers to the process of ensuring 

mathematical and model implementation accuracy and validation refers to the process of 

comparing model predictions to real-world values. The uncertainty quantification comes from 

using what are called “validation metrics” or statistical values that compare model predictions to 

the real-world values. In addition to specific validation metrics, sometimes more generally called 

statistical measures of fit, there are a number of processes researchers use that can find and/or 

eliminate any model fitting bias (caused either by overfitting or underfitting model coefficients). 

These methods fall into a general category called cross-validation. 

2.4.1 Statistical Measures of Fit 

 Classical statistical analyses rely on several well-known validation metrics, starting with 

the 𝑅𝑅2 value, which is often called the coefficient of determination. The coefficient of 

determination ranges from 0 to 1, with 0 generally representing the poorest fit possible while a 

value of 1 means the model perfectly fits the experimental data. There are several ways to 

calculate the 𝑅𝑅2 value, but perhaps the most widely used (Walpole and Myers, 1978) is shown in 

Equations 2-7 to 2-10. 

 𝑅𝑅2 = � 𝐴𝐴𝑜𝑜𝑥𝑥
�𝐴𝐴𝑜𝑜𝑜𝑜𝐴𝐴𝑥𝑥𝑥𝑥

�
2
 (2-7) 

 𝑆𝑆𝑜𝑜𝑥𝑥 = ∑ (𝑦𝑦�𝑖𝑖𝑦𝑦𝑖𝑖)𝑁𝑁
𝑖𝑖=1 − 1

𝑁𝑁
(∑ 𝑦𝑦�𝑖𝑖𝑁𝑁

𝑖𝑖=1 )(∑ 𝑦𝑦𝑖𝑖𝑁𝑁
𝑖𝑖=1 ) (2-8) 

 𝑆𝑆𝑜𝑜𝑜𝑜 = ∑ (𝑦𝑦�𝑖𝑖)2𝑁𝑁
𝑖𝑖=1 − 1

𝑁𝑁
(∑ 𝑦𝑦�𝑖𝑖𝑁𝑁

𝑖𝑖=1 )2 (2-9) 

 𝑆𝑆𝑥𝑥𝑥𝑥 = ∑ (𝑦𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1 − 1

𝑁𝑁
(∑ 𝑦𝑦𝑖𝑖𝑁𝑁

𝑖𝑖=1 )2 (2-10) 
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where 𝑦𝑦�𝑖𝑖 is the predicted value given by a proposed model, 𝑦𝑦𝑖𝑖 is the experimentally observed (or 

measured value, and 𝑁𝑁 is the total number of points in the comparison data set. 

 The 𝑅𝑅2 value is widely used and can be a good indication of model fit, however, it can 

sometimes give a false sense of security, especially when model slopes are high. In addition, 𝑅𝑅2 

is highly dependent on the number of points used in a comparison, so a high 𝑅𝑅2 value does not 

automatically indicate a good model fit and a low 𝑅𝑅2 value does not automatically indicate a bad 

model fit. This is a good reason to use any statistical parameter in conjunction with other 

statistical tests to ensure a “good” fit is really a good fit. 

 Another classical statistical parameter that is especially important in regression and 

model fitting is the sum of squared errors (SSE). The SSE is shown in Equation 2-11. Related to 

the sum of squared errors is the mean of the sum of squared errors (MSE). This value normalizes 

the sum of squared errors by the total number of data points in the data set used to fit model 

parameters. Smaller data sets generally have smaller SSE values, so the MSE is particularly 

helpful when comparing models over a wide range of data set sizes. The MSE is found in 

Equation 2-12. 

 𝑆𝑆𝑆𝑆𝐸𝐸 = ∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝑁𝑁
𝑖𝑖=1

2 (2-11) 

 𝑀𝑀𝑆𝑆𝐸𝐸 = 𝐴𝐴𝐴𝐴𝐸𝐸
𝑁𝑁

= 1
𝑁𝑁

(∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1 ) (2-12) 

 

 Another useful statistical measure of fit is the relative error. This type of error 

measurement normalizes the absolute error by the experimentally observed value. This makes an 

error value that is a percentage, typically below 100% if the predicted and observed values are 

similar. The relative error is given in Equation 2-13. Several useful things can be done with the 
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relative error, including taking the minimum, average, and maximum relative errors in a data set 

comparison. Maximum relative error can give an indication of the maximum “spread” of the 

model when compared to real-world data, and the average relative error can show on average 

how close the “spread” is. The minimum relative error is perhaps the least useful of these three, 

usually being very close to zero if any of the individual data points are well-matched with real-

world data points. 

 𝑅𝑅𝐸𝐸 = �𝑥𝑥𝑛𝑛−𝑥𝑥�𝑛𝑛
𝑥𝑥𝑛𝑛

� (2-13) 

 

 Some researchers have started using various vector norms to compare model predictions 

to experimental data (Oberkampf and Barone, 2006; Oberkampf and Roy, 2010):  (1) the L1 

norm gives an average absolute error, shown in Equation 2-14, (2) the L2 or Euclidian norm 

gives the root mean squared error (RMSE), shown in Equation 2-15, and (3) the infinity norm 

gives the maximum absolute error, shown in Equation 2-16. 

 𝐿𝐿1 = ‖𝑦𝑦� − 𝑦𝑦‖1 = 1
𝑁𝑁
∑ |𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖|𝑁𝑁
𝑖𝑖=1  (2-14) 

 𝐿𝐿2 = ‖𝑦𝑦� − 𝑦𝑦‖2 = �1
𝑁𝑁
∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1 �

1
2 (2-15) 

 𝑖𝑖𝑒𝑒𝑓𝑓𝑖𝑖𝑒𝑒𝑖𝑖𝑡𝑡𝑦𝑦 = ‖𝑦𝑦� − 𝑦𝑦‖∞ = max|𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖| (2-16) 

 

 While all of these validation metrics are valid and widely used in the literature, they each 

show a slightly different picture of the error between model predictions and real-world values. 

There are many more ways of expressing this error, but these nine validation metrics (𝑅𝑅2, SSE, 

MSE, minimum, average, and maximum relative error, and the L1, L2, and infinity norms) tend 
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to show a good picture of the overall model error, especially using a combination of several of 

the validation metrics in one comparison. 

2.4.2 Cross-Validation 

 Cross-validation has been used to decrease the overall bias of mathematical models 

(Esbensen and Geladi, 2010), and can take a number of different forms, with most following 

similar algorithms. The basic cross-validation process (Schaffer, 1993), which is commonly 

known as k-fold cross-validation, is commonly thought to have four main steps: 

1. The data set is split into randomly assigned groups (can be any number of groups, but 

most commonly used are 10 sets of roughly equal size, but fewer groups can be used for 

smaller data sets) 

2. One of the groups is left out as a test set. The remaining groups are used to train each 

model (i.e., to curve-fit the data for all but the test set). The resulting correlation is then 

evaluated using the one test set excluded from the curve fit. This process is repeated for 

each group, so each group eventually acts alone as a test set. 

3. The validation metrics of all these curve fits are averaged, and the best model is chosen. 

A better value for a chosen validation metric indicates that the model has a better ability 

to predict data using new conditions on which it was not trained. 

4. Finally, the chosen model or models are trained on the complete data set to produce a 

prediction model. 

 A model can be trained using a variety of techniques, but perhaps the easiest and most 

common way is using a simple least squares analysis which is done by minimizing the sum of 
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squared error between the model and experimental values. The remaining validation metrics can 

then be calculated based on the trained (or fit) model. 

 Another procedure commonly applied to VUQ along with cross-validation is some sort of 

model refinement. Typically, this takes the form of what are called “nested functions,” which 

means one fitted coefficient at a time is removed from a chosen model to determine if any of the 

coefficients are extraneous. 

2.4.3 Information Theory 

 Another branch of applied statistics and VUQ is called information theory (Burnham and 

Anderson, 2002). Information theory basically seeks to infer data from complex information. 

One thing information theory can do well is compare various model forms, especially if the 

models are not “nested.” Many model comparison approaches only apply to nested models, 

where a full or parent model is being reduced to form a smaller nested model that is really just a 

subset of the parent. Information theory differs from some other model comparison approaches 

in the fact that it does not assume there is one “true” model describing the data, but rather some 

models are more likely to be correct than others, relying on what is called “information entropy,” 

or how likely (or unlikely) a specific outcome will occur (Stone, 2015). Bayesian statistics are an 

example of information theory. 

 Many information theory criteria include two parts:  a measure of the likelihood of a 

model to be correct, and something to correct for potential overfitting bias (especially with large 

numbers of fitted coefficients and small data sets). There are two commonly used and related 

approaches:  the Bayesian Information Criterion (BIC) and the Akaike Information Criterion 

(AIC) (Burnham and Anderson, 2002). The AIC method is used here because of some useful 
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simplifications to the calculations that can be performed when a least-squares analysis is used to 

fit the model(s) of interest. The key AIC formula is shown in Equation 2-17.  

 𝐴𝐴𝐷𝐷𝐶𝐶 = 𝑁𝑁 ⋅ ln �𝐴𝐴𝐴𝐴𝐸𝐸
𝑁𝑁
� + 2𝐾𝐾 = 𝑁𝑁 ⋅ ln(𝑀𝑀𝑆𝑆𝐸𝐸) + 2𝐾𝐾 (2-17) 

 

where 𝑁𝑁 is the number of points in a data set and 𝐾𝐾 is the number of fitted model coefficients 

plus 1. A corrected AIC score (AICc), in Equation 2-18, can be calculated for a high number of 

fitted coefficients and small data sets. 

 𝐴𝐴𝐷𝐷𝐶𝐶𝑐𝑐 = 𝐴𝐴𝐷𝐷𝐶𝐶 + 2𝐾𝐾(𝐾𝐾+1)
𝑁𝑁−𝐾𝐾−1

 (2-18) 

 

 When the data set size is high and the number of fitted coefficients low, the AIC and 

AICc scores will be almost equivalent. The forms of AIC and AICc shown here are the simplified 

versions used when a sum of squared errors analysis is used to fit the models. If this type of 

fitting analysis is not used, the AIC value is much more complicated, using the log of the 

likelihood function. By itself, the AIC or AICc score can be either positive or negative and is 

only meaningful when comparing two models. This is done by subtracting the AICc score of one 

model from another, as shown in Equation 2-19. 

 Δ𝐴𝐴𝐷𝐷𝐶𝐶𝑐𝑐 = 𝐴𝐴𝐷𝐷𝐶𝐶𝑐𝑐,1 − 𝐴𝐴𝐷𝐷𝐶𝐶𝑐𝑐,2 = 𝑁𝑁 ⋅ ln �𝐴𝐴𝐴𝐴𝐸𝐸1
𝐴𝐴𝐴𝐴𝐸𝐸2

� 

+2(𝐾𝐾1 − 𝐾𝐾2) + 2𝐾𝐾1(𝐾𝐾1+1)
𝑁𝑁−𝐾𝐾1−1

− 2𝐾𝐾2(𝐾𝐾2+1)
𝑁𝑁−𝐾𝐾2−1

 (2-19) 

 

 When comparing models using the AICc scores, the model with the lowest value is the 

most likely to be correct, however, this does not mean a lot by itself. The AIC method can go 

further and show how much more likely the best model is to be correct. Two values can be 
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calculated to show how much more likely the best model is to be correct:  (1) the Akaike 

probability (also called Akaike weights), shown in Equation 2-20, and (2) the evidence ratio, 

which is the ratio of Akaike probabilities, shown in Equation 2-21 (Burnham and Anderson, 

2002). 

 𝑝𝑝𝑒𝑒𝑜𝑜𝑏𝑏𝑎𝑎𝑏𝑏𝑖𝑖𝑝𝑝𝑖𝑖𝑡𝑡𝑦𝑦 = 𝑒𝑒−0.5Δ𝐴𝐴𝐴𝐴𝐶𝐶𝑐𝑐

1+𝑒𝑒−0.5Δ𝐴𝐴𝐴𝐴𝐶𝐶𝑐𝑐
 (2-20) 

 𝑒𝑒𝑒𝑒𝑖𝑖𝑑𝑑𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒 𝑒𝑒𝑎𝑎𝑡𝑡𝑖𝑖𝑜𝑜 = 1
𝑒𝑒−0.5Δ𝐴𝐴𝐴𝐴𝐶𝐶𝑐𝑐

 (2-21) 

 

 The AIC method is fairly straightforward to implement in model comparisons. For 

example, if a hypothetical Model A has an AICc of 400 and Model B has an AICc of 405, the 

Akaike probability of Model A is 0.92 and the evidence ratio is 0.082. This means that Model A 

is 92 percent more likely to be correct than Model B, and Model B is more than 12 times (inverse 

of the evidence ratio) less likely to be correct compared to Model A. An Akaike probability of 50 

percent indicates that both models are equally likely to be correct, while a probability greater 

than 50 percent means that model 1 (Model A in the example) is more likely to be correct and 

less than 50 percent means that model 2 (Model B in the example) is more likely to be correct. 

Using these probabilities and evidence ratios, the model comparison can determine if any models 

other than the “best” can be considered close enough to be statistically similar. 

 Selection of Experimental Data 

 Statistical analyses in general require large amounts of data to adequately determine 

statistical viability. Cross-validation in particular benefits from large data sets. Experimental data 

selected from the published literature were included in three main data sets: (1) elemental 

composition of primary pyrolysis products (char and tar), (2) coal aromaticity, and (3) heating 
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values of coal and other fuels. There is some overlap in all of these data sets, and all data sets 

were selected based on several criteria. These data sets are detailed in full in Appendix B. 

 The elemental composition data set was gathered based on the following criteria: (1) tar 

must be primary tar (tar formed at temperatures below 1100 K, to limit secondary tar reactions), 

(2) low residence times (no hold times), (3) particle heating rates of at least 1000 K/s, and (4) 

compositions must be reported on a dry, ash-free (DAF) basis, or have enough information to 

convert to a DAF basis. Data from fluidized bed systems were not used unless accurate particle 

residence times were available. Frequently fluidized bed systems are reported with either an 

average estimated particle residence time or a fluid residence time. This can be different than a 

particle residence time. Table 2-4 lists the sources of experimental data along with key 

experimental conditions for each set of data. 

 The aromaticity data set was chosen to include elemental composition (proximate and 

ultimate analysis results), measured and calculated chemical structure parameters from NMR 

analysis, and the aromaticity must be a corrected or true aromaticity (𝑓𝑓𝑐𝑐′). Many of these data 

were also used by Genetti et al. (1999) to fit chemical structure parameters for the CPD model. 

The data come from the following sources:  Genetti et al. (1999), Solum et al. (1989), Hambly 

(1998), Perry et al. (Perry, 1999; Perry et al., 2000), Fletcher and Hardesty (1992), Watt (1996), 

Gerschel and Schmidt (2016), Cui et al. (2019), Ahmed et al. (2003), Lin et al. (2016), Suggate 

and Dickinson (2004), and Zhang et al. (1995). 

 The following criteria were used for the heating value data set: (1) proximate and 

ultimate analyses must be presented on a DAF basis, or enough information must be available to 

calculate the data on a DAF basis, (2) the data must include a heating value, preferably the 

higher heating value, and (3) char and tar analyses must be on pure products, i.e., with no 
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Table 2-4. Elemental Composition of Pyrolysis Products—Experimental Data 

Author(s) Institution Apparatus Gas Temp (K) Char/Tar Coal Types 
Freihaut, et al 
(1989a; 
1989b). 

United 
Technologies 
Research 
Center 

Entrained 
flow reactor 

780-1069 Char and 
Tar 

hvAb, bit, 
subC, lvb 

Hambly 
(1998) 

Brigham 
Young 
University 

Drop tube 
reactor 

820 and 1080 Char and tar ligA, subA, 
hvCb, hvAb, 
lvb 

Perry (Perry, 
1999; Perry et 
al., 2000) 

Brigham 
Young 
University 

Drop tube 
reactor 

895-1085 Char and tar Sub, hvb, 
mvb, lvb 

Fletcher and 
Hardesty 
(1992) 

Sandia 
National 
Laboratories 

Entrained 
flow reactor 

1050 Char Lig, sub, 
hvBb, hvAb, 
lvb 

Watt (1996) Brigham 
Young 
University 

Drop tube 
reactor 

850-1050 Char and tar ligA, subC, 
hvCb, hvAb, 
lvb 

Parkash 
(1985) 

Devon Coal 
Research 
Centre 

Laminar, 
entrained 
flow, 
atmospheric 
pressure 
reactor 

820-980 Char subB 

Tyler (1980) CSIRO Heated 
fluidized bed 
reactor 

873 Tar bit, sub 

 

solvent-based transformations. This data set not only includes coal-based fuels, but a variety of 

other fuel types. The sources of data are listed in Table 2-5. 

 Some of the coal (char and tar) and biomass data points did not include a reported sulfur 

content, with many reporting a combined oxygen and sulfur content (O+S). This is not as 

important for the biomass samples since sulfur is typically very low in most biomass fuels. For 

the coals, particularly the char and tar samples, an estimate was used to infer the split between 

oxygen and sulfur contents. For char and tar samples that did not include a reported oxygen or 

sulfur content (Edwards et al., 1983; Vorres, 1990; Glick and Davis, 1991; Proscia et al., 1994; 
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Riaza et al., 2017a; Riaza et al., 2017b), the oxygen-to-sulfur ratio was set equal to that of the 

parent coal. All three data sets are detailed in Appendix B. 

 

Table 2-5. Heating Value of Different Fuels—Experimental Data 

Author/Institution Number of Samples 
Argonne National Labs (Vorres, 1990) 8 Coala 
Pennsylvania State University Coal Database 
(Glick and Davis, 1991) 

15 Coal 

Foster Wheeler (Bryers, 1988) 7 Coal 
Ahmed et al. (2010) 1 Coal, 1 Charc 
Proscia et al. (1994) 2 Coal, 8 Charb, 4 Tarb,d 

Shamsi et al. (2004) 4 Char 
Lazaro et al. (1998) 2 Coal 
Ferrara et al. (2014) 2 Coal, 1 Biomassb,e 

Tomaszewicz and Mianowski (2017) 11 Coal 
Tourunen et al. (2009) 1 Coal 
Ding et al. (2016) 2 Coal, 2 Petroleum Coke 
Kajitani et al. (2002) 2 Coal 
Roberts et al. (2003) 3 Coal 
Wang, et al (2014) 2 Coal 
Franchetti, et al (2013) 1 Coal 
Suggate and Dickinson (2004) 35 Coal, 8 Peat 
Ra et al. (2014) 1 Coal 
Reichel et al. (2015) 1 Coal 
Riaza et al. (2014; 2017a) 4 Coal, 3 Biomass 
Riaza et al. (2017b) 1 Coalb 
Seo et al. (2011) 1 Coal 
Shadle et al. (2001) 3 Coal 
Shaw et al. (1991) 14 Coal 
Tufano et al. (2016) 1 Coal 
Vascellari et al. (2015) 4 Coal, 1 Coal+Limestone 
Weiland et al. (2012) 1 Coal, 1 Biomass 
Wen, et al (2016) 1 Coal 
Wu and Harrison (1986) 2 Coal 
Sahu et al. (1988) 3 Coal 
Parkash and Chakrabartty (1986) 11 Coal 
The Babcock and Wilcox Company (1990) 2 Coal 
Miller (2017a) 49 Coal 
Al-Abbas et al. (2013) 1 Coal 
Alvarez et al. (2013) 2 Coal 
Benito et al. (1994) 4 Coal 
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Table 2-5. Heating Value of Different Fuels—Experimental Data, CONTINUED 

Author/Institution Number of Samples 
Bharadwaj et al. (2004) 2 Biomass 
Brewster, et al (1995) 3 Coal 
Chakravarty et al. (1990) 19 Tar, 2 Oil Shale Tar, 1 Resinite Tar, 1 Tar 

Sand Tar 
Channiwala and Parikh (2002) 36 Biomass, 7 Biomass Char, 15 Liquid and 

Gaseous Fuels, 10 Coal, 1 Coke, 1 Peat, 23 
Other Fuelsf, 1 Char 

Chern and Hayhurst (2005) 4 Coal 
Cope et al. (1989) 3 Coal 
Costa et al. (1990) 2 Coal 
Daood et al. (2012) 1 Coal 
Eatough and Smoot (1996) 2 Coal 
Hees et al. (2016) 1 Coal 
Huéscar Medina et al. (2014) 4 Biomass, 1 Coal 
Ibarra et al. (1991) 9 Coal 
Idris et al. (2012) 1 Coal, 3 Biomass 
Arenillas et al. (2003) 6 Coal 
Jayaraman et al. (2015) 1 Coal 
Jin et al. (2013) 1 Coal, 5 Other Fuelsf 

Khan (1987) 2 Coal 
Khatami et al. (2012) 4 Coal 
Lemaire et al. (2015) 1 Coal 
Lloyd et al. (1989) 6 Coal 
Lu et al. (2013) 1 Biomassb, 2 Biomass Charb, 1 Coal 
Man and Gibbins (2011) 7 Coal 
Matali et al. (2015) 1 Coal, 1 Other Fuelf 
Nugroho et al. (2000) 4 Coalb 
Park and Song (2017) 4 Coal 
Pielsticker et al. (2017b) 1 Coal 
Saito et al. (1991) 1 Coal 
CSIRO (Edwards et al., 1983) 7 Coal, 30 Charb, 21 Tarb 
Stournas et al. (1987) 2 Coal, 1 Peat 
Niessen (2002) 24 Coal, 20 Biomass, 15 Liquid and Gaseous 

Fuel, 34 Other Fuelf 
Biagini and Tognotti (2014) 20 Coal 
Chen et al. (2012a) 1 Coal, 1 Biomass 
Gövert et al. (2017) 1 Coal 
Guo et al. (2015) 1 Coal 
Hashimoto and Shirai (2014) 3 Coal 
Rabaçal et al. (2015) 1 Coal 
Rieth et al. (2016; 2017a; 2017b) 2 Coals 
Sadhukhan et al. (2011) 3 Coal 
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Table 2-5. Heating Value of Different Fuels—Experimental Data, CONTINUED 

Author/Institution Number of Samples 
Sorensen, et al (1996) 1 Coke 
Toftegaard et al. (2010) 1 Coal 
Tolvanen et al. (2013) 2 Coal, 1 Biomass, 1 Peat 
Wen et al. (2017a; 2017c) 1 Coal 
Yang et al. (2018) 2 Coal 
Zhang et al. (2016) 1 Coal, 6 Char 
Zhang et al. (2015) 1 Coal 
Ringen et al. (1979) 28 Oil Shale 
Annamalai et al. (1987) 6 Other Fuelf 

Sun et al. (2015) 6 Propellant and Explosive 
Lee et al. (1989) 7 Liquid and Gaseous Fuels, 15 Propellant 

and Explosive 
a Coal refers to raw (or parent) coal 
b Elemental analysis for these samples included C, H, N, and (O+S) 
c Char refers only to coal char 
d Tar refers to only coal tar 
e Many of the biomass samples only have C, H, O reported reliably, with N reported for most, 
and S reported for some 
f Other fuels is a general descriptor for any non-traditional fuels, including municipal solid waste, 
animal waste, food waste, rubber, leather, etc. 
g Propellants and explosives include a reported heat of combustion 

 Summary and Conclusions 

 Much of the previous work in coal pyrolysis modeling has focused on improving simple 

models using simplified assumptions of real-world systems. This has been beneficial with 

limited computational resources, however, as computer technologies advance, larger and more 

complex problems can be simulated. This means that more complex submodels are needed to 

decrease overall error and uncertainty. This perhaps would help to bridge the gap between 

existing simple models (like the global pyrolysis models discussed in Section 2.3.1) and more 

complex models (e.g., network devolatilization models like CPD). New experiments and greater 

understanding of the processes that occur during coal pyrolysis make older models potentially 

less accurate and certainly less flexible in their application to new and challenging problems. 
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This problem might be easily solved by adjusting existing models, by improving some of the 

simplifying assumptions made in previous work, or may even require the development of newer, 

more complex models to adequately model coal pyrolysis reactions in modern coal systems. 
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3 OBJECTIVE AND TASKS 

The objective of this research is to develop, evaluate, and implement improved, simple coal 

pyrolysis models for use in large-scale simulations of oxy-fuel fired coal boilers. This research 

focuses on all aspects of primary pyrolysis reactions, as detailed in the literature review chapter. 

The overarching goal is to add improved coal pyrolysis models to large-scale simulations 

designed to evaluate existing coal boiler technologies and to design and validate potential new 

technologies in the future. 

 Tasks 

The following tasks were implemented to advance the objective: 

1. Evaluate simple coal pyrolysis yield and rate models from the literature by comparison to the 

CPD model and develop improved simple models based on the best of the literature models. 

2. Evaluate correlations describing coal aromaticity found in the literature and develop and test 

improved models based on comparison to a data set of coal aromaticity values from 

experiments in the literature. Aromaticity can then be used as a fitting parameter for other 

important coal properties. 

3. Correlate reported elemental compositions (CHONS) of the products of primary pyrolysis 

(char and tar, with the light gases calculated by difference) based on experimental data from 
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established literature. These correlations calculate the elemental composition using several 

coal- and condition-specific variables. This analysis also uses a cross-validation technique to 

better quantify uncertainty and bias in each model when compared to experimental data. 

4. Evaluate several correlations to calculate heats of combustion (heating values) using a large 

set of experimental data from established literature. This task primarily evaluates these 

models using coal, char, and tar data; however, the large data set includes data for several 

other types of fuels, including biomass, other fossil fuels, propellants and explosives, and 

others. 

5. Use the correlations from task 4 to evaluate various mixture fraction approaches for 

modeling equilibrium reactions of coal pyrolysis products over a range of oxidizer 

concentrations. 

 

 All of the above tasks support improvements in the combined use of equilibrium 

chemistry and mixture fraction approaches in large coal combustor simulations. Equilibrium 

calculations require the combined gas-phase elemental composition, the pressure, and the energy 

content (i.e., the enthalpy). The combined elemental composition at any location in the 

combustor is related to the rates and yields of pyrolysis. This dissertation is therefore organized 

as follows. Coal pyrolysis rate models are evaluated in Chapter 4, along with newly proposed 

models. As part of the research on the correlation of the elemental composition of pyrolysis 

products, a new correlation for parent coal aromaticity was developed, and is presented in 

Chapter 5. Chapter 6 then describes correlations of the elemental compositions of coal tar and 

char based on parent coal composition and pyrolysis conditions, building on the aromaticity 

correlations from Chapter 5. Correlations of heating values of tar and char (and several other 
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non-coal fuels) are presented in Chapter 7. Finally, the use of improved elemental compositions 

and heating values are discussed in mixture fraction calculations combined with equilibrium 

modeling of coal combustion applications (Chapter 8). Chapter 9 presents a summary and 

conclusions from this work, along with recommendations for future work. Also included in this 

dissertation are several appendix chapters that discuss mathematical and computational tools in 

more detail as well as presenting additional analysis information that was not included in the 

main chapters of the dissertation. 
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4 COAL PYROLYSIS YIELDS AND RATES 

 This chapter details the work done on modeling coal pyrolysis yields and rates, 

particularly those of the total volatiles that include both tar and light gas fractions evolved during 

the coal pyrolysis reaction. This chapter is modified from the work published in Richards and 

Fletcher (2016). In this chapter, several pyrolysis rate models from the literature are tested and 

two improved rate models were developed based on the best aspects of the literature models. 

 Introduction 

 Simulations of coal boilers, gasifiers, and other combustion processes require adequate 

submodels to represent each aspect of the simulation (Alvarez et al., 2013). For coal combustion 

simulations, one of these important submodels describes the devolatilization behavior of coal 

particles. There are two main forms of devolatilization models in the literature:  global models 

and network models. Network models include the chemical percolation devolatilization (CPD) 

model (Grant et al., 1989; Fletcher et al., 1992b), FLASHCHAIN model (Niksa, 1988), and the 

FG-DVC model (Solomon et al., 1988). These network models have been shown to be very 

accurate in their predictions of devolatilization behavior, however, they are computationally 

complex (Smith et al., 1994), which directly impacts the amount of time needed to run complex 

simulations (Brewster et al., 1995). Because of this, most large-scale coal combustion 

simulations use global devolatilization models instead of the more complex network models. 
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Global models are less computationally complex, but typically do not apply to as broad a range 

of coal types, heating rates, and temperatures as network models, and therefore need to be tuned, 

or optimized, using trusted experimental data or predictions. Several of the most widely used 

coal devolatilization models are found in Table 2-1 and are discussed at length in Section 2.3.1. 

 The global models fall into two main categories:  one kinetic step and two kinetic steps. 

While it is possible to get a one-step model to fit predictions for one heating rate, it is desirable 

to develop a simple model that can give reasonable predictions of rate and yield over a range of 

heating rates simultaneously. 

 Approach 

 Particle heating rates in coal combustion simulations and experiments have been reported 

to be as high as 106 K/s (Anthony et al., 1975; Kobayashi et al., 1977; Ubhayakar et al., 1977; 

Maloney et al., 1991; Therssen et al., 1995; Backreedy et al., 2006; Chen et al., 2012b; Alvarez 

et al., 2013; Authier et al., 2014; Lemaire et al., 2015). The CPD model was used to predict the 

devolatilization behavior of a Utah bituminous Sufco coal (see Table 4-1 for proximate and 

ultimate analysis) using four heating rates (5×103 K/s, 1×104 K/s, 1×105 K/s, and 1×106 K/s) with 

a temperature range of 300 to 1600 K with no hold time at 1600 K. Models tuned to this set of 

predictions will only hold true for this particular range and coal type, however, this procedure 

can be re-applied for other heating rates, temperatures, or coal types. These four heating rates 

were used to capture the range of heating rates expected in a pulverized coal boiler. 

 Each model form was coded in MATLAB using an explicit Euler method to numerically 

integrate the rate to find the yield. The model coefficients were “tuned” to the CPD predictions 

using MATLAB’s built-in fmincon optimizer, which was used to minimize the sum of squared  
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Table 4-1. Sufco coal proximate and ultimate analyses. 

Proximate Analysis (as rec’d) Ultimate Analysis (dry) 
Moisture 6.11 C 67.87 
Ash 8.36 H 5.45 
Volatile Matter 38.49 O (by difference) 16.87 
Fixed Carbon 47.04 N 1.09 
HHV (BTU/lb) 11899 S 0.36 

 

errors (see Equation 2-11) between the global model predictions and the CPD model predictions. 

Non-linear constraints were used for the two-step kinetic models to ensure one kinetic pathway 

dominates at lower temperature and the other dominates at high temperatures. Literature 

coefficients were used as an initial guess for the optimizer. Upper and lower bounds on model 

coefficients were chosen based on known literature values and expected behavior. Although this 

analysis focused on the total volatiles, the same procedure can be used to fit model coefficients 

for tar yields, as long as tar yield data or trusted predictions are used. More details on MATLAB 

optimizers are found in Appendix A. 

 Each model was evaluated for goodness of fit based on three key trends in 

devolatilization behavior (see Figure 2-3): (1) total volatiles yield as a function of temperature 

and heating rate, (2) ultimate volatiles yield at each heating rate, and (3) rate of volatiles 

formation during devolatilization. 

 Results and Discussion 

 The results of each of the six literature models in Table 2-1 are shown and discussed in 

the following section. In addition, two new pyrolysis models were developed and are discussed 

here. Finally, the results are summarized, and several models are suggested based on their 

accuracy and utility in large-scale simulations. 
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4.3.1 Single First-Order Model Comparisons 

 The single first-order model was optimized for all four heating rates simultaneously. 

Table 4-2 shows the optimized coefficients for the Sufco coal, and Figure 4-1 shows the 

comparison of the optimized results with the CPD model calculations, with Figure 4-1a showing 

the yield trends versus temperature and Figure 4-1b showing the ultimate yield (total yield at the 

final time and temperature) versus heating rate. 

 

Table 4-2. Optimized Single First-Order Model Coefficients 

Coefficient Value 
𝑉𝑉∞ 0.560 
𝐴𝐴 2.95×1013 s-1 

𝐸𝐸/𝑅𝑅 2.38×104 K 
 

 
Figure 4-1. Single first-order model predictions for Sufco coal, (a) total volatiles  
fraction vs. particle temperature (K) and (b) ultimate  
volatiles yield vs. heating rate. 

 

 The optimized first-order model shows rates that are too steep with temperature when 

compared to the CPD model predictions of the same coal, however, the average devolatilization 

temperature for each heating rate is generally in the correct spot, but devolatilization occurs 

much faster according to the first-order model. In addition, the first-order model does not show 

the expected increase of ultimate volatiles yield with increasing heating rate. This is because of 
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limitations with the single first-order model, which has a set yield coefficient. While the single 

first-order model does not follow all three devolatilization trends, it is one of the simplest models 

discussed here, with only three fitted coefficients. 

4.3.2 Yamamoto Model Comparisons 

 The Yamamoto model (DM-2 in Table 2-1) was also optimized for all four heating rates 

simultaneously. Table 4-3 shows the optimized Yamamoto model coefficients for the Sufco coal, 

and Figure 4-2 shows a comparison of the Yamamoto model predictions with the CPD model 

predictions. 

 

Table 4-3. Optimized Yamamoto Model Coefficients 

Coefficient Value 
𝑉𝑉∞ 0.560 
𝐴𝐴 1.04×1012 s-1 

𝐸𝐸/𝑅𝑅 3.52×104 K 
𝑐𝑐0 25.5 
𝑐𝑐1 -56.4 
𝑐𝑐2 131 
𝑐𝑐3 -176 
𝑐𝑐4 122 
𝑐𝑐5 -38.6 

 

 
Figure 4-2. Yamamoto model predictions for Sufco coal, (a) total volatiles  
fraction vs. particle temperature (K) and (b) ultimate  
volatiles yield vs. heating rate. 
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 The Yamamoto model is a modified version of the single first-order model, so it is 

expected to follow the three devolatilization trends better than the single first-order model. The 

devolatilization rates and temperatures (Figure 4-2a) match up very well between the Yamamoto 

and CPD model predictions, however, the ultimate yield (Figure 4-2b) is still uniform for all 

heating rates. Like the single first-order model, the prescribed yield factor for the Yamamoto 

model does not change with temperature or heating rate information. 

4.3.3 Biagini and Tognotti Model Comparisons 

 The Biagini and Tognotti (BT) model (DM-3 in Table 2-1) is also a modified version of 

the single first-order model. Biagini and Tognotti (2014) not only developed this model to 

improve the single first-order model predictions, but they also correlated the major model 

coefficients (A, E/R, and DI) with some coal-specific parameters in an effort to increase the 

model utility with different coal types. Table 4-4 shows the BT model coefficients both for the 

coefficients suggested in the literature (based on Sufco coal parameters) and re-optimized 

coefficients based on the comparison with the CPD model predictions. Figure 4-3 shows a 

comparison of the BT model with CPD model predictions. 

 

Table 4-4. Biagini and Tognotti Model Coefficients 

Coefficient Literature Optimized 
𝐴𝐴 895 s-1 2.95×1013 s-1 

𝐸𝐸/𝑅𝑅 3.87×103 K 2.38×104 K 
𝐷𝐷𝐷𝐷 0.690 0.690 

 

 The suggested (literature) coefficients do not match the CPD model predictions very well 

at all, either in the yield versus temperature or the ultimate volatiles yield. It appears that the 

correlations in Biagini and Tognotti (2014) were optimized for a heating rate of 1×104 K/s, but  
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Figure 4-3. Biagini and Tognotti model predictions for Sufco coal, (a) total volatiles  
fraction vs. particle temperature (K) and (b) ultimate  
volatiles yield vs. heating rate. 

 

predictions using these literature values do not agree with the CPD model, perhaps due to a time-

step inconsistency. The re-optimized coefficients performed better than the literature coefficients 

when compared to the CPD model predictions, however, the BT model predictions still do not 

match the CPD model predictions. While the BT model does allow for the prescribed yield factor 

to change based on temperature, it does not change with heating rate, which again leads to a 

constant ultimate yield with increasing heating rate. 

 

4.3.4 Utah Model Comparisons 

 The Utah model (DM-5 in Table 2-1, also called the modified BT model) is a modified 

version of the BT model, and was modified to include a yield curve that allows the BT model to 

accurately predict yields at long-time values. Table 4-5 shows the optimized coefficients for the 

Utah model. Like the original BT model, Table 4-5 shows both the literature (Schroeder, 2015) 

and re-optimized values for the model coefficients. Figure 4-4 shows the comparison of the 

predictions of the Utah and CPD models. 
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Table 4-5. Utah Model Coefficients 

Coefficient Literature Optimized 
𝑎𝑎 0.550 0.587 
𝑏𝑏 14.3 0.438 
𝑐𝑐 -10.6 22.0 
𝑑𝑑 3.19 -13.4 
𝑒𝑒 -1.23 37.9 
𝑇𝑇𝑖𝑖𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒 590 K 304 K 
𝐸𝐸0/𝑅𝑅 1.11×104 K 7.88×103 K 
𝜎𝜎𝑐𝑐/𝑅𝑅 826 K 2.62×103 K 
𝐴𝐴 1.97×107 s-1 5.0×107 s-1 

 

 
Figure 4-4. Utah model predictions for Sufco coal, (a) total volatiles fraction vs.  
particle temperature (K) and (b) ultimate volatiles yield vs. heating rate. 

 

 The Utah model matches the CPD model yield vs temperature predictions (Figure 4-4a) 

much better than the other simple models, however, the ultimate yield values actually decrease as 

heating rate increases (see Figure 4-4b). The devolatilization temperature is fairly accurate over 

all four heating rates, but the rate does not match as well, being too fast at lower temperatures 

and too slow at higher temperatures, especially at higher heating rates. The Utah model shows 

some improvement over the original BT model, but may not be enough to justify the additional 

fitted coefficients. A disadvantage of the BT model form is that the volatiles yield approaches 

1.0 (complete conversion to volatile gases) at higher temperatures, which is not predicted by the 

CPD model or observed in the literature. The ultimate yield of the Utah model also continues to 
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increase with temperature above the yields predicted by the CPD model. This is only an 

advantage at significantly long hold times, where the particle is expected to be at steady state. 

4.3.5 Distributed Activation Energy Model Comparisons 

 The distributed activation energy model (DAEM, DM-4 in Table 2-1) was a modification 

of the simple first-order model that includes a distribution of activation energies. This makes the 

model more physically accurate to coal pyrolysis processes than any of the other first-order 

models, since the molecular bonds in coal that break during pyrolysis have a wide range of bond 

energies. Table 4-6 shows the optimized model coefficients for the sequential DAEM. Figure 4-5 

shows the comparison of the fitted DAEM to CPD model predictions. 

 

Table 4-6. Optimized DAEM Coefficients 

Coefficient Value 
𝐴𝐴 8.78×1017 s-1 

𝐸𝐸0/𝑅𝑅 3.04×104 K 
𝜎𝜎𝐸𝐸/𝑅𝑅 9.60×103 K 
𝑉𝑉∞ 0.566 

 

 
Figure 4-5. DAEM predictions for Sufco coal, (a) total volatiles fraction vs.  
particle temperature (K) and (b) ultimate volatiles yield vs. heating rate. 
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 The one-step DAEM accurately predicts the devolatilization rates and effective 

temperature of devolatilization as shown in Figure 4-5a, but it again predicts a constant ultimate 

yield with increasing heating rate, like the other one-step models. The only one-step model that 

does better at matching CPD predictions for total volatiles yield as a function of particle 

temperature is the Yamamoto model, but compared to the nine fitted coefficients of the  

Yamamoto model, the DAEM only has four, which means the DAEM is almost as accurate as 

the Yamamoto model while having less than half the coefficients. 

4.3.6 Simple Two-Step Model Comparisons 

 The simple two-step model (DM-6 in Table 2-1) is an improvement on the one-step 

models because it allows two kinetic “steps” to occur over the extent of the pyrolysis reaction, 

with one step dominating at lower temperatures and the other dominating at higher temperatures. 

Table 4-7 shows the optimized coefficients for each “step” in the simple two-step model. The 

comparison of the simple two-step model predictions with the CPD model predictions is found in 

Figure 4-6. 

 

Table 4-7. Optimized Simple Two-Step Model Coefficients 

Coefficient Step 1 Step 2 
𝑌𝑌𝑖𝑖 0.5 0.576 
𝐸𝐸𝑖𝑖/𝑅𝑅 8.37×103 K 2.78×104 K 
𝐴𝐴𝑖𝑖 3.0×105 s-1 1.24×1015 s-1 

 

 The effective temperature of devolatilization as predicted by the simple two-step model 

matches the CPD predictions, and the two-step model also comes very close to matching the 

CPD ultimate yield predictions, especially at heating rates between 1×104 and 1×105 K/s. The  
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Figure 4-6. Simple two-step model predictions for Sufco coal, (a) total volatiles  
fraction vs. particle temperature (K) and (b) ultimate  
volatiles yield vs. heating rate. 

 

simple two-step model is the first of the simple models to actually show an increase in ultimate 

volatiles yield with an increase in heating rate. However, the devolatilization rates as predicted 

by the two-step model are much too steep compared to CPD model predictions when fit to four 

heating rates simultaneously, in a similar fashion to the single first-order model. 

4.3.7 Modified Two-Step Model with Correction Factor 

 The modified two-step model with correction factor (or RF model) was developed as part 

of this dissertation to combine the attributes of the simple two-step and Yamamoto models. The 

simple two-step model was the best with respect to ultimate yield while the Yamamoto model 

was the best at predicting the devolatilization rates. The model form for the RF model is shown 

in Equations 4-1 to 4-3. 

 𝑑𝑑(𝐶𝐶)
𝑑𝑑𝑖𝑖

= −�𝐹𝐹1𝐴𝐴1𝑒𝑒
−𝐸𝐸1𝑅𝑅𝑅𝑅 + 𝐹𝐹2𝐴𝐴2𝑒𝑒

−𝐸𝐸2𝑅𝑅𝑅𝑅� 𝐶𝐶 (4-1) 

 𝑑𝑑(𝑉𝑉)
𝑑𝑑𝑖𝑖

= �𝐹𝐹1𝑌𝑌1𝐴𝐴1𝑒𝑒
−𝐸𝐸1𝑅𝑅𝑅𝑅 + 𝐹𝐹2𝑌𝑌2𝐴𝐴2𝑒𝑒

−𝐸𝐸2𝑅𝑅𝑅𝑅� 𝐶𝐶 (4-2) 

 𝐹𝐹𝑖𝑖 = 𝑒𝑒∑ 𝑐𝑐𝑖𝑖,𝑛𝑛[𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐]𝑖𝑖5
𝑖𝑖=0  (4-3) 
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where 𝐹𝐹𝑖𝑖 is the corrective factor of kinetic step 𝑒𝑒, 𝐶𝐶 is the “raw” coal value (which ranges from 1 

to 0 over the pyrolysis reaction), and 𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 acts as an extent of reaction, like the original 

Yamamoto model. The optimized coefficients for the RF model are found in Table 4-8. Figure 

4-7 shows the comparison between RF and CPD model predictions. 

 

Table 4-8. Optimized RF Model Coefficients 

Coefficient Step 1 Step 2 
𝑌𝑌𝑖𝑖 0.195 0.592 
𝐸𝐸𝑖𝑖/𝑅𝑅 1.50×104 K 3.18×104 K 
𝐴𝐴𝑖𝑖 4.11×105 s-1 1.0×108 s-1 

𝑐𝑐0 -56.8 29.8 
𝑐𝑐1 75.9 -48.3 
𝑐𝑐2 538 88.8 
𝑐𝑐3 -798 -67.2 
𝑐𝑐4 -129 6.03 
𝑐𝑐5 30.6 3.81 

 

 
Figure 4-7. RF model predictions for Sufco coal, (a) total volatiles fraction vs.  
particle temperature (K) and (b) ultimate volatiles yield vs. heating rate. 

 

 The RF model very accurately reflects the trends predicted by the CPD model, in terms of 

the devolatilization rate, effective devolatilization temperature, and ultimate volatiles yield 

trends. Of all the simple models tested, the RF model is the most accurate when compared to 
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CPD predictions, however, with 18 fitted model coefficients, the RF model could prove too 

computationally complex for some simulations. 

4.3.8 Modified Two-Step Model with Distributed Activation Energies 

 In an effort to reduce the number of model coefficients while maintaining accuracy, the 

modified two-step model with distributed activation energies (RFE model) was developed here 

to combine the simple two-step model with the sequential DAEM. The one-step DAEM was the 

second-most accurate one-step model behind the Yamamoto model. The RFE model form is 

shown in Equations 4-4 to 4-6. 

 𝑑𝑑(𝐶𝐶)
𝑑𝑑𝑖𝑖

= −�𝐴𝐴1𝑒𝑒
−𝐸𝐸1+𝜎𝜎𝐸𝐸1𝑍𝑍𝑅𝑅𝑅𝑅 + 𝐴𝐴2𝑒𝑒

−𝐸𝐸2+𝜎𝜎𝐸𝐸2𝑍𝑍𝑅𝑅𝑅𝑅 � 𝐶𝐶 (4-4) 

 𝑑𝑑(𝑉𝑉)
𝑑𝑑𝑖𝑖

= �𝑌𝑌1𝐴𝐴1𝑒𝑒
−𝐸𝐸1+𝜎𝜎𝐸𝐸1𝑍𝑍𝑅𝑅𝑅𝑅 + 𝑌𝑌2𝐴𝐴2𝑒𝑒

−𝐸𝐸2+𝜎𝜎𝐸𝐸2𝑍𝑍𝑅𝑅𝑅𝑅 � 𝐶𝐶 (4-5) 

 𝑍𝑍 = √2 ⋅ 𝑒𝑒𝑒𝑒𝑓𝑓𝑖𝑖𝑒𝑒𝑒𝑒�1 − 2(1 − 𝐶𝐶)� (4-6) 

 

where 𝑒𝑒𝑒𝑒𝑓𝑓𝑖𝑖𝑒𝑒𝑒𝑒 is the inverse error function and the values for 𝑌𝑌, 𝐴𝐴, 𝐸𝐸, and 𝜎𝜎𝐸𝐸 are different for 

each kinetic step. Table 4-9 shows the optimized coefficients for the RFE model. Figure 4-8 

shows the RFE model predictions compared to the CPD model predictions. 

 

Table 4-9. Optimized RFE Model Coefficients 

Coefficient Step 1 Step 2 
𝑌𝑌𝑖𝑖 0.208 0.578 
𝐸𝐸𝑖𝑖/𝑅𝑅 1.50×104 K 3.01×104 K 
𝐴𝐴𝑖𝑖 2.0×107 s-1 9.6×1015 s-1 

𝜎𝜎𝐸𝐸𝑖𝑖/𝑅𝑅 3.12×103 K 4.88×103 K 
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Figure 4-8. RFE model predictions for Sufco coal, (a) total volatiles fraction vs.  
particle temperature (K) and (b) ultimate volatiles yield vs. heating rate. 

 

 The RFE model does almost as well as the RF model in matching the CPD model 

predictions but is slightly less accurate both in terms of the devolatilization rates as well as the 

ultimate volatiles yields, especially at the lowest and highest heating rates, however, the RFE 

model is the second most accurate of the simple devolatilization models tested here. In addition, 

the RFE model has only 8 model coefficients compared to the RF model’s 18, which means the 

RFE model is potentially better in terms of computational complexity in large-scale simulations. 

 Extension to Additional Coals 

 The analysis of the simple coal pyrolysis rate/yield models presented in this chapter was 

completed using only the Sufco coal properties, however, the curve fitting and analysis presented 

here can easily be extended to other coals. The models were fit to CPD model predictions using 

coal-specific chemical and structural properties and several different temperature histories by 

minimizing the sum of squared error between the simple model predictions and the CPD model 

calculations. The re-fitting process of the simple model coefficients is as follows: 

1. Obtain the proximate and ultimate analyses of the coal of interest. 
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2. Generate particle temperature history (or histories)—from a constant heating value or 

based on histories observed in an experimental apparatus (e.g., drop tube, flat flame 

burner, etc.). 

3. Calculate NMR structural parameters for CPD model calculations (Genetti et al., 1999). 

4. Use temperature history, coal-specific properties, and other CPD inputs to generate CPD 

model predictions for every condition of interest. 

5. Choose simple model(s) for pyrolysis rate/yield (RF, RFE, DAEM, etc.). 

6. Optimize simple model coefficients using a sum of squared errors analysis between CPD 

and simple model predictions. 

7. Incorporate simple model with optimized coefficients into large-scale simulation or other 

analysis. 

 Summary, Conclusions, and Recommendations 

 Based on accurate CPD model predictions, simple devolatilization models must follow 

three main trends when modeling devolatilization behavior:  (1) the predicted rates of 

devolatilization cannot be too steep or too shallow, (2) the effective temperature at which 

devolatilization occurs increases with increasing heating rate, and (3) the ultimate volatiles yield 

must also increase with increasing heating rate. Each of the simple models tested here might be 

very accurate in predicting these trends while using only one particle heating rate, however, 

some of the models do not perform as expected when optimized to multiple heating rates 

simultaneously. These observations are summarized in Table 4-10. 

 The two-step models generally outperformed the one-step models for all three 

devolatilization behavior trends for all heating rates, however, the two-step models also tend to 

be more computationally complex than the one-step models. The results described here indicate 



 

61 

Table 4-10. Devolatilization Model Performance Summary 

Model No. of 
Coefficients 

Heating Rate Effect on 
Ultimate Yield 

Heating Rate Effect on Effective 
Devolatilization Temperature 

1-Step 3 None Poor 
Yamamoto 9 None Good 
BT 4 None Poor 
Utah 8 Marginal Poor 
DAEM 4 None Good 
2-Step 6 Poor Marginal 
RF 18 Good Good 
RFE 8 Good Good 

 

that the form of the devolatilization model used in a large-scale simulation is important, 

especially when the simulation has enough resolution to include adequate time-steps for the  

integration of devolatilization rates. Worthy to note is that these models can be re-fit for any coal 

type, both for total volatiles and tar yields, using trusted data or model predictions. 

 The modified two-step models both perform well when fit over a wide range of heating 

rates. The RF model in particular is suggested for its incredible accuracy if the number of model 

coefficients is not a concern, however, if fewer coefficients are necessary, the RFE model 

predicts coal devolatilization behavior almost as well as the RF model with almost a third of the 

model coefficients. The BT and Utah models include modifications that may improve ultimate 

yields in very long-time calculations, including in simulations where numerical accuracy is 

harder to maintain with large time steps. 

 While the results presented in this chapter are mainly based on a curve-fit comparison 

between two different types of pyrolysis models, this work has improved several aspects of the 

modeling of coal pyrolysis reactions. Much of the previous work in simple coal pyrolysis 

modeling has focused on only one combustion condition (one coal type and one temperature 

history) at a time. This work extends some of the more common simple models and two new 

models to several conditions (one coal type and four temperature histories) at a time, which in 
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turn allows the model to be used to greater utility in large-scale simulations. Finally, this analysis 

has showed that the two new models match a greater number of pyrolysis trends over a wider 

range of simultaneous combustion conditions than any of the other common simple coal 

pyrolysis rate/yield models, which means that most large-scale simulations that implement either 

of the two new models will be more accurate (assuming the simulation time steps are small 

enough to maintain stability during numerical integration). 
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5 AROMATICITY OF COAL 

 This chapter details work done in testing models to predict coal aromaticity. This chapter 

is modified from work presented in Richards et al. (2019). Several literature models as well as a 

new proposed model are discussed here. The motivation for this work was to test correlations of 

coal aromaticity for possible use in modeling other coal characteristics, such as the elemental 

composition of coal char and tar after pyrolysis (see Chapter 6) or heating values of coal, char, or 

tar (Chapter 7). 

 Introduction 

 Coal aromaticity is a structural parameter unique to each coal that is calculated as part of 

the complete solid-state 13C NMR analysis of the coal (Solum et al., 1989; Fletcher and 

Hardesty, 1992; Watt, 1996; Watt et al., 1996; Hambly, 1998; Hambly et al., 1998; Genetti et al., 

1999; Perry, 1999; Perry et al., 2000). As part of the NMR analysis, there are two aromaticity 

measurements:  (1) the total aromatic carbon contribution (𝑓𝑓𝑐𝑐), which is also called the apparent 

aromaticity and includes the carbonyl contribution, and (2) the true or corrected aromatic carbon 

content (𝑓𝑓𝑐𝑐′), which removes the carbonyl contribution. Seven models found in the literature were 

tested against a set of coal aromaticity data. The literature model forms are found in Table 2-2 

and the data set is found in Table B-3 in Appendix B. 
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 Approach 

 The seven literature aromaticity models plus 44 additional model forms (see Table C-1 in 

Appendix C) were evaluated using the aromaticity data set that includes elemental composition 

(both proximate and ultimate analysis results) and measured and calculated chemical structure 

parameters from NMR analysis. Testing of these different models was performed in two ways. 

First, the literature models with their suggested coefficients were compared against the 

aromaticity data set. Second, the coefficients for each model form were refit using this current 

aromaticity data set. This second step was included to ensure that the seven literature correlations 

were treated equally with the additional model forms. In Table C-1, the last seven models (37-

44) are the refit versions of the literature models, with the remaining models based on prior 

knowledge of variables that can affect coal aromaticity. Also included in the aromaticity 

correlations are other structural and chemical parameters that can be measured by various 

standard tests or predicted by simple correlations in the literature, such as Genetti’s (1999) NMR 

structural parameter correlations. 

 The models were refit using MATLAB’s built-in optimizers with a simple least-squares 

analysis. Each model fit (with both literature and refit coefficients) was tested using five key 

validation metrics:  𝑅𝑅2 (Equation 2-7), 𝑆𝑆𝑆𝑆𝐸𝐸 (Equation 2-11), the 𝐿𝐿1 norm (Equation 2-14), the 𝐿𝐿2 

norm (Equation 2-15), and the infinity norm (Equation 2-16). 

 Results and Discussion 

 Only the results of the seven literature model forms (using both original and refit 

coefficients) plus the best overall model (proposed) are presented in this chapter. The complete 

results of the other tested models are found in Appendix C. The statistical results of the model 

comparisons are found in Table 5-1. This table is divided in two main sections, with the first 
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Table 5-1. Statistical Results of Coal Aromaticity Model Comparison 

 Original Coefficients Refit Coefficients 
Model L1 Norm L2 Norm Infinity 

Norm 
SSE 𝑹𝑹𝟐𝟐 L1 Norm L2 Norm Infinity 

Norm 
SSE 𝑹𝑹𝟐𝟐 

Proposed      0.033 0.044 0.166 0.118 0.797 
Ko 0.058 0.076 0.215 0.458 0.595 0.053 0.070 0.228 0.395 0.641 
Gerstein 0.075 0.088 0.195 0.626 0.549 0.063 0.079 0.198 0.497 0.549 
MVa 0.091 0.112 0.367 1.012 0.626 0.056 0.040 0.274 0.411 0.626 
SKb 1 0.055 0.082 0.349 0.406 0.649 0.040 0.058 0.232 0.204 0.649 
SK 2 0.052 0.070 0.231 0.394 0.716 0.047 0.062 0.201 0.304 0.724 
SK 3 0.052 0.070 0.231 0.394 0.716 0.046 0.061 0.212 0.298 0.729 
SK 4 27.5 45.6 2.74×102 1.27×105 0.057 0.034 0.046 0.176 0.129 0.777 

a MV is short for Maroto-Valer 
b SK is short for Singh and Kakati 
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showing the statistical results of the literature models using the original coefficients, and the 

second showing the statistical results of all models using the refit coefficients. 

 As Table 5-1 shows, the SK2 and SK3 models (Singh and Kakati, 2003) (see Table 2-2) 

performed the best out of all the literature correlations while using the original coefficients. 

Upon refitting of the literature correlation coefficients, all performed better than the original 

correlations. This was expected, since the literature correlations were not originally fit to the 

same data set used here. Some of the literature correlations rely on elemental compositions on a 

dry, mineral-matter free (DMMF) basis, however, the experimental data set in Table B-3 has 

elemental compositions on a dry, ash-free (DAF) basis, which may account for part of the poorer 

fit of a number of the literature models with original coefficients. Surprisingly, the worst original 

literature correlation (SK 4) became the best literature correlation upon refitting. The proposed 

model form, however, outperformed all the literature correlations by all five measures of fit, but 

it has nine coefficients and four independent variables, which is more than the other literature 

correlations. The proposed model form follows the same form as Genetti’s correlations, as 

shown in Equation 5-1. The model coefficients fit to the aromaticity data set are shown in Table 

5-2. 

 𝑓𝑓𝑐𝑐′ = 𝑐𝑐1 + 𝑐𝑐2𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑐𝑐3𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑐𝑐4𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑐𝑐5𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2  

+𝑐𝑐6𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑐𝑐7𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑐𝑐8𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑐𝑐9𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2  (5-1) 

 

Table 5-2. Proposed Aromaticity Correlation Coefficients 

c1 c2 c3 c4 c5 c6 c7 c8 c9 
4.384 -8.679E-2 5.352E-4 2.601E-2 -6.879E-3 3.525E-3 -5.710E-4 -2.666E-3 5.659E-6 

 

 Figure 5-1 shows parity plots for the coal aromaticity model form tests, showing the 

predictions using both the original coefficients and the refit coefficients. Note that the plot 
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showing the SK4 model (purple diamonds), the markers showing the model with the original 

coefficients are not visible. This is not a mistake—the fit for the original coefficients is so poor 

that the markers appear well outside the bounds of the re-fit coefficients. This would distort the 

plot enough to skew the information of the re-fit model. 

 

 
Figure 5-1. Parity relationship of the proposed aromaticity correlation and  
seven aromaticity correlations from the literature using  
both original and re-fit coefficients. 

 

 These plots are shown as visual confirmation that the SK2 and SK3 correlations perform 

the best out of all the literature correlations while using the original coefficients. The SK4 

correlation performed the best of the literature models using the re-fit coefficients, which is all 

the more surprising considering the poor performance of the original coefficients. However, even 

with the vast improvement of the SK4 correlation, the proposed correlation fits the aromaticity 

data the best. 
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 Summary and Conclusions 

 A large data set of measured carbon aromaticity in coal was gathered from the literature. 

This data set was curated to include sources that reported the corrected or true carbon aromaticity 

which removes the NMR contribution of carbonyl groups. This can make a large difference in 

modeling since certain coals contain a larger contribution of carbonyl coals than other coals. 

 Several models found in the literature were developed to calculate coal aromaticity based 

on several coal-specific parameters, with many using one or more of the elements (CHONS) of 

the raw coal along with the ASTM volatile matter that is typically determined in a proximate 

analysis. For many of these literature correlations, it is unclear whether they were developed 

using the true aromaticity or the aromaticity that includes carbonyl contributions. To adequately 

test each literature correlation, the suggested model coefficients were tested along with 

coefficients re-fit to the aromaticity data set. All literature models improved when the 

coefficients were re-fit, especially the SK4 correlation (Singh and Kakati, 2003). Using the 

original literature coefficients, the SK4 correlation predicted coal aromaticities several orders of 

magnitude larger than are even possible. 

 In addition to testing several correlations found in the literature, more than 40 different 

model forms were tested using the aromaticity data set to determine if any improvement was 

possible over the literature models. Several of these additional models performed better than the 

literature models, including the proposed model discussed here. The proposed model performed 

better than the literature models in all statistical measures, with an 𝑅𝑅2 of almost 0.8, which 

means the proposed model will calculate the carbon aromaticity of the coal more accurately than 

any of the commonly used literature models. The next best literature model had an 𝑅𝑅2 of 0.77. 
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6 ELEMENTAL COMPOSITION OF PYROLYSIS PRODUCTS 

 This chapter details efforts to correlate the primary organic elemental composition 

(CHONS) of the products of primary pyrolysis, primarily char and tar. If the compositions of 

coal, char, and tar are known, the average composition of the light gas can be calculated by 

difference. This chapter is modified from work presented in Richards et al. (2019). Additional 

analysis is found in Appendix C. 

 Introduction 

 Simulations of large-scale combustors include submodels to describe many of the 

physical and chemical processes in combustion, including fluid and particle flow, heat transfer, 

mass transfer, gas and solid reactions, etc. Simplified empirical models tuned using experimental 

data are used to decrease the computational complexity and time requirements. Many times there 

are not enough experimental data or even model dexterity to provide an accurate prediction of 

physical behavior, so simplifying assumptions are used. These assumptions can lead to great 

inaccuracies in the simulation, so these simple submodels are constantly updated to include 

better (or more complete) data, conditions, and mathematics to increase their accuracy and 

predictive capabilities. 

 The advanced devolatilization network models, such as the CPD model (Grant et al., 

1989; Fletcher et al., 1992b), FLASHCHAIN (Niksa, 1988), and FG-DVC (Solomon et al., 
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1988), accurately predict devolatilization and also output some form of light gas compositional 

information, however, they are typically too complex to run in large-scale simulations (Smith et 

al., 1994), leading to greater computational expenses (Brewster et al., 1995). Turbulence-

chemistry interactions in the gas phase add challenges that often results in the need for very 

simple treatments of coal pyrolysis products. Light gas composition information can be 

calculated using a light gas submodel, such as the FG model. Simple kinetic mechanisms have 

been used to predict the light gas composition, sine the kinetic parameters can be easily derived 

from pyrolysis experiments (Suuberg et al., 1978). The large number of tar species evolved are 

very difficult to treat in a detailed manner in large simulations. Several different approaches have 

been used in boiler simulations to treat coal chemistry. These different approaches are discussed 

in greater detail in Chapter 8, with most using some form of simplifying assumptions. While 

these simplifying assumptions can be beneficial to reduce the computational time of large 

simulations, these assumptions are not consistent with measured elemental compositions of tar 

and char (Pugmire et al., 1991; Perry et al., 2000). 

 Many variables influence the composition of pyrolysis products, including, but not 

limited to:  parent coal composition (proximate and ultimate analysis), chemical structural 

parameters (such as aromaticity or other NMR or FTIR parameters), heating rate, peak pyrolysis 

temperature, and residence time. 

 Approach 

 The elemental composition data set was comprised of experimental data found in the 

literature, as detailed in Section 2.5. The full set of data is found in Table B-1 and Table B-2 in 

Appendix B. While this analysis was completed for only the char and tar, the light gas elemental 

composition can be calculated by difference from the parent coal. The first step in this analysis 



 

71 

was to determine potential model forms based on known variables that affect pyrolysis product 

composition. After the models and data were developed, a cross-validation procedure was used 

to determine not only which model matched the data the best but could also how well each 

model could handle “new” conditions (new coals and/or new heating conditions) for which the 

model was not fit. Once the “best” models were selected, they underwent a novel model 

refinement procedure to determine if any of the fitted coefficients could be excluded as 

unnecessary. These procedures are detailed in the following sections. 

6.2.1 Model Form Development 

 The first step was to develop several simple model forms to test against the experimental 

data. This involved a graphical analysis where the normalized compositions of the char and tar 

(e.g. 𝐶𝐶𝑐𝑐ℎ𝑐𝑐𝑟𝑟/𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) were plotted against several dependent variables, which included:  the 

corrected aromaticity (𝑓𝑓𝑐𝑐′), the maximum gas temperature (in K), the particle residence time (in 

milliseconds), the normalized volatiles yield (𝑉𝑉𝑖𝑖/𝑉𝑉𝑚𝑚𝑐𝑐𝑜𝑜 where this ratio is equal to 1 at the 

maximum volatile yield for a given pyrolysis reaction), the mass fraction of each element in the 

parent coal (including 𝐻𝐻/𝐶𝐶 and 𝑂𝑂/𝐶𝐶 ratios), the ASTM volatile matter on a dry, ash-free (DAF) 

basis, and key NMR structural parameters (𝑐𝑐0, 𝑀𝑀𝑐𝑐𝑐𝑐, 𝑀𝑀𝛿𝛿, 𝑝𝑝0, and 𝜎𝜎 + 1) as predicted by Genetti’s 

correlations (1999). Figure 6-1 shows examples of the char compositions and Figure 6-2 shows 

examples of the tar compositions, all plotted against the parent coal carbon content, which is 

often used as an indicator for coal rank. 

 The complete list of model forms developed for each element in the char and tar are 

found in Table C-4 in Appendix C. Some model forms are similar across all elements, but many 

are unique to individual elements in either the char or the tar. 
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Figure 6-1. Example plots for the normalized mass fraction of C, H, O, N, and S  
in the char vs. parent coal carbon content (𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐). 

 

 
Figure 6-2. Example plots for the normalized mass fraction of C, H, O, N, and S  
in the tar vs. parent coal carbon content (𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐). 
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 Figure 6-3 is a Van Krevelen plot, which shows the oxygen-to-carbon ratio against the 

hydrogen-to-carbon ratio for coals, chars, and tars. Data were plotted here on a mass basis, rather 

than an atomic basis, as van Krevelen demonstrated (1950).This figure indicates that, on average, 

the tar seems to have a similar composition to the parent coal and the char becomes enriched in 

carbon but decreases in both hydrogen and oxygen content. The progression of char and tar 

composition is shown for three of the coals in the data set (two lignites and a subbituminous 

coal). The final tar and char composition from these three coals were somewhat similar to each 

other and had decreased amounts of both H and O, but neither char was close to 100% C. 

 

 
Figure 6-3. Van Krevelen plot using all coal, char, and tar data. Arrows indicate  
the progression of char and tar compositions with increasing residence  
time for three of the coals in the data set. 
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6.2.2 Cross-Validation and VUQ 

 The cross-validation procedure is defined in more detail in Section 2.4.2. This procedure 

was used with the elemental composition data set to determine which models fit the data the best 

as well as which models had the best potential to calculate “new” conditions. The cross-

validation approach used five validation metrics to determine goodness of fit:  the L1 norm 

(Equation 2-14), the L2 norm (Equation 2-15), the infinity norm (Equation 2-16), the total sum of 

squared errors (SSE, Equation 2-11), and the 𝑅𝑅2 value (Equation 2-7). While all these metrics 

were used in this analysis to provide deeper insight into different aspects of model error, more 

weight was given to the 𝑅𝑅2 value. 

 The cross-validation process was applied here for each element in both the char and tar 

compositions. The data set used here allowed for five groups for the tar oxygen and tar sulfur 

compositions and 10 groups for the remaining elemental compositions. The reason for the lower 

number of groups for the tar oxygen and sulfur compositions is that fewer oxygen and sulfur 

compositions are reported in the literature. Oxygen is harder to measure and is typically reported 

as a difference, sometimes even being a negative value. Some researchers even report a 

combined oxygen and sulfur composition. These combined values were not used here, since they 

could not be separated using the provided information. Each model form was tested using the 

cross-validation procedure, then the best of these model forms were fit using the full data set 

(also called final training) and the validation metrics were again calculated for the overall model 

fit. The validation metrics mean slightly different things in cross-validation and final training. 

For example, a higher 𝑅𝑅2 value in cross-validation means that the model is expected to give 

better and more accurate predictions using conditions or coals for which the model was not 
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originally fit. Comparatively, a higher 𝑅𝑅2 value in final training means that the model fits the 

entire suite of experimental data better. 

 Model training was performed in MATLAB, using five different built-in optimizers 

(discussed in greater detail in Appendix A) based on a simple least-squares analysis. Multiple 

optimizers were used to increase the chances of finding a true optimal solution and obtaining the 

best possible fit. 

 Only correlations with the best predictive capabilities were chosen to move forward to 

the model refinement process. To ensure the best fit with the fewest fitted coefficients, a 

modified 𝑅𝑅2 value was calculated by dividing it by the number of fitted coefficients 

(𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒). This modified value provides an insight into each model’s “utility.” Typically, this 

modified value is higher for models with fewer coefficients, however, consideration was taken to 

make sure the 𝑅𝑅2 value with fewer coefficients was within a reasonable range of the highest 𝑅𝑅2 

achieved with large numbers of coefficients. Two model forms for each element moved forward 

to the model refinement process, the model with the best 𝑅𝑅2 value and the model with the best 

𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 value. These two model forms were the same for a few of the elements but were 

different for most. This scheme for choosing models was to find the best overall fit and the best 

fit with the fewest coefficients. 

6.2.3 Model Refinement 

 In addition to the cross-validation procedure used to minimize model bias, a model 

refinement procedure was used in an effort to minimize the risk of overfitting the data. This was 

done by eliminating one coefficient at a time until no improvement was observed over previous 

models. While some statistics programs include a similar approach, this model refinement 
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technique differs from standard approaches. The entire cross-validation and model refinement 

procedures are shown in detail in Figure 6-4.  

 
Figure 6-4. Process used to develop elemental composition correlations. 

 

 Two “toy” models are described here in an effort to illustrate this non-standard approach:  

Model A with seven fitted coefficients and an 𝑅𝑅2 value of 0.9 and an 𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 of 0.129 

(Equation 6-1) and Model B with three coefficients and an 𝑅𝑅2 of 0.75 and an 𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 of 0.25 

(Equation 6-2). The more complex Model A might provide more accurate predictions, but the 

simpler model will provide almost as good of a prediction with fewer coefficients. 

 𝑦𝑦𝐴𝐴 = 𝑐𝑐1 + 𝑐𝑐2𝑜𝑜1 + 𝑐𝑐3𝑜𝑜12 + 𝑐𝑐4𝑜𝑜13 + 𝑐𝑐5𝑜𝑜2 + 𝑐𝑐6𝑜𝑜22 + 𝑐𝑐7𝑜𝑜23 (6-1) 

 𝑦𝑦𝐵𝐵 = 𝑐𝑐1 + 𝑐𝑐2 ln(𝑜𝑜1) + 𝑐𝑐3 ln(𝑜𝑜2) (6-2) 
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 In this example, the cross-validation procedure from the previous section resulted in 

Model A with the highest 𝑅𝑅2 and Model B with the highest utility, or 𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒. The model 

refinement procedure includes two key steps:  reducing one coefficient at a time from Model A 

(the best 𝑅𝑅2) and hybridizing the best features of Model A and Model B. This leads to an 

increase in model forms to test, shown in Equations 6-3 to 6-9 for the first step. 

 𝑦𝑦𝐴𝐴.1 = 𝑐𝑐2𝑜𝑜1 + 𝑐𝑐3𝑜𝑜12 + 𝑐𝑐4𝑜𝑜13 + 𝑐𝑐5𝑜𝑜2 + 𝑐𝑐6𝑜𝑜22 + 𝑐𝑐7𝑜𝑜23 (6-3) 

 𝑦𝑦𝐴𝐴.2 = 𝑐𝑐1 + 𝑐𝑐3𝑜𝑜12 + 𝑐𝑐4𝑜𝑜13 + 𝑐𝑐5𝑜𝑜2 + 𝑐𝑐6𝑜𝑜22 + 𝑐𝑐7𝑜𝑜23 (6-4) 

 𝑦𝑦𝐴𝐴.3 = 𝑐𝑐1 + 𝑐𝑐2𝑜𝑜1 + 𝑐𝑐4𝑜𝑜13 + 𝑐𝑐5𝑜𝑜2 + 𝑐𝑐6𝑜𝑜22 + 𝑐𝑐7𝑜𝑜23 (6-5) 

 𝑦𝑦𝐴𝐴.4 = 𝑐𝑐1 + 𝑐𝑐2𝑜𝑜1 + 𝑐𝑐3𝑜𝑜12 + 𝑐𝑐5𝑜𝑜2 + 𝑐𝑐6𝑜𝑜22 + 𝑐𝑐7𝑜𝑜23 (6-6) 

 𝑦𝑦𝐴𝐴.5 = 𝑐𝑐1 + 𝑐𝑐2𝑜𝑜1 + 𝑐𝑐3𝑜𝑜12 + 𝑐𝑐4𝑜𝑜13 + 𝑐𝑐6𝑜𝑜22 + 𝑐𝑐7𝑜𝑜23 (6-7) 

 𝑦𝑦𝐴𝐴.6 = 𝑐𝑐1 + 𝑐𝑐2𝑜𝑜1 + 𝑐𝑐3𝑜𝑜12 + 𝑐𝑐4𝑜𝑜13 + 𝑐𝑐5𝑜𝑜2 + 𝑐𝑐7𝑜𝑜23 (6-8) 

 𝑦𝑦𝐴𝐴.7 = 𝑐𝑐1 + 𝑐𝑐2𝑜𝑜1 + 𝑐𝑐3𝑜𝑜12 + 𝑐𝑐4𝑜𝑜13 + 𝑐𝑐5𝑜𝑜2 + 𝑐𝑐6𝑜𝑜22 (6-9) 

 

 The first step is accomplished by removing one coefficient at a time from the best 𝑅𝑅2 

model (Model A). The second step, or hybridization switches the terms for each variable (𝑜𝑜1 and 

𝑜𝑜2) between Model A and Model B, as shown in Equations 6-10 and 6-11. 

 𝑦𝑦𝐵𝐵.1 = 𝑐𝑐1 + 𝑐𝑐2 ln(𝑜𝑜1) + 𝑐𝑐3𝑜𝑜2 + 𝑐𝑐4𝑜𝑜22 + 𝑐𝑐5𝑜𝑜23 (6-10) 

 𝑦𝑦𝐵𝐵.2 = 𝑐𝑐1 + 𝑐𝑐2𝑜𝑜1 + 𝑐𝑐3𝑜𝑜12 + 𝑐𝑐4𝑜𝑜13 + 𝑐𝑐5 ln(𝑜𝑜2) (6-11) 

 

 Both steps endeavor to reduce the number of fitted coefficients of the final correlation. In 

this example, all nine of the “new” model forms (Equations 6-3 to 6-11) are again fit over the 

entire data set and the model with the highest 𝑅𝑅2 value is again chosen, replacing Model A in 

Equation 6-1 with the “new” model. This process is followed until either the 𝑅𝑅2 value fell well 
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below the original best fit value or the number of fitted coefficients decreased to the level of the 

original highest 𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 model. This iterative process was used for all 10 elemental 

correlations (CHONS for char and tar). The best of these refined models are presented here, but 

the results of the complete cross-validation and model refinement process are presented in 

Appendix C. The best models were subject to a separate cross-validation and final training. 

 Results and Discussion 

 There are a couple of steps involved in the development of the final elemental 

composition correlations. First, results are presented and discussed on the cross-validation 

procedure, which was used to narrow the number of potential best-fit model forms. Finally, the 

results of the model refinement and final correlations are presented and discussed. All model 

numbers here correspond to the matching model forms in Table C-4 of Appendix C, which also 

details the complete results for the entire analysis summarized here. 

6.3.1 Correlation of Elemental Compositions Using Cross-Validation 

 Using the cross-validation procedure previously described in Sections 2.4.2 and 6.2.2, 10 

randomized groups of the entire data set were used to test each of the proposed model forms for 

carbon, hydrogen, oxygen, nitrogen, and sulfur in the char and for carbon, hydrogen, and 

nitrogen in the tar. Five groups were used for each of the proposed model forms for oxygen and 

sulfur in the tar. The best of the model forms were allowed to move on to the final training step 

where the model form is fit to the full data set. 

 As an example of the cross-validation results, Table 6-1 shows the results of cross-

validation for carbon in the tar. A total of 22 different model forms were tested for carbon in the 

tar. The model numbers in Table 6-1 line up with the model numbers in Table C-4 of Appendix 
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C. The data were divided into 10 groups for the cross-validation procedure, and Table 6-1 shows 

the average of the 10 tests performed using the 10 groups. 

 

Table 6-1. Averaged Tar Carbon Cross-Validation Results for 22 Model Forms. 

Model 𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑹𝑹𝟐𝟐 𝑹𝑹𝟐𝟐/𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 L1 Norm L2 Norm Infinity Norm SSE 
22 13 0.573 0.044 0.028 0.035 0.067 0.010 
4 5 0.914 0.183 0.034 0.046 0.106 0.017 
5 5 0.914 0.183 0.034 0.046 0.106 0.017 
6 9 0.922 0.102 0.032 0.044 0.105 0.016 
7 5 0.887 0.177 0.044 0.060 0.135 0.028 
8 17 0.886 0.052 0.032 0.043 0.102 0.016 
23 14 0.791 0.057 0.024 0.028 0.051 0.006 
34 16 0.794 0.050 0.023 0.027 0.053 0.006 
25 14 0.843 0.060 0.022 0.027 0.050 0.006 
26 14 0.785 0.056 0.025 0.030 0.057 0.007 
28 14 0.823 0.059 0.022 0.027 0.051 0.006 
29 15 0.814 0.054 0.023 0.027 0.051 0.006 
35 15 0.819 0.055 0.023 0.028 0.052 0.006 
36 14 0.804 0.057 0.022 0.028 0.053 0.006 
30 14 0.826 0.059 0.031 0.039 0.076 0.013 
31 15 0.847 0.056 0.029 0.038 0.079 0.012 
37 15 0.836 0.056 0.031 0.040 0.079 0.013 
38 19 0.791 0.042 0.024 0.030 0.054 0.007 
21 17 0.869 0.051 0.045 0.059 0.131 0.031 
2 9 0.908 0.101 0.034 0.046 0.104 0.017 
3 17 0.586 0.034 0.027 0.034 0.062 0.010 
33 15 0.854 0.057 0.021 0.029 0.056 0.006 

 

 The full results of the cross-validation process are found in Appendix C. The best models 

from the cross-validation process moved to final training, which used the complete data set to fit 

the best correlations. The “best” models from the cross-validation process are the best at 

predicting “new” data, which gives the user more confidence that the final correlations can 

predict elemental composition for coals or conditions for which the correlations were not fit. In 

addition, cross-validation can provide a small check against overfitting, which can cause a model 

to fit all the data very well but not accurately predict new data. 
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6.3.2 Model Training and Model Refinement Using the Complete Data Set 

 The final step in cross-validation is to train the chosen model form(s) using the complete 

data set. In many cases, this final training is the final step to produce the final model form, 

however, in this analysis, final training is an intermediary step to provide a maximum of two 

models to the model refinement analysis. The results for the final training are briefly summarized 

in the next section on model refinement. While the full results are only included in Appendix C, 

a summary of the cross-validation and final training results for carbon in the tar are shown in 

Table 6-2 for an example of what final training looks like, repeated for each element in both the 

char and tar. The information gathered from the initial cycle of cross-validation and final training 

were then used to inform the model refinement procedure, described in detail in Section 6.2.3. 

 

Table 6-2. Summary of Tar Carbon Model Training Using the Complete Data Set 

Step Model 𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑹𝑹𝟐𝟐 𝑹𝑹𝟐𝟐/𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 L1 
Norm 

L2 
Norm 

Infinity 
Norm 

SSE 

Cross-
validation, 
best 𝑅𝑅2 

21 17 0.869 0.051 0.045 0.059 0.131 0.031 

Final 
training, 
best 𝑅𝑅2 

21 17 0.824 0.048 0.021 0.031 0.108 0.070 

Cross-
validation, 
best 𝑅𝑅2/
𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 

5 5 0.914 0.183 0.034 0.046 0.106 0.017 

Final 
training, 
best 𝑅𝑅2/
𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 

5 5 0.743 0.149 0.027 0.037 0.117 0.103 

 

 Most of the model forms from the initial cross-validation and final training cycle had a 

large number of fitted coefficients. There are two risks when a model has too many coefficients: 
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(1) the model might be at risk of overfitting, which means it fits the data well, but gives wildly 

inaccurate predictions outside of the data set, and (2) too many coefficients might make the 

model too computationally complex to use in large-scale simulations. The model refinement 

process attempts to remove some of the fitted coefficients in order to get the model prediction as 

accurate as possible while having as few coefficients as possible. The best models found in the 

model refinement procedure are presented in the following sections, with the complete results 

found in Appendix C. The results are presented in the following order:  carbon, hydrogen, 

oxygen, nitrogen, and sulfur in the tar, followed by carbon, hydrogen, oxygen, nitrogen, and 

sulfur in the char. 

6.3.3 Tar Carbon 

 The cross-validation and final training procedure identified Models 21 (highest 𝑅𝑅2 value) 

and 5 (highest 𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 value) to move forward to the model refinement process. In total, the 

tar carbon correlation was refined eight times, leaving Model 154, shown in Equation 6-12. 

 𝐶𝐶𝑠𝑠𝑐𝑐𝑡𝑡
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 𝑐𝑐1 + 𝑐𝑐2𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 1
𝑐𝑐3𝐴𝐴𝑔𝑔𝑐𝑐𝑠𝑠,𝑚𝑚𝑐𝑐𝑜𝑜

3 +𝑐𝑐4𝐴𝐴𝑔𝑔𝑐𝑐𝑠𝑠,𝑚𝑚𝑐𝑐𝑜𝑜
4 + 𝑐𝑐5𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 

+ 1
𝑐𝑐6𝑖𝑖𝑡𝑡𝑟𝑟𝑠𝑠2 +𝑐𝑐7𝑖𝑖𝑡𝑡𝑟𝑟𝑠𝑠4 + 1

1+𝑐𝑐8𝑉𝑉𝑛𝑛𝑐𝑐𝑡𝑡𝑚𝑚3 + 𝑐𝑐9𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 1
𝑐𝑐10𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

2 +𝑐𝑐11𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
4  (6-12) 

 

where 𝐶𝐶𝑖𝑖𝑐𝑐𝑟𝑟 is the dry, ash-free mass fraction of carbon in the tar, 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the dry, ash-free mass 

fraction of carbon in the parent coal, 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 is the maximum gas temperature of the reactor (in 

K), 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 is the particle residence time in milliseconds, and 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 is the normalized volatile yield 

(𝑉𝑉𝑖𝑖/𝑉𝑉𝑚𝑚𝑐𝑐𝑜𝑜, which is equal to 1 if a single experiment under the same conditions is performed or 

between 0 and 1 for multiple experiments performed at the same temperature but different 

residence times). The results for this model for both cross-validation and final training are found 
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in Table 6-3. Values for the fitted coefficients in Equation 6-12 are found in Table 6-4, which 

includes fitted coefficients for all tar composition correlations presented here. 

 

Table 6-3. Tar Carbon Model Refinement 

Step Model 𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑹𝑹𝟐𝟐 𝑹𝑹𝟐𝟐
/𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 

L1 L2 Infinity SSE 

Cross-
validation 

154 11 0.884 0.080 0.041 0.050 0.110 0.020 

Final 
training 

154 11 0.825 0.075 0.022 0.031 0.115 0.070 

 

 The parity relationship between Equation 6-12 and the experimental data is shown in 

Figure 6-5, which also includes parity plots for the other four tar elemental correlations. As 

shown in Figure 6-5, most of the tar compositions showed an increase in carbon content over the 

original parent coal composition (shown with dashed lines at 1.0 on the x-axis) as well as a 

decrease in both the hydrogen and oxygen compositions. On average, the nitrogen and sulfur 

compositions were close to the parent composition, however, the char nitrogen skewed slightly 

above the parent nitrogen and the char sulfur slightly below the parent sulfur. 

 
Figure 6-5. Parity plots for the finalized correlations in the tar. 
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Table 6-4. Tar Correlation Coefficients 

Coeff. Ca H O, best 𝑹𝑹𝟐𝟐 O, best utility N, best 𝑹𝑹𝟐𝟐 N, best utility S, best 𝑹𝑹𝟐𝟐 S, best utility 
Modelb 154 157 159 161 166 168 9 7 
𝑁𝑁𝑣𝑣𝑐𝑐𝑟𝑟𝑐𝑐  4 4 5 5 8 7 4 4 
𝑐𝑐1 -1.059 2.356×103 -1.700×10-3 -5.845×102 0.323 0.400 9.966×102 -1.994×103 

𝑐𝑐2 0.161 -1.034 3.344 0.176 4.560×10-4 3.923×10-4 -1.105×1011 4.094×102 

𝑐𝑐3 -1.052 -2.843 -2.493×10-3 -8.812×10-4 -0.451 -0.163 -2.998×103 3.865×109 

𝑐𝑐4 0.614 9.306×10-3 12.243 15.762 -3.370×103 -4.349×103 3.356×1010 -3.171×103 

𝑐𝑐5 -0.147 -8.391×10-6 -1.795×10-2 -2.485×10-2 6.133×103 8.781×103 -3.586×103 3.337×102 

𝑐𝑐6 8.371×10-2 3.537×103 -2.165×102 -1.543×103 -3.042×103 -4.860×103 3.453×102 7.242×103 

𝑐𝑐7 -2.379×10-5 -6.336×103 -1.017×103 9.242×102 3.078×102 1.623×102 7.137×103 -1.570×102 

𝑐𝑐8 -12.444 3.234×103 6.063×102 -63.059 -3.140×102 22.101 -2.129×102  
𝑐𝑐9 -3.115 -37.700 -2.907 67.100 35.669 -0.489 8.338×102  
𝑐𝑐10 0.980 0.597 63.601 -14.443 0.741 44.154   
𝑐𝑐11 -3.288×10-5  -13.794  -52.266 11.627   
𝑐𝑐12     5.350    
𝑐𝑐13     15.977    

a Elements listed here (CHONS) refer to the corresponding correlations, which predict the normalized compositions, e.g., 𝐶𝐶𝑖𝑖𝑐𝑐𝑟𝑟/𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
b Model number, corresponds to the model number in Table C-4 
c 𝑁𝑁𝑣𝑣𝑐𝑐𝑟𝑟 refers to the number of variables in the correlation, e.g., 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜, 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔, etc. 
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6.3.4 Tar Hydrogen 

 The cross-validation process identified Models 7 and 62 as the best to move on to model 

refinement for the hydrogen in the tar. These models were refined a total of four times, 

identifying Model 157 as having the best 𝑅𝑅2 and fewest fitted coefficients. The statistical values 

from the final cycle of cross-validation and final training for Model 157 are shown in Table 6-5. 

 

Table 6-5. Tar Hydrogen Model Refinement 

Step Model 𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑹𝑹𝟐𝟐 𝑹𝑹𝟐𝟐
/𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 

L1 L2 Infinity SSE 

Cross-
validation 

157 10 0.465 0.047 0.118 0.147 0.281 0.147 

Final 
Training 

157 10 0.800 0.080 0.067 0.087 0.305 0.490 

 

 Model 157 had the best 𝑅𝑅2 value of 0.80 in final training, which was far higher than that 

of Model 62, with an 𝑅𝑅2 value of 0.697 in the initial cross-validation and final training cycle (see 

Appendix C). With a final training 𝑅𝑅2 value of 0.80, Model 157 fits the entire data set very well. 

With a cross-validation 𝑅𝑅2 value of 0.465, this model may not be the best predictor of new data; 

however, the other validation metrics are a little more promising with lower values (which are an 

indication of a better fit). In addition, Model 157 has fewer fitted coefficients than Model 62. 

The model form of Model 157 is shown in Equation 6-13, and the parity relationship between 

Model 157 and the experimental data is found in Figure 6-5b. Values of coefficients for Model 

157 are found in Table 6-4. 

 𝐻𝐻𝑠𝑠𝑐𝑐𝑡𝑡
𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 𝑐𝑐1 + 𝑐𝑐2𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐3𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑐𝑐4𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑐𝑐5𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑐𝑐6𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 

+𝑐𝑐7𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑐𝑐8𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑐𝑐9𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑐𝑐10𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
2  (6-13) 
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where 𝐻𝐻𝑖𝑖𝑐𝑐𝑟𝑟 is the dry, ash-free mass fraction of hydrogen in the tar, 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the dry, ash-free 

mass fraction of hydrogen in the parent coal, and 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 is the NMR structural parameter 

indicating the average side-chain molecular weight, as predicted by Genetti’s correlation (1999), 

shown in Equation 6-14. 

 𝑀𝑀𝛿𝛿 = 4.220 × 102 − 8.647𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 4.639 × 10−2𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 − 8.473𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 1.182𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2  

+1.154𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 4.340 × 10−2𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 0.557𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 6.546 × 10−3𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (6-14) 

 

where 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the dry, ash-free mass fraction of oxygen in the parent coal and 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is the dry, 

ash-free ASTM volatile matter of the parent coal (typically from a proximate analysis). 

6.3.5 Tar Oxygen 

 Most of the models tested for oxygen in the tar performed very well. Model refinement 

identified two models that performed almost equally well:  Model 159 did the best overall and 

Model 161 had the best utility (highest 𝑅𝑅2 value with the fewest fitted coefficients). Table 6-6 

shows the statistical results for both these models. 

 Model 159 had the highest 𝑅𝑅2 value of 0.843, which was slightly better than Model 97 

with an 𝑅𝑅2 value of 0.842 in the initial cross-validation cycle (see Appendix C). Not only are the 

final training 𝑅𝑅2 values for Models 159 and 161 high, but the cross-validation 𝑅𝑅2 values are also 

very high. This indicates that both tar oxygen correlations presented here predicted new data 

very well, both with a relatively small number of coefficients. Model 159 is shown in Equation 

6-15. 

 𝑂𝑂𝑠𝑠𝑐𝑐𝑡𝑡
𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 𝑐𝑐1 + 𝑐𝑐2𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐3𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
2 + 𝑐𝑐4𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑐𝑐5𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑐𝑐6𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 

+𝑐𝑐7𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑐𝑐8𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑐𝑐9𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑐𝑐10𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑐𝑐11𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3  (6-15) 
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Table 6-6. Tar Oxygen Model Refinement 

Step Model 𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑹𝑹𝟐𝟐 𝑹𝑹𝟐𝟐
/𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 

L1 L2 Infinity SSE 

Cross-
validation, 
best 𝑅𝑅2 

159 11 0.839 0.076 0.096 0.113 0.201 0.090 

Final 
Training, 
best 𝑅𝑅2 

159 11 0.843 0.077 0.082 0.097 0.229 0.322 

Cross-
validation, 
best 𝑅𝑅2/
𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 

161 10 0.832 0.083 0.100 0.113 0.191 0.090 

Final 
Training, 
best 𝑅𝑅2/
𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 

161 10 0.842 0.084 0.082 0.097 0.235 0.323 

 

where 𝑂𝑂𝑖𝑖𝑐𝑐𝑟𝑟 is the dry, ash-free mass fraction of oxygen in the tar and 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the dry, ash-free 

mass fraction of sulfur in the parent coal. Model 161 also had a high 𝑅𝑅2 value of 0.842 with 

fewer fitted coefficients than Model 159. Model 161 is found in Equation 6-16. 

 𝑂𝑂𝑠𝑠𝑐𝑐𝑡𝑡
𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 𝑐𝑐1 + 𝑐𝑐2𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐3𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
2 + 𝑐𝑐4𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑐𝑐5𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑐𝑐6𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2  

+𝑐𝑐7𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑐𝑐8 log10 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑐𝑐9𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑐𝑐10𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3  (6-16) 

 

 Model 159 is the best overall fit for tar oxygen, but 161 is almost as good a fit with fewer 

coefficients. This means that Model 159 in Equation 6-15 will likely give the most accurate 

results, but Model 161 will give almost as accurate of results with fewer coefficients, leading to 

greater computational efficiency. Coefficients for Equations 6-15 and 6-16 are found in Table 

6-4 and the parity relationship between both models and the experimental data is shown in 

Figure 6-5c. 
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6.3.6 Tar Nitrogen 

 The initial cross-validation cycle identified Models 7 and 119 to move on to model 

refinement, which took place a total of seven times. Like the tar oxygen correlation, two models 

were identified as part of the model refinement process:  Model 166 with the highest 𝑅𝑅2 value 

and Model 168 with the best utility. Statistical results for the final cycle of cross-validation and 

final training for Models 166 and 168 are shown in Table 6-7. 

 

Table 6-7. Tar Nitrogen Model Refinement 

Step Model 𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑹𝑹𝟐𝟐 𝑹𝑹𝟐𝟐
/𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 

L1 L2 Infinity SSE 

Cross-
validation, 
best 𝑅𝑅2 

166 13 0.760 0.058 0.094 0.113 0.197 0.085 

Final 
Training, 
best 𝑅𝑅2 

166 13 0.747 0.057 0.105 0.139 0.388 1.250 

Cross-
validation, 
best 𝑅𝑅2/
𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 

168 11 0.812 0.074 0.084 0.104 0.186 0.070 

Final 
Training, 
best 𝑅𝑅2/
𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 

168 11 0.747 0.068 0.105 0.139 0.436 1.252 

 

 Model 166 had the highest 𝑅𝑅2 value of 0.747, which was higher than that of Model 119 

with a value of 0.717 in the initial cross-validation cycle (see Appendix C). Model 119 is shown 

in Equation 6-17. 

 𝑁𝑁𝑠𝑠𝑐𝑐𝑡𝑡
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 𝑐𝑐1𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐2𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
2 + 𝑐𝑐3𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑐𝑐4𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑐𝑐5𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑐𝑐6𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑐𝑐7

𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 

+ 𝑐𝑐8
1+𝑐𝑐0

+ 𝑐𝑐9𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑐𝑐10𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
2 + 𝑐𝑐11𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑐𝑐12𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑐𝑐13𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (6-17) 
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where 𝑁𝑁𝑖𝑖𝑐𝑐𝑟𝑟 is the dry, ash-free mass fraction of nitrogen in the tar, 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the dry, ash-free mass 

fraction of nitrogen in the parent coal, 𝑐𝑐0 is the number of stable bridges in the parent coal, as 

used in the CPD model and as detailed by Genetti et al. (1999) and found in Equation 6-18, and 

𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 is the average side-chain molecular weight (in Equation 6-14). 

 𝑐𝑐0 = min[0.36,𝑚𝑚𝑎𝑎𝑜𝑜{(0.118𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 10.1), 0.0}] 

+ min[0.15,𝑚𝑚𝑎𝑎𝑜𝑜{(0.014𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 0.175), 0.0}] (6-18) 

 

 Model 168 had the best utility with a high 𝑅𝑅2 value of 0.747 (only equal to that of model 

166 due to rounding), which was also better than that of Model 119 in the initial cross-validation 

cycle. Model 168 is found in Equation 6-19. 

 𝑁𝑁𝑠𝑠𝑐𝑐𝑡𝑡
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 𝑐𝑐1𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐2𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
2 + 𝑐𝑐3𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑐𝑐4𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑐𝑐5𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑐𝑐6𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3  

+ 𝑐𝑐7
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝑐𝑐8𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑐𝑐9𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
2 + 𝑐𝑐10

𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
+ 𝑐𝑐11𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (6-19) 

 

 Fitted coefficients for both models are found in Table 6-4 and the parity relationship for 

both models with experimental data is found in Figure 6-5d. While Model 166 had the highest 

𝑅𝑅2 value and will most likely yield the most accurate results, Model 168 will give very similar 

results with fewer coefficients and higher computational efficiency. Both correlations show great 

values for all validation metrics for both final training and cross-validation. This means that both 

correlations fit all the data well and predicted new data well. 

6.3.7 Tar Sulfur 

 The initial cross-validation cycle identified Models 2 and 4 for model refinement, which 

took place a total of two times. Model refinement again identified two models as the best 
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models:  Model 2 was the best overall with the highest 𝑅𝑅2 value and Model 172 had the highest 

utility. Model 2 was not only identified as a part of the initial cross-validation cycle but was also 

identified as the best from the model refinement procedure. The statistical results for both 

models are shown in Table 6-8. 

 

Table 6-8. Tar Sulfur Model Refinement 

Step Model 𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑹𝑹𝟐𝟐 𝑹𝑹𝟐𝟐
/𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 

L1 L2 Infinity SSE 

Cross-
validation, 
best 𝑅𝑅2 

2 9 0.880 0.098 0.083 0.105 0.201 0.086 

Final 
Training, 
best 𝑅𝑅2 

2 9 0.765 0.085 0.121 0.151 0.358 0.779 

Cross-
validation, 
best 𝑅𝑅2/
𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 

172 7 0.955 0.136 0.062 0.076 0.147 0.042 

Final 
Training, 
best 𝑅𝑅2/
𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 

172 7 0.763 0.109 0.122 0.152 0.337 0.785 

 

 Model 2 performed the best overall with a high 𝑅𝑅2 value of 0.765 in the final training 

step. This is the same value as was achieved during the initial cross-validation cycle (see 

Appendix C). Model 2 is shown in Equation 6-20. 

 𝐴𝐴𝑠𝑠𝑐𝑐𝑡𝑡
𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 𝑐𝑐1 + 𝑐𝑐2𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
𝑐𝑐3 + 𝑐𝑐4𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔

𝑐𝑐5 + 𝑐𝑐6𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚
𝑐𝑐7 + 𝑐𝑐8𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑐𝑐9  (6-20) 

 

where 𝑆𝑆𝑖𝑖𝑐𝑐𝑟𝑟 is the dry, ash-free mass fraction of sulfur in the tar. Model 172 performed almost as 

well as Model 2 with a high 𝑅𝑅2 value of 0.763. This means that Model 172 will yield results 
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almost as accurate as Model 2 with fewer fitted coefficients. Model 172 is shown in Equation 6-

21. 

 𝐴𝐴𝑠𝑠𝑐𝑐𝑡𝑡
𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 𝑐𝑐1 + 𝑐𝑐2 ln�𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜� + 𝑐𝑐3𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔
𝑐𝑐4 + 𝑐𝑐5𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚

𝑐𝑐6 + 𝑐𝑐7𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (6-21) 

 

 Both tar sulfur models have great validation metrics, especially in the cross-validation 

cycle. Model 172 performed particularly well, with an 𝑅𝑅2 value of 0.955, which is the best of all 

models presented here. This indicates that Model 172 is very well suited to predict new data with 

good accuracy. Model coefficients for both Models 2 and 172 are found in Table 6-4 and the 

predictive capabilities of both models are shown in Figure 6-5. 

6.3.8 Char Carbon 

 The initial cross-validation cycle identified Models 6 and 8 to move on to the model 

refining procedure, which was performed a total of six times. Model refinement identified Model 

121 with the highest 𝑅𝑅2 value and Model 126 with the best utility. The statistical results for both 

models are found in Table 6-9. 

 Model 121 had the highest 𝑅𝑅2 value at 0.551, which was higher than that of model 8 from 

the initial cross-validation cycle (see Appendix C). Model 121 is shown in Equation 6-22. 

 𝐶𝐶𝑐𝑐ℎ𝑐𝑐𝑡𝑡
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 𝑐𝑐1 + 𝑐𝑐2𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐3𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

1
2 + 𝑐𝑐4𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

1
3 + 𝑐𝑐5𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

1
4 + 𝑐𝑐6𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 

+𝑐𝑐6𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔
1
2 + 𝑐𝑐8𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔

1
3 + 𝑐𝑐9𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔

1
4 + 𝑐𝑐10𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑐𝑐11𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚

1
2 + 𝑐𝑐12𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚

1
3  

+𝑐𝑐13𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚
1
4 + 𝑐𝑐14𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑐𝑐15𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

1
2 + 𝑐𝑐16𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

1
4  (6-22) 

 

where 𝐶𝐶𝑐𝑐ℎ𝑐𝑐𝑟𝑟 is the dry, ash-free mass fraction of carbon in the char. 
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Table 6-9. Char Carbon Model Refinement 

Step Model 𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑹𝑹𝟐𝟐 𝑹𝑹𝟐𝟐
/𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 

L1 L2 Infinity SSE 

Cross-
validation, 
best 𝑅𝑅2 

121 16 0.663 0.041 0.037 0.049 0.108 0.025 

Final 
Training, 
best 𝑅𝑅2 

121 16 0.551 0.034 0.033 0.045 0.188 0.204 

Cross-
validation, 
best 𝑅𝑅2/
𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 

126 11 0.671 0.061 0.036 0.049 0.107 0.025 

Final 
Training, 
best 𝑅𝑅2/
𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 

126 11 0.548 0.050 0.033 0.046 0.190 0.205 

 

 Model 126 had a high 𝑅𝑅2 value of 0.548, which is also higher than that of model 8 from 

the initial cross-validation cycle, indicating that Model 126 will yield predictions almost as 

accurate as those of Model 121 with fewer coefficients and greater computational efficiency. The 

model form for Model 126 is found in Equation 6-23. 

 𝐶𝐶𝑐𝑐ℎ𝑐𝑐𝑡𝑡
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 𝑐𝑐1 + 𝑐𝑐2𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐3𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

1
2 + 𝑐𝑐4𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

1
4 + 𝑐𝑐5𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑐𝑐6𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔

1
2  

+𝑐𝑐7𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔
1
3 + 𝑐𝑐8𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔

1
4 + 𝑐𝑐9 exp(𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚) + 𝑐𝑐10𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑐𝑐11𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

1
2  (6-23) 

 

 Model 126 was formed by taking out excess coefficients and combining the variables 

from Models 6 and 8, by replacing all 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 polynomial-type variables with exp(𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚). 

Coefficient values for Equations 6-22 and 6-23 are found in Table 6-10. Predictions from both 

models are shown in Figure 6-6a, which also shows parity plots for the other elements in the 

char. 
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Table 6-10. Char Correlation Coefficients 

Coeff. Ca, best 𝑹𝑹𝟐𝟐 C, best 
utility 

H O N, best 𝑹𝑹𝟐𝟐 N, best 
utility 

S, best 𝑹𝑹𝟐𝟐 S, best 
utility 

Model No.b 121 126 127 134 62 142 143 148 
𝑁𝑁𝑣𝑣𝑐𝑐𝑟𝑟𝑐𝑐  4 4 5 5 5 5 4 4 
𝑐𝑐1 9.174×103 1.025×103 -2.609×104 7.662 17.520 0.330 -0.186 -1.090 
𝑐𝑐2 2.647 1.292 3.335×104 -4.265×10-3 1.001×10-5 2.056 -7.586×102 -9.211×102 

𝑐𝑐3 -4.109×102 -1.689×102 -5.592×102 -4.651 2.313×103 -2.083×10-3 -4.173×102 3.572×10-2 

𝑐𝑐4 8.319×102 1.117×103 2.696×104 1.160×10-2 3.621 -4.066×102 -5.797×102 2.089×102 

𝑐𝑐5 9.245×102 -2.055 -5.503 -9.854×10-6 -8.835×10-3 9.430×102 0.492 2.483×102 

𝑐𝑐6 -3.955 2.362×102 -1.381×102 1.151×102 7.171×10-6 -6.225×102 3.403×102 1.942×103 

𝑐𝑐7 4.000×102 -8.559×103 1.964×103 -1.352×102 -7.362×102 -2.110×102 -5.961×102 50.417 
𝑐𝑐8 -6.016×102 5.622×102 1.486×104 1.494×104 1.640×103 58.039 9.768×102 62.874 
𝑐𝑐9 -7.694×102 -33.779 -3.229×103 -2.231×103 -9.938×102 42.666 8.907×102 -2.029×105 

𝑐𝑐10 -2.475×102 18.491 -7.507×10-6 -2.012×102 4.729×102 -0.555 1.305×104 2.671×104 

𝑐𝑐11 3.999×102 -4.095×102 4.219×103 6.199 -6.054×102  -3.538×104 1.507×104 

𝑐𝑐12 -2.843×102   -6.033×10-2 1.599×102  3.100×104  
𝑐𝑐13 90.505    41.613  76.299  
𝑐𝑐14 23.009    -0.543  -1.769×105  
𝑐𝑐15 -6.063×102      9.786×104  
𝑐𝑐16 6.987×102      -1.266×104  

a Elements listed here (CHONS) refer to the corresponding correlations, which predict the normalized compositions, e.g., 𝐶𝐶𝑖𝑖𝑐𝑐𝑟𝑟/𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
b Model number, corresponds to the model number in Table C-4 
c 𝑁𝑁𝑣𝑣𝑐𝑐𝑟𝑟 refers to the number of variables in the correlation, e.g., 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜, 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔, etc. 
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Figure 6-6. Parity plots for the finalized correlations in the char 

 

 While both models 121 and 126 were the best performers and predict the carbon 

composition of char slightly better than the models tested in the initial cross-validation cycle, 

neither performed well. Looking at Figure 6-6a, both models appear to underpredict the 

compositions on both the lower end and the higher end and overpredict the compositions in the 

middle. This indicates the possibility of different dependencies to predict the carbon in the char 

or of inaccuracies or biases in the data. 

 As Figure 6-6 shows, the carbon and nitrogen in the char tend to increase from the parent 

coal composition, with the carbon increasing by as much as 40% and the nitrogen by as much as 

100%. The hydrogen and oxygen tend to decrease, by up to almost 100%, and the sulfur tends to 

on average stay around the parent composition. 

6.3.9 Char Hydrogen 

 The initial cross-validation cycle identified Models 2 and 31 to move forward to model 

refinement, which was iterated a total of three times. The model refinement procedure identified 
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only one model as the best for predicting hydrogen in the char—Model 127. The statistical 

results for this model are found in Table 6-11. No other models were found to have better utility 

(the highest 𝑅𝑅2 value with the fewest fitted coefficients). 

 

Table 6-11. Char Hydrogen Model Refinement 

Step Model 𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑹𝑹𝟐𝟐 𝑹𝑹𝟐𝟐
/𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 

L1 L2 Infinity SSE 

Cross-
validation 

127 11 0.831 0.076 0.055 0.067 0.134 0.046 

Final 
training 

127 11 0.800 0.073 0.058 0.072 0.221 0.509 

 

 Model 127 performed the best of all models, with a high 𝑅𝑅2 value of 0.80, which was 

higher than that of Model 31 at 0.753 in the initial cross-validation cycle (see Appendix C). 

Model 127 is shown in Equation 6-24. 

 𝐻𝐻𝑐𝑐ℎ𝑐𝑐𝑡𝑡
𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 𝑐𝑐1 + 𝑐𝑐2𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
𝑐𝑐3 + 𝑐𝑐4𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔

𝑐𝑐5 + 𝑐𝑐6𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚
𝑐𝑐7 + 𝑐𝑐8𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑐𝑐9 + 𝑐𝑐10𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝑐𝑐11  (6-24) 

 

where 𝐻𝐻𝑐𝑐ℎ𝑐𝑐𝑟𝑟 is the dry, ash-free mass fraction of hydrogen in the char. Good validation metrics 

(very high 𝑅𝑅2 values and low values for the other metrics) for Model 127 indicate that this char 

hydrogen correlation fits all the data well and was a good predictor for new data. This means that 

Model 127 in Equation 6-24 can be reliably used to predict the composition of hydrogen in the 

char from a wide variety of different coals. Coefficient values for Equation 6-24 can be found in 

Table 6-10, and the predictive capabilities of this model are shown in Figure 6-6b. 
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6.3.10 Char Oxygen 

 Initial cross-validation identified Models 5 and 21 for model refinement, which were 

refined a total of four times. This led to Model 134 with the best overall 𝑅𝑅2 value. No other 

models from the model refinement procedure had better utility than Model 134. Statistical results 

for this model are shown in Table 6-12. 

 

Table 6-12. Char Oxygen Model Refinement 

Step Model 𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑹𝑹𝟐𝟐 𝑹𝑹𝟐𝟐
/𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 

L1 L2 Infinity SSE 

Cross-
validation 

134 12 0.628 0.052 0.138 0.174 0.325 0.251 

Final 
training 

134 12 0.447 0.037 0.160 0.203 0.565 3.327 

 

 Model 134 had the highest 𝑅𝑅2 value of 0.447, which was higher than that of Model 21 

with a value of 0.438 in the initial cross-validation cycle (see Appendix C). The model form for 

Model 134 is shown in Equation 6-25. 

 𝑂𝑂𝑐𝑐ℎ𝑐𝑐𝑡𝑡
𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 𝑐𝑐1𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐2𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
2 + 𝑐𝑐3𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑐𝑐4𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑐𝑐5𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑐𝑐6𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 

+𝑐𝑐7𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑐𝑐8 exp(𝑐𝑐9𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + 𝑐𝑐10𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑐𝑐11𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 + 𝑐𝑐12𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴3  (6-25) 

 

where 𝑂𝑂𝑐𝑐ℎ𝑐𝑐𝑟𝑟 is the dry, ash-free mass fraction of oxygen in the char. Model 134 was created by 

removing unnecessary coefficients and replacing the variables of 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 in Model 21 with 

exp(𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) from Model 5. Like the carbon in the char, Equation 6-25 may give the best 

predictions for oxygen in the char, but there is still room for improvement. The fitted coefficients 

are found in Table 6-10 and the predictive capabilities are found in Figure 6-6c. The parity 

relationship shows that this model tends to overpredict the lowest values and underpredict the 
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highest values of oxygen in the char. Char oxygen is usually determined by difference and, 

hence, has more scatter than the other elements. For this reason, the best 𝑅𝑅2 value from a curve 

fit is less than 0.5. 

6.3.11 Char Nitrogen 

 The cross-validation cycle for nitrogen in the char was unique, only identifying one 

model (Model 62) to move on to model refinement. The model refinement procedure was 

repeated a total of four times. Model 62 remained the best overall fit with the highest 𝑅𝑅2 value, 

with Model 142 having a higher utility than Model 62. The statistical results for both models are 

shown in Table 6-13. 

 

Table 6-13. Char Nitrogen Model Refinement 

Step Model 𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑹𝑹𝟐𝟐 𝑹𝑹𝟐𝟐
/𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 

L1 L2 Infinity SSE 

Cross-
validation, 
best 𝑅𝑅2 

62 14 0.600 0.043 0.077 0.097 0.185 0.097 

Final 
Training, 
best 𝑅𝑅2 

62 14 0.597 0.043 0.077 0.105 0.312 1.084 

Cross-
validation, 
best 𝑅𝑅2/
𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 

142 10 0.682 0.068 0.076 0.090 0.156 0.079 

Final 
Training, 
best 𝑅𝑅2/
𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 

142 10 0.585 0.059 0.077 0.106 0.324 1.117 
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 Model 62 was still the best overall fit with a moderate 𝑅𝑅2 value for final training of 0.597 

and a cross-validation 𝑅𝑅2 of 0.6. This indicates that this model is moderately accurate across all 

the data and will predict new data moderately well. Model 62 is shown in Equation 6-26. 

 𝑁𝑁𝑐𝑐ℎ𝑐𝑐𝑡𝑡
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 𝑐𝑐1 + 𝑐𝑐2𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
𝑐𝑐3 + 𝑐𝑐4𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑐𝑐5𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑐𝑐6𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑐𝑐7𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑐𝑐8𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑐𝑐9𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3  

+𝑐𝑐10𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑐𝑐11𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑐𝑐12𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3 + 𝑐𝑐13𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑐𝑐14𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
2  (6-26) 

 

where 𝑁𝑁𝑐𝑐ℎ𝑐𝑐𝑟𝑟 is the dry, ash-free mass fraction of nitrogen in the char and 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 is the 

average side-chain molecular weight, as predicted by Genetti’s correlation (1999) in Equation 6-

14. Model 142 had a moderately high 𝑅𝑅2 value of 0.585, which is less than that of Model 62; 

however, Model 142 had a higher 𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒, giving it greater utility. This means the predictions 

will be slightly less accurate, but it has fewer fitted coefficients and greater computational 

efficiency. Model 142 is shown in Equation 6-27. 

 𝑁𝑁𝑐𝑐ℎ𝑐𝑐𝑡𝑡
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 𝑐𝑐1𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐2𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑐𝑐3𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑐𝑐4𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑐𝑐5𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑐𝑐6𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3  

+𝑐𝑐7𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑐𝑐8𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3 + 𝑐𝑐9𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑐𝑐10𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
2  (6-27) 

 

 The fitted coefficient values for Equations 6-26 and 6-27 are found in Table 6-10. 

Predictions for both models are shown in the parity plot in Figure 6-6d. 

6.3.12 Char Sulfur 

 The initial cross-validation cycle identified Models 6 and 21 as the best to move on to 

model refinement, which were refined a total of five times. Model refinement identified Model 

143 as the best overall fit and Model 148 having the best utility. The statistical results for Models 

143 and 148 are shown in Table 6-14. 
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 Model 143 had the highest 𝑅𝑅2 value of 0.605, which was higher than that of Model 21 at 

0.565 in the initial cross-validation cycle (see Appendix C). This model form is shown in 

Equation 6-28. 

 𝐴𝐴𝑐𝑐ℎ𝑐𝑐𝑡𝑡
𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 𝑐𝑐1𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 1
𝑐𝑐2𝐴𝐴𝑔𝑔𝑐𝑐𝑠𝑠,𝑚𝑚𝑐𝑐𝑜𝑜

2 +𝑐𝑐3𝐴𝐴𝑔𝑔𝑐𝑐𝑠𝑠,𝑚𝑚𝑐𝑐𝑜𝑜
3 +𝑐𝑐4𝐴𝐴𝑔𝑔𝑐𝑐𝑠𝑠,𝑚𝑚𝑐𝑐𝑜𝑜

4 + 𝑐𝑐5𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 1
𝑐𝑐6𝑖𝑖𝑡𝑡𝑟𝑟𝑠𝑠2 +𝑐𝑐7𝑖𝑖𝑡𝑡𝑟𝑟𝑠𝑠3 +𝑐𝑐8𝑖𝑖𝑡𝑡𝑟𝑟𝑠𝑠4  

+𝑐𝑐9𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 1
1+𝑐𝑐10𝑉𝑉𝑛𝑛𝑐𝑐𝑡𝑡𝑚𝑚2 +𝑐𝑐11𝑉𝑉𝑛𝑛𝑐𝑐𝑡𝑡𝑚𝑚3 +𝑐𝑐12𝑉𝑉𝑛𝑛𝑐𝑐𝑡𝑡𝑚𝑚4 + 𝑐𝑐13𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 1

𝑐𝑐14𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
2 +𝑐𝑐15𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

3 +𝑐𝑐16𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
4  (6-28) 

 

Table 6-14. Char Sulfur Model Refinement 

Step Model 𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝑹𝑹𝟐𝟐 𝑹𝑹𝟐𝟐
/𝑵𝑵𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 

L1 L2 Infinity SSE 

Cross-
validation, 
best 𝑅𝑅2 

143 16 0.428 0.027 0.214 0.272 0.512 0.597 

Final 
Training, 
best 𝑅𝑅2 

143 16 0.605 0.038 0.180 0.241 0.620 4.703 

Cross-
validation, 
best 𝑅𝑅2/
𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 

148 11 0.417 0.038 0.261 0.322 0.581 0.903 

Final 
Training, 
best 𝑅𝑅2/
𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 

148 11 0.605 0.055 0.182 0.241 0.601 4.702 

 

where 𝑆𝑆𝑐𝑐ℎ𝑐𝑐𝑟𝑟 is the dry, ash-free mass fraction of sulfur in the char. Model 148 had an 𝑅𝑅2 value 

close to that of Model 143 (0.605 with rounding), meaning that the predictions from Model 148 

are almost as accurate with fewer coefficients and greater computational efficiency. Model 148 is 

shown in Equation 6-29. 

 𝐴𝐴𝑐𝑐ℎ𝑐𝑐𝑡𝑡
𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 𝑐𝑐1𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 1
𝑐𝑐2𝐴𝐴𝑔𝑔𝑐𝑐𝑠𝑠,𝑚𝑚𝑐𝑐𝑜𝑜

3 + 𝑐𝑐3𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 1
𝑐𝑐4𝑖𝑖𝑡𝑡𝑟𝑟𝑠𝑠2 +𝑐𝑐5𝑖𝑖𝑡𝑡𝑟𝑟𝑠𝑠4  

+𝑐𝑐6 exp(𝑐𝑐7𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚) + 𝑐𝑐8𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 1
𝑐𝑐9𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

2 +𝑐𝑐10𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
3 +𝑐𝑐11𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

4  (6-29) 
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 Fitted coefficients for Equations 6-28 and 6-29 are found in Table 6-10. Predictions for 

both models are shown in a parity plot in Figure 6-6e. As with oxygen, sulfur values are not 

always measured separately and are often either lumped in with the oxygen compositions or the 

sulfur types (pyritic, organic, etc.) are not distinguished. This can lead to inaccuracies in 

experimental data that are then passed along to the fitted model. 

 Summary and Conclusions 

 Several sets of elemental composition data for tars and chars were obtained from the 

literature. Most of the tar and char carbon values increased over the parent coal composition, 

meaning that the tar and char become enriched in carbon (increasing up to almost 40% more than 

the parent coal composition in both the char and tar). This indicates that, in general, the light gas 

has a lower carbon content than both the char and the tar. The hydrogen in the char tended to 

increase over the parent coal composition (with most increasing by up to 85% more than the 

parent coal composition), whereas the hydrogen in the tar decreased by as much as 80% from the 

parent coal hydrogen content. The light gas hydrogen content likely increases from the parent 

coal composition. Both the tar and char oxygen content decreases compared to the parent coal 

composition (with some samples decreasing to almost nothing), indicating that the light gas 

species are generally enriched in oxygen. Nitrogen in the char on average stayed around the 

parent composition (somewhat evenly spread between 30 and 170% of the parent coal nitrogen 

values). The nitrogen in the tar generally increased from the parent coal values by up to 60%, 

however, there were a few outliers that decreased by up to 30%. The trends in nitrogen content in 

the char and tar mean that the light gas species likely increase in nitrogen composition. The 

sulfur in the char tended to decrease by as much as 80% from the parent coal sulfur content with 

a few outliers that increased by as much as 40%. The sulfur in the tar is fairly evenly split on 
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both sides of the parent coal composition, however the sulfur content of the tar has the largest 

spread of all the elements, ranging between 40 and 250% of the parent coal composition. The 

large range of sulfur values in the tar is due to either the fact that most coals do not contain much 

sulfur or that sulfur is one of the more difficult elements to measure of the CHONS elements. 

 A cross-validation procedure coupled with a model refinement procedure was used to 

develop a set of correlations describing the elemental compositions of primary coal tar and the 

corresponding char. Consideration was given to the model form that gave the best overall fit as 

well as model forms with the best utility, meaning the highest possible 𝑅𝑅2 value with the fewest 

fitted coefficients. 

 The trends in elemental composition changes in char and tar compared to the parent coals 

observed experimentally are reproduced by the correlations. All the correlations use inputs such 

as the reaction conditions (maximum gas temperature, particle residence time, and a normalized 

volatile yield) and parent coal structural and compositional information (element mass fractions, 

ASTM volatiles yield, and NMR structural parameters, such as the number of stable bridges and 

the average molecular weight of the side chains). Through careful statistical calculation, these 

correlations may reasonably be used to estimate the dry, ash-free mass fractions of each element 

in the char and the tar and may be applied to simulations of coal combustion to more accurately 

predict chemical interactions of various combustion products. 

 While the tar correlations show good agreement with the experimental data with 𝑅𝑅2 

values of at least 0.75, most of the char correlations fall below that, with the carbon and oxygen 

correlations having 𝑅𝑅2 values of approximately 0.55 and 0.45, respectively. The char correlations 

might be improved in the future by fitting them to new and better experimental data. In addition, 

a careful analysis of the consistency of the experimental data may show possible outliers or bad 
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data, which upon the removal of these bad data could improve the fit and prediction capabilities 

of the correlations. 

 While the bulk of the work presented in this chapter took the form of curve-fitting, the 

correlations developed as part of this work have much broader implications for coal combustion 

modeling. Very few models have been developed to predict the composition of both char and tar 

compounds from different parent coals and at different reaction conditions; most large-scale 

simulations focus on light gas compositions. Many simulations use char and tar compositions 

that are the same as the parent coal, or even simplify char and tar to simpler compounds (e.g., 

char as pure carbon, tar as benzene, etc.). Implementing the elemental composition correlations 

presented here into a large-scale simulation allows for real-time tracking of char and tar 

compositions (and light gas compositions by difference from parent coal composition). The char 

and tar compositions are based on both coal- and reaction-specific parameters. Accurately 

tracking char and tar compositions in a large-scale simulation has greater improves other aspects 

of the coal combustion reaction (such as gas-phase chemistry, soot chemistry, pollutant 

generation, and others). 
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7 HEATING VALUE OF COAL CHAR, TAR, AND OTHER FUELS 

 This chapter details efforts to test several correlations found in the literature that predict 

the enthalpy of combustion (heating value) of primarily coal-based fuels, and to apply the 

correlations that were originally developed for coal-based fuels to other organic fuels. This 

chapter is modified from work presented in Richards et al. (2021). The motivation for this work 

was to find correlations that accurately predict the heating value of coal-based fuels in order to 

calculate the heat of formation to use in equilibrium modeling of different fuel mixtures (see 

Chapter 8 for more details on the equilibrium modeling work). In gathering a large data set of 

experimental data from the literature, this work grew from just coal-based fuels to include other 

fuels such as biomass, liquid and gaseous fuels, oil shale, propellants and explosives, and a 

number of other traditional and non-traditional fuels. 

 Introduction 

 Enthalpies of combustion (or heating values) are determined using calorimetry, which 

can be expensive and time-consuming. Many researchers have developed correlations to predict 

the heating value of coal based on several coal-specific parameters—mainly the elemental 

composition of the raw, or parent, coal. A few of the most widely used heating value correlations 

are found in Table 2-3. Some of these correlations have even been used to predict the heating 

values of other fuels such as biomass. Many of these correlations have only been applied to 
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coals, with limited applications to coal char and biomass fuels. None were found to have been 

applied to coal tar, which can be a bit more difficult to collect and test in most experimental 

apparatuses. 

 Accurately predicting the heating value of fuels (and by extension the heat of formation) 

can be very important in large-scale simulations that often use simplifying assumptions (see 

Chapter 8 for more details) to reduce the computational complexity and time. In addition, 

experimentalists can use these heating value correlations to determine if calorimetry tests have 

been accurately completed and new experimental coals are accurately characterized, especially if 

used in conjunction with Van Krevelen diagrams (1950, 1993). Coals of similar rank tend to 

have similar physical and chemical properties, with heating value and elemental composition 

being two of the closest properties (Smith et al., 1994). Comparing a research coal using accurate 

heating value correlations can show if a calorimetry measurement has been accurately 

completed. 

 In a more practical application, some industrial plants are working at characterizing the 

chemical compositions of the original fuels in real time by measuring the exhaust gases of the 

plant. These compositions may then be used along with these heating value correlations in 

process control to be able to model the heating processes of the plant, especially in rapidly 

solving material and energy balances to help with predictive control of the plant. 

 Approach 

 Testing and validating all the heating value models required a large amount of 

experimental data. The sources of these experimental data are found in Table 2-5 and the entirety 

of the data is in Table B-4 of Appendix B. This large data set includes the heating value and 

elemental composition of each fuel. In addition to the literature correlations discussed in Table 
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2-3, additional forms of correlations were also fit to the data set to see if any improvement could 

be made over the literature correlations. While this chapter only discusses the results of the 

testing of the literature correlations, the additional models are discussed in greater detail in 

Appendix D. 

 The complete data set includes a total of 11 major fuel groups, listed in Table 7-1, along 

with the number of points in each group. The greatest number of data points are coal-related 

(including coal char and tar). 

 

Table 7-1. Major Heating Value Fuel Types 

Fuel Type Number of Samples 
Coal (unreacted) 353 
Coal char 50 
Coal tar 44 
Biomass 73 
Biochar 9 
Peat 11 
Coke (including petcoke) 4 
Oil shale, tar sands, etc. 32 
Liquid and gaseous fuels 37 
Propellants and explosives 21 
Other (municipal solid waste, etc.) 69 

 

 The experimental data were further organized into smaller data sets based on fuel 

commonalities, as shown in Table 7-2, in order to permit prediction of heating values of different 

fuel groups. The propellants and explosives were included in the fossil fuels data set because 

many propellants and explosives share chemical and structural similarities to other fossil fuels. 

Many of the propellants used in this analysis are hydrocarbon backbones (ethane, propane, etc.) 

with different nitrogen attachments instead of hydrogen atoms. 
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Table 7-2. Heating Value Data Sets 

Data Set Fuel Groups Included 
Coal Coal 
Char Coal char 
Tar Coal tar 
Coal-char Coal and char 
Combined coal Coal, char, and tar 
Fossil Coal, char, tar, liquid and gaseous fuels, oil shale, 

tar sands, coke, peat, and propellants and explosives 
Biomass Biomass, biomass char (biochar), and peat 
Other Other fuels and propellants and explosives 
Full All fuel types listed in Table 7-1 

 

7.2.1 Elemental Composition Dependence of Heating Value 

 Many of the literature model forms were developed for coal with respect to elemental 

composition, commonly using carbon, hydrogen, and oxygen in the correlations. A few 

correlations were developed using sulfur content, and even fewer included nitrogen content. 

Most coals typically have lower fractions of nitrogen and sulfur than the other elements, 

particularly on an atomic or molar basis (Van Krevelen, 1993; Smith et al., 1994). Other fuel 

types, especially propellants and explosives, tend to be enriched in nitrogen. Figure 7-1 shows 

the heating value dependence on organic elemental composition for all fuels. 

 In coal and fossil fuel science, a Van Krevelen plot (1950, 1993) is used to show related 

fuel compositions. This type of plot shows the relationship of O/C and H/C ratios, typically on an 

atomic or molar basis or occasionally a mass basis. Figure 7-2 shows the Van Krevelen 

relationship for all fuels used in this analysis. 

 Figure 7-2b shows what is commonly called the coal band, with the lower rank coals 

toward the right of the plot (with the highest O/C and H/C ratios). As coal rank increases, the 

coal decreases in oxygen content until the mid-rank coals (higher rank subbituminous to lower 

rank bituminous coals) at the “knee.” Increasing coal rank then starts to decrease the hydrogen  



 

106 

 
Figure 7-1. Heating value dependence on elemental composition (CHONS). Note that in  
plot f, H2S at ~94 wt.% sulfur is excluded to make the plot easier to read. 
 

 
Figure 7-2. Van Krevelen diagram of all fuels used: a) full data set, b) coal, char,  
and tar only, c) fossil fuels, d) biomass, biochar, and peat.  
Note the scale changes on the x- and y-axes. 
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content, becoming more aromatic in nature to anthracite coals. The chars tend to decrease in both 

oxygen and hydrogen content as the coals devolatilize, leading to the chars lying to the bottom or 

below the coal band. Conversely, tars (and other gases) tend to be more enriched in hydrogen 

and oxygen, which would put the tars above the coal band on the Van Krevelen diagram. 

Biomass samples tend to be even more enriched in oxygen and hydrogen compared to the coals, 

so these samples extend up and to the right of the coal band (see Figure 6-3). Chapter 6 discusses 

the elemental compositional differences of coal, char, and tar to a greater extent. Liquid and 

gaseous fuels are generally made up of simple hydrocarbons, many lacking oxygen, nitrogen, or 

sulfur atoms, which would place most of the liquid and gaseous fuels above and to the left of the 

coal band. The oil shale and tar sand samples bridge the gap between the liquid and gaseous fuels 

and the coal bands, having some similar properties to both coal and liquid fuels. 

7.2.2 Optimization 

 The original literature model forms were first compared with the complete data set to 

determine goodness of fit. The literature model coefficients were then re-fit using the different 

data sets of interest using a simple sum-of-squared-error minimization. This optimization used 

two built-in optimizers in MATLAB (fmincon and fminunc, which are discussed at greater length 

in Appendix A) to re-fit the coefficients for each model. A separate optimization of each model 

form was performed for each of the nine data sets in Table 7-2. The parameter fits were then 

evaluated using three key measures of fit:  SSE (Equation 2-11), MSE (Equation 2-12) and the 

AIC method (see Section 2.4.3 for equations and details on this method). The SSE value is useful 

for a minimization optimization but does not always give useful information for determining a 

best fit, especially with data sets as large as are used here, with SSE values generally smaller for 

smaller data sets. The mean square error (MSE) normalizes the SSE by the number of data points 
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in the data set, giving a more useful validation metric in comparing large data sets. The AIC 

method gives an indication on how likely a chosen model is to be correct. 

 In addition to the AIC test, models were compared using a ratio of the mean square error 

(MSE), with each model MSE divided by the best MSE value in each data set. A value of close 

to one for the MSE ratio means that the model of interest is very close in fit to the “best” model. 

While both the AICc score (Equation 2-18) and MSE are used in this analysis to find the “best” 

models, the AICc probabilities (Equation 2-20), evidence ratio (Equation 2-21), and the MSE 

ratio are used to determine if any of the remaining models are close enough to the “best” models 

to be considered statistically similar. A cutoff of two percent for the MSE ratio and of five 

percent for the AIC probability are used to determine if a model fit is close enough to be 

statistically similar to the “best” model for each data set. 

 Other measures of fit were considered, but not included in the results discussed here. The 

complete description of these extra statistics as well as the full statistical results for both the 

literature and “new” model forms are found in Appendix D. 

 Results and Discussion 

 The results of the evaluation of the literature model forms are presented in the following 

sections: (1) coal data sets (including all coal, char, and tar data sets), (2) fossil fuels data set, (3) 

biomass, (4) other fuels data set, and (5) the full data set. The key statistical results are included 

as well as parity plots showing how well the best model forms predict the higher heating value. 

While many model forms tested here may give good results, only the best results are included in 

this chapter. The complete results can be found in Appendix D. 
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7.3.1 Coal Data Sets 

 Coal (parent coal, char, and tar) heating values make up the bulk of the complete data set 

because this analysis began as a study of coal, char, and tar heating values. The coal heating 

values were divided into several key data sets: (a) parent coal only, (b) coal char only, (c) parent 

coal and coal char combined, (d) coal tar only, and (e) combined coal, char, and tar. The results 

of all five data sets are discussed in the following sections. 

7.3.1.1  Parent Coal Only 

 The parent coal data set was the largest of the coal, char, or tar data sets. Predictions 

made using re-fit coefficients for all 10 literature model forms shown in Table 2-3 were 

compared against the predictions made using the original model coefficients. Table 7-3 shows 

the key statistical results (MSE, MSE ratio, AICc, AIC probability, and AIC evidence ratio) for 

the best models of the coal data set. This analysis compared the model fits using both the re-fit 

coefficients and the original coefficients for each model form. The best models according to 

mean square error (MSE) and AICc score are found in Table 7-3. 

 

Table 7-3. Best Models Using the Coal-Only Data Set 

Model MSE 
(MJ/kg)2 

MSE Ratio AICc Probability Evidence 
Ratio 

Mott-
Spooner 

5.137 1.0* 594.1 0.223 3.487 

Boie 5.192 1.011 591.6 0.5 1.0* 

* These ratios are 1.0 since these models have the minimum MSE or AICc values 

 

 The re-fit Mott-Spooner model (HM-9 in Table 2-3) had the lowest MSE, hence the MSE 

ratio is 1.0. The re-fit Boie model (HM-2 in Table 2-3) had the lowest AICc score, hence the 

evidence ratio is 1.0. To determine if any other models were good enough, and MSE ratio was 
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taken by dividing the model MSE values by the minimum MSE value (5.137 by the re-fit Mott-

Spooner model). A ratio between 1.0 and 1.02 would be considered good enough. Interestingly 

enough, all re-fit models fell within this two percent margin in MSE ratio except for the Dulong 

model (HM-1 in Table 2-3). The AICc score was also used to determine if any other models 

yielded statistically similar results. An Akaike probability of 0.5 means that a model is equally 

likely to be correct as the “best” model. A cut-off of 0.45 for the Akaike probability is 

considered to be statistically similar. No other models fell in this range. While the Mott-Spooner 

model had the lowest MSE value, which generally indicates a better fit, the AICc value penalizes 

the Mott-Spooner model for having too many fitted coefficients, which could potentially lead to 

overfitting. Figure 7-3 shows the parity relationship for the re-fit Mott-Spooner and Boie models 

from Table 7-3. 

 

 
Figure 7-3. Parity plots of all best model forms for coal heating value:  a) Mott-Spooner  
re-fit and b) Boie re-fit. Both plots include a vertical dashed line  
indicating the heating value of pure graphite. 
 

 Visually, the fit of both the Mott-Spooner and Boie re-fit models are very similar, 

especially at the upper ranges of the heating values. In both parity plots in Figure 7-3, a vertical 

dashed line indicates the experimental heating value of pure graphite. 

 Both the Mott-Spooner and Boie models performed well, so their model coefficients re-

fit to the coal-only data set are shown in Table 7-4. The mean square error indicates that the 
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Mott-Spooner model is likely a slightly better fit than the Boie model, however, the AICc score 

suggests that the Mott-Spooner model may be overfit. According to the MSE ratio test, most of 

the other models with coefficients re-fit to the coal-only data set also perform well. See 

Appendix D for a full description of these other models. 

 

Table 7-4. Coefficients of the Mott-Spooner and Boie Models  
Re-Fit to the Coal-Only Data Set 

Coefficient a b c d e f g 
Mott-
Spooner 

318.6 1449 -139.0 16.47 -163.1 3.002 -30.47 

Boie 316.5 1324 -73.58 203.1    
 

7.3.1.2  Coal Char Only 

 Coal char shares structural similarities with its parent coal, being more aromatic, and 

enriched in carbon compared to the parent coal (see Figure 7-2). As such, many of the coal 

heating value correlations may predict the heating value of char. The char data set was used to 

compare the literature model forms in Table 2-3, using both the original coefficients and a new 

set of coefficients re-fit to only the char data set. The best statistical results from this comparison 

are shown in Table 7-5. 

 

Table 7-5. Best Models Using the Char-Only Data Set 

Model MSE 
(MJ/kg)2 

MSE Ratio AICc Probability Evidence 
Ratio 

Mott-
Spooner 

0.358 1.0* -31.8 0.141 6.102 

Boie 0.392 1.095 -35.4 0.5 1.0* 

* These ratios are 1.0 since these models have the minimum MSE or AICc values 
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 The Mott-Spooner model (HM-9 in Table 2-3) again performed well in the comparison 

using the char-only data set, again having the lowest MSE value of all the tested models. The re-

fit Seylor model (HM-4 in Table 2-3) had the lowest AICc score. Like the coal-only comparison, 

the MSE ratio and Akaike probability cut-off values were used to determine if any other models 

could be considered good enough. No other models (re-fit or using original coefficients) fell 

within these cut-off values. The Mott-Spooner and Seylor re-fits are shown in parity plots in 

Figure 7-4. 

 

 
Figure 7-4. Parity plots of all best model forms for char heating value:  a) Mott-Spooner  
re-fit and b) Seylor re-fit. Both plots include a vertical dashed  
line at the pure graphite heating value. 
 

 Both plots show a very good agreement between model calculations and experimental 

data, with the majority of the points lying on or very close to the parity line. Like the coal-only 

comparison, the vertical line in both plots in Figure 7-4 shows the heating value of pure graphite, 

which is often used as a coal char surrogate in large-scale simulations. Most of the char data lies 

below the graphite heating value. Visually it is very difficult to determine which model has a 

better fit. Statistically, the Mott-Spooner model has a slightly better fit, but like the coal-only 

comparison may suffer from overfitting. The re-fit Seylor model is suggested for almost as good 

of a fit with fewer coefficients than the Mott-Spooner model. Table 7-6 shows the coefficients 

for both the Mott-Spooner and Seylor models re-fit to the char-only data set. 
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Table 7-6. Coefficients of the Mott-Spooner and Seylor Models  
Re-Fit to the Char-Only Data Set 

Coefficient a b c d e f g 
Mott-
Spooner 

328.2 1432 -99.96 -243.4 -297.4 7.824 1172 

Seylor 471.5 1550 3.909 -14069    
 

7.3.1.3  Parent Coal and Coal Char Combined 

 Since raw coal and coal char are structurally similar, and since coal heating values are 

more frequently reported in the literature, the individual coal and char data sets were combined 

to determine if a better fit could be achieved for coals and chars. The best model fits were found 

using both original coefficients and the re-fit coefficients from the coal-char data set, and these 

best models are presented in Table 7-7. 

 

Table 7-7. Best Models Using the Coal-Char Data Set 

Model MSE 
(MJ/kg)2 

MSE Ratio AICc Probability Evidence 
Ratio 

Mott-
Spooner 

4.321 1.0* 606.1 0.051 18.51 

Boie 4.325 1.001 600.3 0.5 1.0* 

* These ratios are 1.0 since these models have the minimum MSE or AICc values 

 

 Perhaps unsurprisingly the results of the combined coal-char data set are very similar to 

those of the coal-only comparison. This is due to the overwhelming amount of coal data 

compared to char data in this combined data set. Like the coal-only data set, the Mott-Spooner 

model (HM-9 in Table 2-3) had the lowest MSE value and the Boie model (HM-2 in Table 2-3) 

had the lowest AICc score. The comparisons of these two best models with the combined coal-

char data set are shown in Figure 7-5. 
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Figure 7-5. Parity plots of all best model forms for the coal (circles) and char (squares)  
heating values:  a) Mott-Spooner re-fit and b) Boie re-fit. Both plots also include  
a vertical dashed line indicating the heating value of pure graphite. 
 

 This data set includes a total of 353 coal heating values and 50 char heating values, 

meaning this analysis was heavily influenced by the coal values. As such, it is no surprise that 

the parity relationships are almost identical to those shown in the coal-only analysis (see Figure 

7-3 for comparison). However, since the char data seem to have a lower MSE, the MSE values 

for the combined coal-char data set are lower than for the coal-only data set. 

 Just like the coal-only analysis, the MSE ratio test shows that all re-fit models fall within 

two percent of the best value (4.321 from the Mott-Spooner model) except for the Dulong model 

(HM-1 in Table 2-3). Table 7-8 shows the coefficients for the Mott-Spooner and Boie models re-

fit to the combined coal-char data set; the coefficients for the remaining models are found in 

Appendix C. 

 

Table 7-8. Coefficients of the Mott-Spooner and Boie Models  
Re-Fit to the Combined Coal-Char Data Set 

Coefficient a b c d e f g 
Mott-
Spooner 

325.0 1300 -78.83 -30.76 -137.9 2.766 -48.23 

Boie 319.2 1215 -61.41 452.8    
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7.3.1.4  Coal Tar Only 

 An extensive literature search discovered only 44 total tar heating values reported in the 

literature, with most from one report (Edwards et al., 1983). Coal tar is not only difficult to 

collect in some experimental applications but is frequently not collected in large enough 

quantities to test for elemental compositions and heating values. This part of the analysis 

compared the literature heating value correlations using the limited coal tar data set to determine 

if any of the models can be used to accurately predict the tar heating values. Table 7-9 details the 

best models to predict the tar heating values, using both original coefficients and coefficients re-

fit to the tar-only data set. 

 

Table 7-9. Best Models Using the Tar-Only Data Set 

Model MSE 
(MJ/kg)2 

MSE Ratio AICc Probability Evidence 
Ratio 

Gumz 1.942 1.0* 43.5 0.315 2.179 
Boie 1.992 1.026 41.9 0.5 1.0* 

Given 1.942 1.000 43.5 0.315 2.179 
* These ratios are 1.0 since these models have the minimum MSE or AICc values 

 

 The Gumz model (HM-5 in Table 2-3) had the lowest MSE value and the Given model 

(HM-10 in Table 2-3) had an essentially equivalent fit (within the significant figures here). The 

Boie model again had the lowest AICc score of the models tested using the tar-only data set. 

These three models are shown in parity relationships in Figure 7-6. 

 The Gumz and Given models appear essentially identical (see Figure 7-6a and Figure 

7-6c, respectively). There is a large spread of tar values, with a majority of the points being 

overpredicted by these models, especially the Boie model. The coefficients for the Gumz, Boie, 

and Given models re-fit to the tar-only data set are shown in Table 7-10. 
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Figure 7-6. Parity plots of the best model forms for coal tar heating values:  a) Gumz re-fit,  
b) Boie re-fit, and c) Given re-fit. All three plots include a vertical dashed  
line indicating the heating value of pure graphite. 
 

Table 7-10. Coefficients of the Gumz, Boie, and Given Models  
Re-Fit to the Tar-Only Data Set 

Coefficient a b c d e 
Gumz 353.5 970.6 -918.4 433.5 149.9 
Boie 353.1 979.9 173.9 -841.1  
Given 1272 1889 1068 1351 -91802 

 

 While these are the best tar heating value models found using this tar data set, there is a 

lot of room for improvement. There are a number of reasons to be skeptical of the accuracy of 

these tar heating values or even the elemental compositions. Some coal devolatilization 

experiments do not collect the tar after devolatilization. Others collect the tar and soot together 

and must be separated if further testing is done on the tar. It is well known that primary tar may 

undergo secondary reactions and either crack to form lower molecular weight species or 

polymerize to form larger polycyclic aromatic hydrocarbons (PAH) and eventually form soot 
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(Fletcher et al., 1997; Josephson et al., 2017). Even in some experiments where the tar is 

collected, not enough is left to reliably test for elemental composition and heating value. Tar may 

not even be adequately captured during pyrolysis experiments, with the tar condensing either on 

the char or reactor surfaces (Fletcher and Hardesty, 1992). Heating value measurements require 

up to a gram of tar, whereas many coal pyrolysis experiments are performed with small amounts 

of coal. For these reasons, not many researchers have gathered or measured the heating values of 

coal tars. While these models show some promise in predicting the higher heating value of coal 

tar post-pyrolysis, a larger data set would benefit this analysis and allow for greater confidence in 

comparing the various model forms. 

7.3.1.5  Combined Coal (Parent Coal, Char, and Tar) 

 Table 7-11 shows the best results for the combined coal data set, which includes all three 

individual data sets of coal, char, and tar. Like the combined coal-char comparison, this 

combined coal data set was used to determine if any of the models could be used to accurately 

predict any coal-based fuels. 

 

Table 7-11. Best Models Using the Combined Coal-Char-Tar Data Set 

Model MSE 
(MJ/kg)2 

MSE Ratio AICc Probability Evidence 
Ratio 

Mott-
Spooner 

4.531 1.0* 691.7 0.161 5.212 

Boie 4.56 1.006 688.4 0.5 1.0* 

Steuer 4.56 1.006 688.4 0.5 1.0* 
VDI 4.56 1.006 688.4 0.5 1.0* 
Dulong-
Berthelot 

4.562 1.007 688.6 0.473 1.116 

IGT 4.562 1.007 688.7 0.455 1.196 
* These ratios are 1.0 since these models have the minimum MSE or AICc values 
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 Like the coal-only and the combined coal-char comparisons, the combined coal-char-tar 

data set is largely coal data, which means the re-fit Mott-Spooner and Boie models (HM-9 and 

HM-2 in Table 2-3, respectively) again performed well. The Mott-Spooner model again had the 

lowest MSE value of 4.531, while the Boie model had the lowest AICc score of 688.4. Several 

other models also had almost identical AICc scores (identical in the number of significant 

figures), including the Steuer model (HM-3 in Table 2-3) and the VDI model (HM-8 in Table 

2-3) with the Dulong-Berthelot (HM-6) and IGT (HM-7) models yielding slightly higher MSE or 

AICc values. All six models are shown in parity plots in Figure 7-7. 

 

 
Figure 7-7. Parity plots of all best models for the combined heating value data set of coal,  
coal char, and coal tar:  a) Mott-Spooner re-fit, b) Boie re-fit, c) Steuer re-fit,  
d) VDI re-fit, e) Dulong-Berthelot re-fit, and e) IGT re-fit. 
 

 All six models have a very similar fit to each other, with some subtle variations. The fits 

for char and tar might not be as accurate as their best models individually since the combined 
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coal-char-tar data set so heavily favors the coal values. However, any of these models could be 

used for coal-based heating values, if only one model is to be used in a simulation. 

 Like most of the other coal-based fuel comparisons, the Mott-Spooner model is the best 

fit according to MSE, however, this model might be overfit. The Boie, Steuer, or VDI models 

may have a slightly worse fit, but each have fewer fitted coefficients than the Mott-Spooner 

model. The re-fit coefficients for all four models are found in Table 7-12. 

 

Table 7-12. Coefficients of the Mott-Spooner, Boie, Steuer, and VDI Models  
Re-Fit to the Combined Coal-Char-Tar Data Set 

Coefficient a b c d e f g 
Mott-
Spooner 

323.4 1321 -86.59 -12.66 -136.4 2.621 -37.29 

Boie 322.3 1308 -68.69 -26.28    
Steuer 322.3 357.2 1308 -26.28    
VDI 322.3 549.5 -26.28 758.6    

 

7.3.2 Fossil Fuels Data Set 

 In addition to coal fuels, other fossil fuels are of interest to combustion science. The 

fossil fuels data set includes coals, chars, tars, cokes (including petroleum cokes), liquid and 

gaseous fuels, oil shales and tar sands (and similar viscous fuels), peats (sometimes used for 

heating, cooking, and small-scale energy production), and explosives and propellants (which are 

frequently hydrocarbon-based fuels). Propellants and explosives are not fossil fuels but are 

included here because of structural and chemical similarities to other fossil fuels. The purpose of 

this data set analysis was to determine if any of the literature models accurately predict the 

heating value of any fossil-type fuel based on elemental composition. The best models are 

detailed in Table 7-13. 
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Table 7-13. Best Models Using the Fossil Fuels Data Set 

Model MSE 
(MJ/kg)2 

MSE Ratio AICc Probability Evidence 
Ratio 

Given 4.165 1.0* 799.7 0.5 1.0* 
Gumz 4.170 1.001 800.4 0.411 1.430 

* These ratios are 1.0 since these models have the minimum MSE or AICc values 

 

 The Given model (HM-10 in Table 2-3) was the best model according to both MSE and 

AICc values. The Gumz model (HM-5 in Table 2-3) came in a close second with the MSE ratio 

test, being only 0.1 percent away from the best MSE value of the Given model. Both models are 

shown in Figure 7-8. 

 

 
Figure 7-8. Parity plots of the best models for fossil fuels:  a) Given re-fit and b) Gumz re-fit.  
A vertical line indicates the heating value of pure graphite. 
 

 Both models appear to give almost identical fits on a visual inspection of the parity 

relationship. The model coefficients of both models are included in Table 7-14, however, the 

Given model is suggested since it is a slightly better fit according to both the MSE and AICc 

values. 

Table 7-14. Suggested Re-Fit Coefficients for the Fossil Fuels Data Set 

Coefficient a b c d e 
Given 270.4 1208 -149.7 27.77 5571 
Gumz 326.2 1263 55.08 83.23 -93.91 
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7.3.3 Biomass Data Set 

 Biomass is becoming a more widely used fuel for electricity production, especially in 

blends with coal or other solid fuels. For this reason, a biomass-only comparison was also 

performed. In this analysis, the biomass comparison included traditional biomass samples 

(typically different types of wood, wild plants, and grasses), biomass char (or biochar), and peat, 

which falls between typical biomass samples and coal samples on the Van Krevelen diagram (see 

Figure 7-2). Table 7-15 shows the best results for MSE and AICc values, along with the results of 

the MSE ratio test and Akaike probabilities. Note that the original model coefficients were from 

curve fits of coal, not biomass. 

 

Table 7-15. Best Models Using the Biomass Data Set 

Model MSE 
(MJ/kg)2 

MSE Ratio AICc Probability Evidence 
Ratio 

Mott-
Spooner 

4.486 1.0* 157.3 0.103 8.749 

Gumz 4.506 1.004 152.97 0.5 1.0* 

Given 4.538 1.011 153.6 0.418 1.390 
* These ratios are 1.0 since these models have the minimum MSE or AICc values 

 

 The Mott-Spooner (HM-9 in Table 2-3) and Gumz (HM-5) re-fit models again performed 

well, with the Mott-Spooner model having the lowest MSE value and the Gumz model having 

the lowest AICc score. In addition, the Given model also performed well, with an MSE value 

within two percent of the best value. These three best models are shown as parity plots in Figure 

7-9. 

 The Mott-Spooner model appears to have the better fit on visual inspection, especially 

with the biochar heating value, however, the other two models appear to fit the experimental data 

almost as well for the biomass and peat heating values. Like the combined coal-char-tar  



 

122 

 
Figure 7-9. Parity plots of all best models of heating values for biomass, biochar, and peat:   
a) Mott-Spooner re-fit, b) Gumz re-fit, and c) Given re-fit. 
 

comparison, this combined biomass data set is heavily weighted toward the biomass data, with 

fewer samples of peat and biochar. With a larger set of reliable data, a more accurate comparison 

for biomass samples (especially those of biochar) might be made. 

 There is a grouping of samples at the lower end of the measured heating values (7-10 

MJ/kg) in which all heating values are significantly overpredicted. The three samples in this 

grouping are reported by Niessen (2002). The three fuels are listed as RDF (refuse-derived fuel), 

wood, and green logs, in ascending order of reported heating value. While the RDF is not a 

biomass by itself, Niessen compares it to the “wood” sample for structural and chemical 

similarities. For this reason, the RDF sample was included in the biomass data set, while alone it 

would have been instead added to the “other” fuels data set. It is unclear in Niessen’s work what 

type of wood constitutes the “wood” sample compared to RDF, which makes it difficult to 
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determine if the heating value is simply an outlier or a mistake. Green logs contain a high 

amount of oxygen (~45 wt.%), which would lower the heating value considerably, however, this 

value might also be reported incorrectly since all tested heating value correlations calculate a 

much higher value than is reported. 

 Like the coal-base fuels, the Mott-Spooner model yielded the lowest MSE value, and also 

appeared to have a better fit on visual inspection of the parity relationship. However, with a large 

number of fitted coefficients, the Mott-Spooner model may suffer from overfitting. The Gumz 

and Given models have a better AICc score with slightly higher MSE values. For this reason, 

both the Mott-Spooner and Gumz models are suggested. The coefficients for these Mott-Spooner 

and Gumz models are found in Table 7-16. 

 

Table 7-16. Coefficients of the Mott-Spooner and Gumz Models  
Re-Fit to the Biomass Data Set 

Coefficient a b c d e f g 
Mott-
Spooner 

337.1 1074 19.67 622.9 -192.1 2.397 -1355 

Gumz 348.4 518.1 370.1 -2034 -29.93   
 

7.3.4 Other Fuels Data Set 

 In an effort to reduce reliance on fossil fuels, many energy producers are researching 

blends of alternative fuels with fossil fuels. A similar comparison of the heating value 

correlations was completed for the “other” fuels data set, which includes some alternative fuel 

sources such as municipal solid waste, animal waste, food waste, etc. The best models for 

predicting the heating values of non-traditional fuels are found in Table 7-17. 

 The Gumz model (HM-5 in Table 2-3) showed the best agreement with the heating 

values of the “other” fuels data set, with the lowest MSE and AICc values of all models. The  
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Table 7-17. Best Models Using the “Other” Fuels Data Set 

Model MSE 
(MJ/kg)2 

MSE Ratio AICc Probability Evidence 
Ratio 

Gumz 12.3 1.0* 238.98 0.5 1.0* 
Given 12.4 1.005 239.4 0.447 1.238 

* These ratios are 1.0 since these models have the minimum MSE or AICc values 

 

Given model (HM-10) also performed well, with an MSE value that is within 0.5 percent of the 

best value. There were no additional models that fell within the cut-off window of five percent 

for the AIC probability. These results are not surprising, since both of these model forms include 

a sulfur content, and the Gumz model form includes the nitrogen content. Many of these “other” 

fuels have much smaller carbon content and higher nitrogen and sulfur contents than most of the 

fossil fuels. These two best model fits for predicting the heating values from the “other” fuels 

data set are found in Figure 7-10. 

 

 
Figure 7-10. Parity plots of the best models for “other” fuel heating values:   
a) Gumz re-fit and b) Given re-fit. 
 

 As shown in Figure 7-10, both the Gumz and Given models re-fit to the “other” fuels data 

set have very similar fits, visually. However, the Gumz model performs slightly better in both 

MSE and AICc tests. From this analysis, the re-fit of the Gumz model is suggested, until a more 
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comprehensive study on alternative fuels can improve on this fit. The re-fit coefficients for both 

the Gumz and Given models are found in Table 7-18. 

 

Table 7-18. Coefficients of the Gumz and Given Models Re-Fit  
to the “Other” Fuels Data Set 

Coefficient a b c d e 
Gumz 328.1 1091 81.83 -2513 -94.73 
Given 247.3 1015 -174.9 -2582 8046 

 

7.3.5 Full Data Set 

 The full data set includes all of the fuels listed in Table 7-1. Like the other data sets, a 

comparison of the heating value correlations was also performed for the full data set. A summary 

of the models with the best statistical results is found in Table 7-19. 

 

Table 7-19. Best Models Using the Full Data Set 

Model MSE 
(MJ/kg)2 

MSE Ratio AICc Probability Evidence 
Ratio 

Given 6.285 1.0* 1304 0.5 1.0* 

Boie 6.387 1.016 1314 0.009 105.1 
Gumz 6.288 1.001 1305 0.453 1.207 

* These ratios are 1.0 since these models have the minimum MSE or AICc values 

 

 Interestingly, the re-fit Given model (HM-10 in Table 2-3) is the best in both MSE and 

AICc values. In addition, the Gumz model (HM-5) performed well as did the Boie model (HM-

2). It is not surprising that the Boie model performs well when calculating the heating values of a 

diverse collection of fuels, since this model was one of the few literature models that has been 

traditionally applied to a wider variety of fuels, including coals and biomass. The parity 
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relationships for these three models are found in Figure 7-11, with the major fuel groups 

differentiated using different marker symbols for each fuel type. 

 

 
Figure 7-11. Parity plots of the best models for the full data set of heating values:   
a) Given re-fit, b) Boie re-fit, and c) Gumz re-fit. A vertical dashed  
line indicates the heating value of pure graphite. 
 

 Some similarities are observed between the fossil fuels and full data set comparisons. 

This is because the full data set is comprised primarily of the same data as the fossil fuels data 

set, adding 151 more heating values from the biomass, biochar, and “other” fuels. On a visual 

inspection, all three models appear to give a similar fit, except for the propellants and explosives 

category (yellow diamonds) for the Boie model (Figure 7-11b), which tends to underpredict the 

lowest of these heating values. However, the statistical measures of fit show that the Given 

model is slightly more accurate in terms of both MSE and AICc. Since the Given et al. model re-

fit to the full data set more accurately predicts heating values, this model is suggested for 
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predicting heating values of any fuel type. In addition, the re-fit Gumz model satisfies both the 

two percent MSE ratio and five percent AIC probability criteria. This means that the Gumz 

model is only slightly less likely to be correct than the Given model. The Boie model also 

satisfies the two percent MSE ratio criterion, but fails to satisfy the five percent AIC probability, 

which means that the Boie model is still a potential good fit, but not as likely to be correct. The 

re-fit coefficients for the Given (preferred), Gumz (less preferred), and Boie (least preferred) 

models are found in Table 7-20. 

 

Table 7-20. Coefficients of the Given, Gumz, and Boie Models  
Re-Fit to the Full Data Set 

Coefficient a b c d e 
Given 274.1 1141 -167.3 24.79 5711 
Gumz 331.2 1198 56.72 81.66 -110.4 
Boie 332.5 1198 -110.7 55.59  

 

 Discussion Summary 

 Different models were found to be optimal for each data set explored in this analysis. The 

ramifications of only using one model with one set of coefficients to describe each data set were 

explored. Since the re-fit Given model (HM-10 in Table 2-3) was found to yield the best fit of 

the overall data set, the re-fit coefficients from Table 7-20 were used to find the key statistical 

values for all nine data sets used in this analysis. These statistical results are found in Table 7-21. 

Note that the MSE ratio, AIC probability, and evidence ratios for each data set are in comparison 

with the best values found in each previous data set comparison, and not with the corresponding 

values from the full data set. The MSE ratios and AIC probabilities and evidence ratios are 

meaningless when compared to other data sets. 
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Table 7-21. Overall Statistical Results of the Given Model Re-Fit to the  
Full Data Set for all Data Sets 

Data Set MSE 
(MJ/kg)2 

MSE Ratio AICc Probability Evidence 
Ratio 

Coal 5.36 1.044 605.1 0.001 848.8 
Char 1.10 3.068 18.64 1.84×10-12 5.44×1011 

Tar 4.02 2.071 75.51 5.04×10-8 1.99×107 

Coal-char 4.56 1.056 623.9 7.44×10-6 1.34×105 

Combined 
coal 

4.75 1.049 709.0 3.32×10-5 3.01×104 

Fossil fuels 4.26 1.023 812.1 0.002 500.8 
Biomass 5.45 1.214 170.6 1.49×10-4 6.70×103 

Other fuels 17.95 1.459 272.9 4.33×10-8 2.31×107 

Full 6.29 1.0* 1304 0.5 1.0* 

* This ratio is 1.0 since this model has the minimum MSE and AICc values for the full data set. 

 

 If only one model can be used, the re-fit of the Given model will give the most accurate 

results for all fuels, however, individual fuel groups are more accurately predicted by other 

correlations, as discussed in previous sections. As shown in Table 7-21, none of these data set 

comparisons using the Given model coefficients re-fit using the full data set came close to the 

best models suggested in each individual data set comparison. For this reason, the given model 

with coefficients re-fit to the full data set is only suggested for use with a data set that includes a 

wide range of fuel types and compositions, otherwise, the models suggested for each individual 

fuel type would give much more accurate heating values for those fuels. 

 The curve fits presented in this chapter are the best models for the respective data sets. 

Obviously, the number and quality of the data affect the accuracy of the curve fits. A few data 

points from each curve fit seem to lie well outside the range of most of the other data points, and 

hence should be examined more closely experimentally or repeated. Future improvements can be 

made by introducing a larger subset of non-traditional fuels, in particular propellants, explosives, 

and other fuels. A better characterization of these non-traditional fuels may even give rise to 
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more comprehensive heating value correlations when the chemical composition differences are 

better known for these unique fuel types. 

 Conclusions 

 Heating values are an important part of combustion experiments and modeling. In order 

to accurately predict heating values based solely on the primary organic (CHONS) elemental 

composition of the fuel of interest, a detailed comparison analysis was completed on 10 literature 

correlations (13 sets of unique, original coefficients) using a comprehensive data set that includes 

11 major fuel types. Not only were the original literature models compared using this data set, 

but an optimization scheme was used to re-fit the literature model coefficients to a number of 

subsets of the full data set. Two key statistical parameters were used to assess the accuracy of 

each of these model forms in this analysis, both original and re-fit: mean square error (MSE) and 

the Akaike Information Criterion (AIC). The best statistical values were then found using subsets 

of the full data set: parent coal only, coal char only, coal tar only, combined coal-char, combined 

coal (parent coal, char, and tar), fossil fuels, biomass, “other” or non-traditional fuels, and the 

full data set. 

 For most of the coal data sets, the re-fit Mott-Spooner model had the lowest MSE value 

(for the coal-only, char-only, combined coal-char, and combined coal-char-tar comparisons). For 

the tar-only comparison, the re-fit Gumz model had the lowest MSE value. With seven fitted 

coefficients, however, the Mott-Spooner model may fall victim to overfitting. The AICc score 

shows that perhaps a better choice would be the re-fit Boie model (for all but the char-only 

comparison) and the re-fit Seylor model for the char-only comparison. In addition, the combined 

coal-char-tar comparison also showed that the re-fit Steuer, VDI, Dulong-Berthelot, and IGT 

models may give similar or good enough heating value calculations. Another interesting 
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observation was that while most of these literature models were originally developed for use with 

parent coal, the char heating values were predicted much more accurately than any of the other 

fuel types used in this analysis. 

 Fossil fuels were similarly analyzed, and two models give virtually identical results, both 

using re-fit coefficients: the Given model and the Gumz model, with the Given model being 

slightly better according to both MSE and AICc values. Both are similar in form and both have 

five fitted coefficients. The only difference in the model form is that the Given model does not 

include nitrogen content, whereas the Gumz and Channiwala-Parikh form does include nitrogen 

content. This might be significant when trying to predict the heating values for fuels with a wider 

range of nitrogen content.  

 Biomass was also analyzed in a similar way, and the Mott-Spooner model re-fit to the 

biomass data set performed the best according to MSE and the Gumz model having the best 

AICc value. The biomass data set includes three different major fuel: traditional biomass, 

biomass char, and peat. The biomass and peat heating values were more closely grouped than 

those of the biochar, which were typically the highest of the biomass fuel types. The Mott-

Spooner model appears to have the best fit, especially with the biochar samples, however, with 

seven fitted coefficients, this might be an artifact of overfitting. The Gumz model is slightly less 

accurate according to MSE, but the fit is statistically close to the Mott-Spooner model but with 

fewer fitted coefficients. 

 Aside from the full data set, the “other” fuels data set varied the most in elemental 

composition. The best models to predict the heating value of these non-traditional fuels included 

nitrogen and sulfur content as variables, and a re-fit of the Gumz model showed the best promise 

according to both MSE and AICc values, with the Given model coming in at a close second. It is 
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not surprising that the Gumz re-fit model performed well for calculating “other” fuel heating 

values since the model form includes all five major elemental compositions (CHONS). 

 Using the full data set introduced a number of unique challenges, given the wide range of 

both heating values as well as chemical compositions. The more unique fuels (propellants and 

explosives, and “other” non-traditional fuel types) tended to have a higher nitrogen content and 

lower carbon content than many of the fossil-based fuels used in this analysis. A number of the 

literature models rely heavily on carbon, hydrogen, and oxygen contents and do not even 

consider nitrogen content. This analysis shows that the best overall heating value prediction 

comes from the re-fit Given model, followed closely by the re-fit Boie and Gumz models, 

especially for fossil-based fuels. 

 Future improvements can be made to these literature models by expanding the number of 

samples in the experimental data set, particularly for coal tars and more unique fuels such as 

propellants, explosives, municipal solid waste, etc. These latter fuel types are not as structurally 

and chemically similar to each other or as widely studied as parent coals or biomass samples. For 

example, 50% of this data set consisted of coals and 10% of biomass, with only 3% of the data 

set for propellants and 10% for other fuels including municipal solid waste. Potential 

improvement could also be made in the biomass analysis by including samples of biotar, which 

are lacking in the established literature.  
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8 MIXTURE FRACTION ANALYSIS 

 This chapter details the results of the mixture fraction analysis. The mixture fraction 

analysis was set up in an effort to quantify uncertainty in some common simplifying assumptions 

used in turbulence-chemistry interactions in large-scale coal combustion simulations. The work 

presented in this chapter is based on work in Richards et al. (2020). While the key results and 

discussion are presented here, additional work is detailed in Appendix E. 

 Introduction 

 The basic theory and equations for a mixture fraction analysis are presented in Section 

2.3.4. However, in an effort to show how this analysis was performed, this chapter begins with 

additional motivation behind this analysis and a derivation of the complete set of equations used. 

Simplifying assumptions are often used to decrease computational complexity, especially when 

computational resources are limited. However, these simplifying assumptions can generate large 

errors and uncertainty in large-scale simulations. 

 This dissertation compares three different levels of mixture fraction analysis, including 

one, two, and three fuel mixture fractions for coal combustion scenarios. The one-mixture 

fraction approach assumes all mass originating in the coal has the same elemental composition 

and heating value as the parent coal and is the most common mixture fraction approach (Smith et 

al., 1981; Smoot, 1981; Smoot and Smith, 1985; Pedel et al., 2013). 
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 Flores and Fletcher (2000) extended the approach developed Smith et al. (1981) to use 

two mixture fractions, however, Flores and Fletcher modified their approach from a more 

traditional two-mixture fraction method by using two mostly independent mixture fractions 

(meaning both fuel mixture fractions can fall between 0 and 1, independently). The two-mixture 

fraction approach treats volatiles and char compositions and heating values separately and was 

used in simulations of three laboratory-scale coal combustors. Results for the one- and two-

mixture fraction approaches showed differences in calculated temperatures and species 

concentrations near the burner, especially with NO predictions.  

 The three-mixture fraction approach treats light gas, tar, and char separately. These three 

approaches are compared here using equilibrium calculations rather than performing simulations 

of pilot- or industrial-scale furnaces. This simplified approach allows focus on the chemical state 

spaces, which can be widely explored, and which would be encompassed in specific furnace 

simulations. 

 Approach 

 The mixture fraction approaches used here involved a few modifications to both the 

equations and equilibrium programs introduced in Section 2.3.4. This approach section first 

details the three levels of mixture fraction comparisons followed by a description of some new 

subroutines introduced into Cantera to deal with coal-based fuels. Finally, this section includes a 

brief discussion of the experimental data used in this analysis. 

8.2.1 One-Mixture Fraction Comparison 

 A one-mixture fraction method divides a combustion mixture into two streams—one fuel 

stream and one oxidizer stream. This is a common method used in simple hydrocarbon 
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combustion applications and has also been applied to coal-gas mixtures (Smoot and Smith, 

1985). The one-mixture fraction comparison is the simplest of the three detailed here. In coal 

systems, one mixture fraction is used to describe all gas from a raw coal mixing with the 

oxidizing gas. Coal gas is a mixture of a large number of different species with a wide variety of 

composition and energy properties. The fuel mixture fraction (as shown generally in Equation 2-

4) of a one-mixture fraction system is shown in Equation 8-1: 

 𝑓𝑓 = 𝐴𝐴1
𝐴𝐴0+𝐴𝐴1

 (8-1) 

 

where 𝑓𝑓 is the fuel mixture fraction (coal or any number of coal surrogate gases), 𝑀𝑀0 is the mass 

of the oxidizer stream, and 𝑀𝑀1 is the mass of the fuel stream. The index of 1 is dropped for the 

one-mixture fraction method (shown in Equation 8-1) out of convenience. The mass fraction of 

any element in the system can be found using the elemental mass fractions (shown generally in 

Equation 2-5), as shown in Equations 8-2 to 8-6 (in order of CHONS): 

 𝑍𝑍𝐶𝐶𝐷𝐷 = 𝑊𝑊𝐶𝐶 �
𝑐𝑐𝑐𝑐,1𝑒𝑒
𝑊𝑊1

+ 𝑐𝑐𝐶𝐶,0(1−𝑒𝑒)
𝑊𝑊0

� (8-2) 

 𝑍𝑍𝐻𝐻𝐷𝐷 = 𝑊𝑊𝐻𝐻 �
𝑐𝑐𝐻𝐻,1𝑒𝑒
𝑊𝑊1

+ 𝑐𝑐𝐻𝐻,0(1−𝑒𝑒)
𝑊𝑊0

� (8-3) 

 𝑍𝑍𝑂𝑂𝐷𝐷 = 𝑊𝑊𝑂𝑂 �
𝑐𝑐𝑂𝑂,1𝑒𝑒
𝑊𝑊1

+ 𝑐𝑐𝑂𝑂,0(1−𝑒𝑒)
𝑊𝑊0

� (8-4) 

 𝑍𝑍𝑁𝑁𝐷𝐷 = 𝑊𝑊𝑁𝑁 �
𝑐𝑐𝑁𝑁,1𝑒𝑒
𝑊𝑊1

+ 𝑐𝑐𝑁𝑁,0(1−𝑒𝑒)
𝑊𝑊0

� (8-5) 

 𝑍𝑍𝐴𝐴𝐷𝐷 = 𝑊𝑊𝐴𝐴 �
𝑐𝑐𝑆𝑆,1𝑒𝑒
𝑊𝑊1

+ 𝑐𝑐𝑆𝑆,0(1−𝑒𝑒)
𝑊𝑊0

� (8-6) 

 

where 𝑍𝑍𝐶𝐶𝐷𝐷  is the elemental mixture fraction of carbon in a one-mixture fraction system (denoted 

by a superscript 𝐷𝐷), 𝑊𝑊𝐶𝐶 is the molecular weight of carbon, 𝑎𝑎𝐶𝐶,1 is the number of atoms of carbon 
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in the fuel stream (estimated using the mole fraction of carbon in the case of coal-based fuels), 𝑓𝑓 

is the fuel mixture fraction (mass fraction of the fuel), and 𝑊𝑊1 is the molecular weight of the fuel 

stream. Similar variables are used for each element, with a subscript of zero used to denote 

properties of the oxidizer stream added to the elemental mixture fractions (only meaningful if 

those elements exist in the oxidizer stream, e.g., oxygen and nitrogen for air). These are 

generalized equations, but for a typical coal combustion application, the elemental mixture 

fractions would be simpler than shown here. Air does not typically include any carbon, 

hydrogen, or sulfur, so the 𝑎𝑎𝑖𝑖,0 values (e.g., 𝑎𝑎𝐶𝐶,0) for each of those elements would be zero. 

These values would be different if different oxidizer gases were used (e.g., oxy-fuel 

combustion). Because there is only one fuel stream, only one equivalence ratio (shown generally 

in Equation 2-6) is needed to describe the system. The one-mixture fraction equivalence ratio is 

shown in Equation 8-7: 

 𝜙𝜙 =
𝑛𝑛1
𝑛𝑛0

�𝑛𝑛1𝑛𝑛0
�
𝑠𝑠𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐ℎ

 (8-7) 

 

where subscripts of zero and one are again used to denote the moles of the oxidizer and fuel 

streams, respectively. 

8.2.2 Two-Mixture Fraction Comparison 

 A two-mixture fraction system is a little more complex than a one-mixture fraction 

system. Instead of only using a single fuel stream, a two-mixture fraction system includes two 

fuel streams. While a two-mixture fraction method does not usually provide any benefit for 

simple hydrocarbon combustion reactions, these methods can benefit coal combustion reactions 

since pyrolysis and char combustion occur on different time scales. Coal reaction products can 
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therefore be treated as volatile gases (named the total volatiles) and the solid that remains after 

pyrolysis (named the char). These two general categories of pyrolysis products comprise the two 

fuel streams of a two-mixture fraction system. These two fuel mixture fractions are described in 

Equations 8-8 and 8-9: 

 𝑓𝑓1 = 𝐴𝐴1
𝐴𝐴0+𝐴𝐴1+𝐴𝐴2

 (8-8) 

 𝑓𝑓2 = 𝐴𝐴2
𝐴𝐴0+𝐴𝐴1+𝐴𝐴2

 (8-9) 

 

where the oxidizer stream is again denoted with a zero subscript, and subscripts of 1 and 2 are 

used to denote the mass and mixture fractions of the char and volatiles streams, respectively. 

Like all mixture fractions here, 𝑓𝑓1 and 𝑓𝑓2 sum to one minus the oxidizer mixture fraction (𝑓𝑓0). 

The mass fractions of the major elements in the combustion system can again be calculated using 

the elemental mixture fractions in Equations 8-10 to 8-14: 

 𝑍𝑍𝐶𝐶𝐷𝐷𝐷𝐷 = 𝑊𝑊𝐶𝐶 �
𝑐𝑐𝐶𝐶,1𝑒𝑒1
𝑊𝑊1

+ 𝑐𝑐𝐶𝐶,2𝑒𝑒2
𝑊𝑊2

+ 𝑐𝑐𝐶𝐶,0(1−𝑒𝑒1−𝑒𝑒2)
𝑊𝑊0

� (8-10) 

 𝑍𝑍𝐻𝐻𝐷𝐷𝐷𝐷 = 𝑊𝑊𝐻𝐻 �
𝑐𝑐𝐻𝐻,1𝑒𝑒1
𝑊𝑊1

+ 𝑐𝑐𝐻𝐻,2𝑒𝑒2
𝑊𝑊2

+ 𝑐𝑐𝐻𝐻,0(1−𝑒𝑒1−𝑒𝑒2)
𝑊𝑊0

� (8-11) 

 𝑍𝑍𝑂𝑂𝐷𝐷𝐷𝐷 = 𝑊𝑊𝑂𝑂 �
𝑐𝑐𝑂𝑂,1𝑒𝑒1
𝑊𝑊1
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𝑊𝑊0

� (8-12) 

 𝑍𝑍𝑁𝑁𝐷𝐷𝐷𝐷 = 𝑊𝑊𝑁𝑁 �
𝑐𝑐𝑁𝑁,1𝑒𝑒1
𝑊𝑊1

+ 𝑐𝑐𝑁𝑁,2𝑒𝑒2
𝑊𝑊2

+ 𝑐𝑐𝑁𝑁,0(1−𝑒𝑒1−𝑒𝑒2)
𝑊𝑊0

� (8-13) 

 𝑍𝑍𝐴𝐴𝐷𝐷𝐷𝐷 = 𝑊𝑊𝐴𝐴 �
𝑐𝑐𝑆𝑆,1𝑒𝑒1
𝑊𝑊1

+ 𝑐𝑐𝑆𝑆,2𝑒𝑒2
𝑊𝑊2

+ 𝑐𝑐𝑆𝑆,0(1−𝑒𝑒1−𝑒𝑒2)
𝑊𝑊0

� (8-14) 

 

where 𝑍𝑍𝐶𝐶𝐷𝐷𝐷𝐷 is the elemental mixture fraction of carbon in a two-mixture fraction system (note, the 

superscript 𝐷𝐷𝐷𝐷 is used here to differentiate from a squared value, to indicate that the elemental 

mixture fraction describes that of a two-mixture fraction system), and the other variables are 
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extensions of those previously described. Like the one-mixture fraction comparison, the five 

elemental mixture fractions sum to one and would simplify based on the oxidizer gases used. In 

addition to the two fuel mixture fractions, there are also two independent equivalence ratios that 

can be used to determine the amount of oxidizer in the system, shown in Equations 8-15 and 8-

16: 

 𝜙𝜙1 =
𝑛𝑛1
𝑛𝑛0

�𝑛𝑛1𝑛𝑛0
�
𝑠𝑠𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐ℎ

 (8-15) 

 𝜙𝜙2 =
𝑛𝑛2
𝑛𝑛0

�𝑛𝑛2𝑛𝑛0
�
𝑠𝑠𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐ℎ

 (8-16) 

 

with subscripts of 0, 1, and 2 describing the moles of oxidizer, char, and volatiles, respectively. 

8.2.3 Three-Mixture Fraction Comparison 

 The three-mixture fraction comparison adds a third fuel mixture fraction. Like the two-

mixture fraction comparison, three mixture fractions generally are not useful in most simple 

hydrocarbon combustion applications. Coal combustion systems, however, might benefit from 

three mixture fractions. The total volatiles can be further divided into two additional categories: 

tars and light gases. This leads to three total fuel streams—one for the char, one for the tar, and a 

third for the light gases. The three fuel streams are described by three fuel mixture fractions, 

shown in Equations 8-17 to 8-19: 

 𝑓𝑓1 = 𝐴𝐴1
𝐴𝐴0+𝐴𝐴1+𝐴𝐴2+𝐴𝐴3

 (8-17) 

 𝑓𝑓2 = 𝐴𝐴2
𝐴𝐴0+𝐴𝐴1+𝐴𝐴2+𝐴𝐴3

 (8-18) 

 𝑓𝑓3 = 𝐴𝐴3
𝐴𝐴0+𝐴𝐴1+𝐴𝐴2+𝐴𝐴3

 (8-19) 
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where a subscript of zero again describes the oxidizer stream values, a subscript of 1 corresponds 

to the char stream, a subscript of 2 details the tar stream, and a subscript of 3 indicates the light 

gas stream. All three fuel mixture fractions and the oxidizer mixture fraction (𝑓𝑓0) again sum to 1. 

The mass fractions of each element in the mixture can again be found by calculating the 

elemental mixture fractions, in Equations 8-20 to 8-24: 

 𝑍𝑍𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑊𝑊𝐶𝐶 �
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where 𝑍𝑍𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷 describes the elemental mixture fraction of carbon in a three-mixture fraction system 

(note, the superscript 𝐷𝐷𝐷𝐷𝐷𝐷 is used to differentiate from a cubed value, to indicate that the elemental 

mixture fraction describes that of a three-mixture fraction system), and the remaining variables 

are likewise extensions of those described in the one- and two-mixture fraction comparisons. 

Additionally, there are three independent equivalence ratios in a three-mixture fraction system: 

 𝜙𝜙1 =
𝑛𝑛1
𝑛𝑛0

�𝑛𝑛1𝑛𝑛0
�
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 𝜙𝜙3 =
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𝑛𝑛0
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�
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8.2.4 Equilibrium Programs 

 Section 2.3.4 gives a brief introduction to the two equilibrium programs used here 

(NASA-CEA and Cantera), however, this analysis required the introduction of a few novel 

subroutines to Cantera. While the NASA-CEA program has been used to calculate the 

equilibrium states of many types of fuels (including solid fuels), Cantera requires a solid-fuel 

mechanism. Cantera is not natively set up to deal with solid fuels, so the mechanism subroutine 

uses the elemental composition, enthalpy of formation, and the reference temperature at which 

the enthalpy of formation is calculated. These inputs are used to develop coefficients for the 

polynomial thermodynamic property models Finally, the thermodynamic coefficients and other 

relevant information are included in a solid-fuel mechanism file. This solid-fuel mechanism 

generator subroutine can be used to generate mechanism files for any coal-based fuels. 

 Some instabilities were observed in Cantera equilibrium calculations when just the coal 

mechanism files were used. To eliminate these instabilities, the Cantera mechanism for solid 

carbon (graphite) had to be introduced along with mechanism files for unreacted coal (or other 

solid fuel) and combustion/background gases. Additional mechanism files were created for coal 

surrogate and combustion gases. 

 A second subroutine was created around the Cantera solver to iterate over the range of 

equivalence ratios for each fuel stream. The mixture fractions were calculated at each 

equivalence ratio and for each equilibrium state. The additional subroutine made the Cantera 

calculations more convenient, especially for the two- and three-mixture fraction comparisons. 

8.2.5 Experimental Data 

 Experimental data were gathered from several sources based on the following criteria: (a) 

reported elemental compositions must be reported on a dry, ash-free (DAF) basis or enough 
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information  provided to calculate the elemental compositions on a DAF basis; (b) heating values 

(enthalpies of combustion) must be reported on a DAF basis, or enough information provided to 

calculate them on a DAF basis; (c) comparisons using two mixture fractions must have average 

elemental compositions and heating values for both char and either tar or total volatiles; and (d) 

data for the three-mixture fraction comparison must have enough information to calculate 

elemental compositions and heating values for coal char, tar, and light gas. A review of a large 

set of experimental heating values was reported by Richards et al. (2021), and all coal-based 

fuels were taken from that data set. Some common coal surrogate gases are also used here. All 

fuels used, along with their respective sources, are described in Table 8-1. 

 

Table 8-1. Fuels Used in the Mixture Fraction Analysis 

Fuel No. Fuel Name Source Coal Rank 
F-1 Graphite Perry’s Handbook (Green, 1984) N/A 
F-2 Benzene Perry’s Handbook (Green, 1984) N/A 
F-3 Methane Perry’s Handbook (Green, 1984) N/A 
F-4 Ethane Perry’s Handbook (Green, 1984) N/A 
F-5 Ethylene Perry’s Handbook (Green, 1984) N/A 
F-6 Pittsburgh #8 (Pitt 8) Coal Proscia et al. (1994) HVA 
F-7 Lower Kittanning Coal Proscia et al. (1994) LVB 
F-8 Millmerran Coal Edwards et al. (1983) Subbituminous 
F-9 Liddell Coal Edwards et al. (1983) Bituminous 
F-10 Mammoth Seam Coal Miller (2017a) Anthracite 
F-11 Beulah Zap Coal Miller (2017a) Lignite 
F-12 Buck Mountain Coal Miller (2017a) Anthracite 
F-13 #8 Leader Seam Coal Miller (2017a) Anthracite 
F-14 #8 Seam Coal Miller (2017a) Semi-anthracite 
F-15 Gunnison Coal Miller (2017a) Semi-anthracite 
F-16 L. Spadra Coal Miller (2017a) Semi-anthracite 

 

 All 16 fuels were used in the one-mixture fraction comparison, with fewer in the two-

mixture fraction comparison, and only one (F-6, Pitt 8) used in the three-mixture fraction 
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comparison. The fuel cases for each mixture fraction comparison are described in the Results and 

Discussion section. 

 While the elemental compositions and heating values of most of the fuels listed in Table 

8-1 can be found in Richards et al. (2021) and Appendix B, a brief summary of some of the 

compositional differences between fuels used here is warranted. Table 8-2 shows the DAF wt.% 

of carbon, hydrogen, oxygen, nitrogen, and sulfur for a few of the coal-based fuels. This table is 

to illustrate some of the compositional differences that occur between different coal-based fuels, 

including different coals, chars, and tars. 

 

Table 8-2. Summary of Elemental Composition of Some Coal-Based Fuels 

Fuel No. Fuel Name C H O N S 
F-6 Pitt 8 Coal 82.36 5.51 8.56 1.65 1.92 
F-6a Pitt 8 Char 83.01 5.24 8.23 1.68 1.84 
F-6b Pitt 8 Tar 85.02 6.40 5.68 1.63 1.27 
F-6c Pitt 8 Volatiles 78.65 7.05 10.47 1.48 2.35 
F-6d Pitt 8 Light Gases 49.18 10.06 32.66 0.78 7.32 
F-8 Millmerran Coal 78.40 6.70 13.10 1.20 0.60 
F-11 Beulah Zap Coal 73.10 4.50 20.60 1.00 0.80 
F-12 Buck Mountain 

Coal 
90.80 2.60 5.20 0.80 0.60 

 

 Different coals and coal-based fuels have very different compositions, and this affects the 

compositions of combustion gases at equilibrium. The coal surrogate gases vary even more, with 

none having any oxygen, nitrogen, or sulfur as part of the fuel. 

8.2.6 Equilibrium Calculation and Turbulent Mixing Procedure 

 The one-mixture fraction analysis used both the Cantera and NASA-CEA programs. The 

NASA-CEA code is trusted in the coal community for evaluating equilibrium states of coal-

based fuels, so it is used to evaluate Cantera as a viable alternative for calculating equilibrium 
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states. Both equilibrium programs require similar inputs depending on if the fuel is included in 

the program data or is user-defined. Simple fuels are included in the NASA-CEA code and are 

directly available to Cantera via provided mechanism files; these include all five of the surrogate 

gases: graphite (carbon solid), benzene, methane, ethane, and ethylene. These simple fuels 

include all the composition and thermochemical properties required for the respective 

equilibrium programs. User-defined compounds need two main parameters for both programs: 

elemental composition (CHONS, on either a mass or mole basis) and an enthalpy (or heat) of 

formation. For most coal-based fuels, elemental compositions and heats of combustion (also 

called heating values) are reported for each fuel. Heats of formation can then be calculated for 

each fuel by converting from heating values by assuming complete combustion, as shown in 

Equations 2-1 and 2-2, with the overall heat of reaction shown in Equation 8-28. 

 Δ𝐻𝐻𝑟𝑟 = �∑ 𝜈𝜈𝑖𝑖Δ𝐻𝐻𝑖𝑖,𝑒𝑒𝑖𝑖
𝑖𝑖=1 �

𝑣𝑣𝑟𝑟𝑐𝑐𝑑𝑑
− �∑ 𝜈𝜈𝑖𝑖Δ𝐻𝐻𝑖𝑖,𝑒𝑒𝑖𝑖

𝑖𝑖=1 �
𝑟𝑟𝑒𝑒𝑐𝑐𝑐𝑐𝑖𝑖

 (8-28) 

 

where Δ𝐻𝐻𝑟𝑟 is the enthalpy of reaction (also called heating value), 𝜈𝜈𝑖𝑖 is a generic stoichiometric 

coefficient of compound 𝑖𝑖, Δ𝐻𝐻𝑖𝑖,𝑒𝑒 is the enthalpy of formation of compound 𝑖𝑖, subscripts 𝑝𝑝𝑒𝑒𝑜𝑜𝑑𝑑 

and 𝑒𝑒𝑒𝑒𝑎𝑎𝑐𝑐𝑡𝑡 refer to products (CO2, H2O, etc.) and reactants (fuel and O2), respectively. 

 Equilibrium calculations require a pressure, an energy content, and a starting 

composition, which in this case can be an elemental composition of the mixture. The mixture 

fraction approach enables calculation of the combined energy content and elemental composition 

of a mixture. The mixture fractions for each fuel and oxidizer stream are calculated at each 

location in a simulation using the appropriate transport equations and the turbulent mixing 

model. These mixture fractions represent the fraction of mass that originated in each fuel or 

oxidizer stream in a local eddy (introduced in Section 2.3.5), permitting calculation of the of the 
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mixture elemental composition and energy content, which in turn permits an equilibrium 

temperature and composition for that mixture. The NASA-CEA code allows the input of a list of 

fuel mixture fractions (or even equivalence ratios), which makes calculating the equilibrium 

states using NASA-CEA very convenient. Cantera calculations require the total amount of 

oxidizer (on a mass or moles basis), which can be found either using the equivalence ratio or fuel 

mixture fraction. 

 Equilibrium calculations using the one-mixture fraction approach were performed for a 

range of equivalence ratios from 0.1 (fuel-lean) to 3 (fuel-rich), with a greater number of points 

around the stoichiometric point (equivalence ratio of 1). The one-mixture fraction comparison 

used this equivalence ratio range to calculate the total air necessary to calculate equilibrium 

states for each fuel and to approximate the differing local eddy compositions. 

 The procedure became more complicated with the two- and three-mixture fraction 

analyses. Because the analysis used a range of equivalence ratios rather than mixture fractions to 

determine the appropriate amounts of air for each fuel, a separate “mixing condition” was used to 

determine the ratio of the fuel streams and fully explore the range of possible local eddy 

compositions. If the fuel mixture fraction was used instead of the equivalence ratio, this fuel 

mixing condition would not be necessary. This fuel mixing condition is simply how much of 

each fuel stream is present prior to mixing with the oxidizer stream. The fuel mixing condition is 

allowed to vary between 0 and 1, with the sum of the fuel stream percentages not exceeding 1.0. 

 In a two-mixture fraction system, there are two extremes in local eddy compositions with 

respect to the fuel streams: (a) pure fuel 1 (mass of gas originating in the char) with no fuel 2 

(volatiles); and (b) pure fuel 2 (volatiles) with no fuel 1 (mass from char). The first extreme 

would be defined as a fuel mixing condition of 0, which means that the fuel composition of the 
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local eddy only consists of fuel 1 (char). The other extreme would correspond to a fuel mixing 

condition of 1, or 100 percent volatiles in the local eddy. To span this fuel mixing space of local 

eddy compositions, five main fuel mixing cases were created with fuel ratios corresponding to 0, 

25, 50, 75, or 100% volatiles (called 𝑌𝑌𝑣𝑣𝑐𝑐𝑐𝑐). This means that at 0% volatiles, the fuel is 100% mass 

from the char, and vice-versa. Additionally, the reported pyrolysis yield for each coal was used 

as a sixth fuel mixing ratio (between 10 and 60% depending on the fuel and pyrolysis 

conditions). Air was added to each fuel stream to vary the equivalence ratio independently 

between 0.1 and 3, with the total amount of oxidizer being a combination of the two equivalence 

ratios. This procedure was followed for all six fuel mixing ratios for the coal-based fuels with 

only five for the surrogate fuels. Following this procedure allows for better conformation to local 

eddy compositions without adding too much complexity. 

 The three-mixture fraction comparison was slightly more complex, but a similar 

procedure to the two-mixture fraction comparison was followed to span the three-mixture 

fraction fuel mixing space of local eddy compositions. The three fuel streams (char, tar, and light 

gas) were allowed to mix with the same six values as the two-mixture fraction comparison (i.e., 

0, 25, 50, 75, and 100%, as well as the reported pyrolysis yield of char, tar, and light gas). There 

are, however, two constraints placed on these fractions: (a) the three fuel fractions sum to one 

(this constraint is the same for both two- and three-mixture fraction methods) and (b) all fuel 

fractions must be between 0 and 1 (no negative numbers). Air was added to each fuel stream to 

vary the equivalence ratio between 0.1 and 3 for each fuel stream independently. This allows for 

the calculation of the total amount of air at each mixing condition and equivalence ratio. Like the 

two-mixture fraction method, this procedure allows for the spanning of the entire local eddy 

composition range. This procedure generated six total fuel mixing conditions for each two-
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mixture fraction comparison and 21 for each three-mixture fraction comparison. While these 

procedures allow for the complete eddy composition range, not all of the compositions in the 

entire range will be observed experimentally or in a realistic simulation. 

 Using the elemental compositions and enthalpies of formation for each fuel, and setting 

the pressure to one atmosphere, the equilibrium programs were used to calculate the 

compositions of a large number of combustion gases for each equilibrium state. This analysis 

used six key variables from each equilibrium state to compare between fuels and mixture fraction 

methods:  temperature and the mole fractions of O2, CO2, CO, H2O, and graphite (i.e., solid 

carbon). This equilibrium temperature is an adiabatic temperature and does not account for any 

heat loss that might be observed in any real-world combustion applications. 

 Several statistical parameters (Richards et al., 2019; Richards et al., 2021) were used to 

quantify error between the equilibrium states calculated by both NASA-CEA and Cantera, 

however, only one is presented here:  the root-mean-square error (RMSE, otherwise known as 

the L2 norm), found in Equation 2-15. The additional statistical parameters can be found in 

Appendix E. 

 The equation for RMSE is a statistical parameter where experimentally observed and 

model prediction values are generally used in place of the “true” and “questioned” values, 

respectively. Both NASA-CEA and Cantera give predicted values for equilibrium states, so in 

order to adequately compare NASA-CEA to Cantera, in this analysis the NASA-CEA values are 

considered to be the “true” values and the Cantera are the “questioned” values. This distinction is 

not as important with the RMSE; however, it does make a slight difference in other statistical 

parameters (see Appendix E). 
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 Results and Discussion 

 The results are discussed based on the number of fuel mixture fractions considered, 

starting with the one-mixture fraction comparison, followed by the two-mixture fraction 

comparison, and finally the three-mixture fraction approach compared to the one- and two-

mixture fraction approaches. Each section consists of a description of the fuels used for each 

case. After the results are presented and discussed, a final section summarizes the key findings 

and discusses application to physical processes. Additional details and discussion are found in 

Appendix E. 

8.3.1 One Mixture Fraction 

 The one-mixture fraction approach breaks the components into one fuel stream (e.g., 

coal) and one oxidizer stream (air). These two streams are mixed in different proportions 

according to the equivalence ratio. The fuels used in the one-mixture fraction analysis are listed 

in Table 8-3. 

 

Table 8-3. One-Mixture Fraction Fuel Cases 

Case No. Fuel No. Fuel Name Coal Rank 
1-1 F-1 Graphite N/A 
1-2 F-2 Benzene N/A 
1-3 F-3 Methane N/A 
1-4 F-4 Ethane N/A 
1-5 F-5 Ethylene N/A 
1-6 F-6 Pitt 8 Coal HVA 
1-7 F-6a Pitt 8 Char HVA, char 
1-8 F-6b Pitt 8 Tar HVA, tar 
1-9 F-7 Lower Kittanning Coal LVB 
1-10 F-8 Millmerran Coal Subbituminous 
1-11 F-9 Liddell Coal Bituminous 
1-12 F-10 Mammoth Coal Anthracite 
1-13 F-11 Beulah Zap Coal Lignite 
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Table 8-3. One-Mixture Fraction Fuel Cases, CONTINUED 

Case No. Fuel No. Fuel Name Coal Rank 
1-14 F-12 Buck Mountain Coal Anthracite 
1-15 F-13 #8 Leader Seam Coal Anthracite 
1-16 F-14 #8 Seam Coal Semi-anthracite 
1-17 F-15 Gunnison Coal Semi-anthracite 
1-18 F-16 L. Spadra Seam Coal Semi-anthracite 

 

 Two main questions were addressed in the one-mixture fraction comparison: (1) how 

closely do the results from the NASA-CEA and Cantera programs compare to each other; and (2) 

what is the difference between the various coal surrogates and several different coal types? The 

comparison between the NASA-CEA and Cantera programs is briefly discussed first followed by 

a comparison of the different cases from Table 8-3. 

8.3.1.1  NASA-CEA vs. Cantera 

 The NASA-CEA equilibrium code has been widely used in the coal community over the 

years and is considered a standard in coal equilibrium calculations, but Cantera offers flexibility 

that makes its integration into existing codes beneficial for large-scale simulations. This study 

was therefore performed to determine how closely the Cantera results align with the NASA-CEA 

results. 

 Both Cantera and NASA-CEA were used to calculate equilibrium states for all fuel cases 

listed in Table 3, comparing temperature and the mole fractions of O2, CO2, CO, H2O, and 

graphite (solid carbon). Figure 8-1 shows the root-mean-square error (RMSE) between the 

NASA-CEA and Cantera results (additional error analysis is given in Appendix E). Note that this 

is the RMSE over the entire range of equivalence ratio ranging from 0.1 to 3.0. 
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Figure 8-1. RMSE between NASA-CEA and Cantera Results 

 

 For the most part, there is good agreement between the NASA-CEA and Cantera results, 

however, a few of the highest rank coals (anthracites and semi-anthracites), the RMSE is quite 

high. From the statistical summary in Figure 8-1, it is unclear if those spikes in RMSE are a 

result of the deviation of a single point or multiple points in the equivalence ratio range. Results 

from NASA-CEA and Cantera were plotted against each other for each fuel over the range of 

equivalence ratios to determine where the deviations occur. Figure 8-2 shows an example of 

good agreement between NASA-CEA and Cantera (Pitt 8 coal, case number 1-6) and poor 

agreement (Mammoth seam coal, case number 1-12) for equilibrium temperature and the mole 

fractions of H2O and graphite. These parameters help to illustrate the reason for the deviation 

between NASA-CEA and Cantera and in which conditions the deviations occur. The lines are 
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from NASA-CEA and the points are from Cantera. More detail on these equilibrium 

comparisons is found in Appendix E. 

 

 

Figure 8-2. Comparison of NASA-CEA (lines) to Cantera (markers) results: (a) Temperature, (b) 
H2O mole fraction, and (c) graphite mole fraction. 

 

 The statistical results shown in Figure 8-1 give an overall picture as to which fuels 

exhibit poor agreement. However, the poor agreement occurs only in fuel-rich conditions where 

𝜙𝜙 > 1.5, as illustrated in Figure 8-2. While the disagreement between the NASA-CEA and 

Cantera results could be from a numerical error (like a lack of convergence or similar errors), 

none of the fuels compared here exhibited any obvious numerical errors. NASA-CEA converts 

all unreacted fuel to graphite (indicated by the higher graphite mole fractions at higher 

equivalence ratios) whereas Cantera tends to leave some portion of the higher rank coals as 

unreacted fuel with the same composition and energy properties. This is likely because of the 

way the Cantera equilibrium solver was set up to reduce numerical instabilities, which included 

separate mechanisms for the combustion gases, graphite, and the solid fuel. Because Cantera 

leaves some of the material as unreacted coal instead of converting it to graphite, the amount of 

graphite present at the highest equivalence ratios as well as the amounts of the other equilibrium 
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products are decreased. The unreacted coal “species” contains higher amounts of hydrogen, 

oxygen, and other atoms than graphite. The disparity between NASA-CEA and Cantera only 

seems to occur with some higher rank coals. Most modern applications of coal combustion will 

fall outside of these extreme conditions when looking at the system as a whole, save for 

gasification or other specialized processes. However, there will likely be regions that are locally 

very fuel rich, especially in regions of coal pyrolysis where there are typically low 

concentrations of oxidizing gases close to the coal. Even with these few cases of deviation 

between NASA-CEA and Cantera, there is a low instance of disparity overall, which means 

Cantera can be used to adequately calculate the equilibrium states of multiple mixture fraction 

systems (with the exception of a few of the highest rank coals), which is more difficult to do with 

the stand-alone NASA-CEA code. 

8.3.1.2  Full Fuel Comparison 

 The second question addressed by the one-mixture fraction comparison was to ascertain 

the difference between coal types and various coal surrogate gases. Coal surrogate gases such as 

gases with chemical and physical properties of graphite, benzene, methane, ethylene and others 

have been used in the place of coal and coal-based fuels (Fletcher, 2019). While these can be 

used in a combination to reach the correct atomic ratios, reaction and bond energies are harder to 

get correct, leading to inaccuracies in temperature and other important equilibrium factors. 

Surrogate gas enthalpies can be adequately matched to coal-specific values by changing the 

surrogate gas temperature to obtain the correct enthalpy, however, this can result in gas 

temperatures that are outside the bounds of the curve fits for the polynomial thermodynamic 

models, leading to inaccurate thermodynamic property predictions. The surrogates used in this 
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analysis do not have adjusted enthalpies but are instead used as a direct substitute for coal-based 

fuels. 

 To address these inaccuracies and to get an idea of how much error might be introduced 

into a large-scale simulation by using these simplifying assumptions, all fuel cases from Table 3 

were directly compared against each other using equilibrium temperature and the mole fractions 

of O2, CO2, CO, H2O, and graphite. Figure 8-3 shows the NASA-CEA results for equilibrium 

temperature, plotted using both the equivalence ratio and fuel mixture fraction. While this figure 

shows the results from the NASA-CEA code, the results from Cantera were virtually identical. 

 

 

Figure 8-3. Equilibrium temperature calculations by the NASA-CEA code for all fuel cases: (a) 
vs. equivalence ratio and (b) vs. fuel mixture fraction. 

 

 Equilibrium temperature is strongly influenced by fuel type used, especially at or above 

stoichiometric mixtures. The peak temperature usually occurs at a mixture just fuel rich of the 

stoichiometric point and the difference is around 400 to 500 K between the highest temperature 

fuel (ethylene) and the lowest temperature fuel (Mammoth seam anthracite). The temperature 

difference is even greater in the fuel-rich conditions (φ > 1). For most fuels, the difference is 
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minimal at very fuel lean conditions (𝜙𝜙 ≤ 0.5), likely due to fuel being very dilute compared to 

the oxidizer. Using the fuel mixture fraction complicates the comparison slightly, shifting the 

peak temperatures to the left and right while keeping the peak temperature value the same (see 

Figure 8-3b). Equations 8-1 and 8-7 indicate a relationship between the component mixture 

fraction and equivalence ratio, however, they can’t be substituted on a one-to-one basis. The 

mixture fraction depends on mass whereas the equivalence ratio depends on moles. Dividing the 

component mixture fraction at each equivalence ratio by the mixture fraction at stoichiometric 

conditions collapses the curves in a manner similar to that of using the equivalence ratio. The 

comparison vs. equivalence ratio therefore makes the comparison simpler and will be used in the 

remainder of this section. See Appendix E for the remainder of the comparison vs. fuel mixture 

fraction. 

 The O2 mole fraction comparisons did not show a lot of variability between fuels and are 

not shown in this chapter (see Appendix E). This lack of variability in equilibrium O2 between 

the fuels is because most of the oxygen comes from the air with little to none from the fuel. This 

is shown using Equation 2-1 and Table 8-2. Even in coals and other complex fuels (such as 

biomass), oxygen is not typically present in significant mole fractions (see also Chapter 6). 

 Figure 8-4 shows the CO2 and CO mole fractions vs. equivalence ratio for the different 

fuels. There is wide variability in the equilibrium CO2 mole fraction depending on which fuel is 

used, especially around stoichiometric conditions, which is where most industrial coal furnaces 

operate. Many of the coals fall in the middle range of the peak CO2 mole fraction, with the coal 

surrogates lying toward both the top and bottom. The fraction of CO2 would depend on the 

carbon content of the original fuel, with fuels enriched in carbon (high rank coals and graphite) 

generally having an increased CO2 and CO content. The CO2 content greatly influences the 
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overall heat transfer properties of a coal boiler since CO2 blocks a lot of radiative heat transfer in 

the gaseous environment. Generally, the ratio between CO2 and CO are dependent on local gas 

temperature and local oxygen content. 

 

 

Figure 8-4. Equilibrium CO2 and CO mole fraction calculations by the NASA-CEA code for all  
fuel cases: (a) CO2 mole fraction vs. equivalence ratio and (b) CO mole  
fraction vs. equivalence ratio. 

 

 The CO mole fraction only becomes significant near stoichiometric conditions and 

moving into fuel rich conditions. This makes sense from a combustion perspective because there 

is less oxygen to completely oxidize the carbon in fuel rich conditions. The difference in 

calculated CO between fuels also increases at higher equivalence ratios. The decrease in CO (and 

increase in CO2) at φ > 2 is thought to be due to lower temperatures as well as the presence of 

graphite and unreacted fuel. 

 The H2O and graphite mole fraction comparisons are shown in Figure 8-5. The H2O mole 

fraction varies widely based on what fuel is used, from no H2O with graphite to almost 20 mol% 

at the peak with methane. The amount will vary based solely on the amount of hydrogen in the 
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original fuel since there is no additional hydrogen in the air. Also like the CO2 mole fraction, the 

amount of water in a gaseous environment greatly influences the radiative heat transfer of the 

system. The equilibrium H2O compositions for most coals again fall in the middle range of all 

fuels, with several surrogate gases lying to the extreme highs and lows of H2O compositions. 

 

 

Figure 8-5. Equilibrium H2O and graphite mole fraction calculations by the NASA-CEA code for  
all fuel cases: (a) H2O mole fraction vs. equivalence ratio and (b) graphite mole  
fraction vs. equivalence ratio. 

 

 Graphite only shows up in the most fuel rich conditions, acting as a surrogate for 

“unreacted” fuel, char, and soot, with most fuel cases only showing graphite formation at 

equivalence ratios of 2 and higher. Unreacted fuel is almost always a problem if it is present at 

the end of combustion, especially when attempting to obtain the maximum amount of energy 

from a fuel. 

 Using simple hydrocarbons as surrogate gases for coal and coal-based fuels (char, tar, 

light gases, etc.) makes equilibrium calculations simpler and faster. However, using these 

surrogates as a direct replacement for coal-based fuels introduces a large amount of variability, 
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especially at higher equivalence ratios (extreme fuel-rich conditions). This is particularly the 

case for CO2 and H2O content, and to a lesser degree equilibrium temperature and CO content. 

The majority of the inconsistencies between real coal values and surrogate gases could perhaps 

be mitigated to a degree by dialing in the enthalpy of the surrogates by changing the reference 

temperature at which the enthalpy is calculated, however, this could potentially lead to 

improbable or even impossible temperatures. For these reasons, it is much better to use the actual 

physical and chemical properties of the coal (when available) instead of simplifying it with a 

surrogate gas. 

8.3.2 Two Mixture Fractions 

 The two-mixture fraction comparison breaks the fuel stream into two separate streams, 

one for mass originating in the char and one for the volatiles. Like the one-mixture fraction 

comparison, there are two main questions addressed by the two-mixture fraction comparison: (1) 

how close are the results using the reported tar properties rather than full volatiles (by combining 

tar and light gas properties) and (2) can char and volatile surrogate gases be used in the place of 

real char and volatiles properties? The first question is raised because some pyrolysis 

experiments report only tar yields, compositions, and heating values but not light gas properties 

with which to calculate values for the total volatiles. Table 8-4 shows the fuel cases tested in the 

two-mixture fraction comparison. Note that Cantera was the only equilibrium program used in 

this comparison as a matter of convenience. 

 To get the whole range of fuel mixing conditions, equilibrium states for each case were 

calculated in the equivalence ratio range of 0.1 to 3 for each of 5 or 6 fuel mixing conditions 

ranging from no volatiles to all volatiles (Yvol = 0, 25, 50, 75, and 100% of the fuel, and the 

reported volatiles yield for each of the coals, which is an intermediate percentage between 10 and 
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Table 8-4. Two-Mixture Fraction Fuel Cases 

Case 
No. 

Char Volatiles Reported 
Volatiles Yield 

2-1 Graphite Benzene  
2-2 Graphite Methane  
2-3 Graphite Ethane  
2-4 Graphite Ethylene  
2-5 Pitt 8 Char (Low Temperature) Pitt 8 TAR (Low Temperature) 0.1491 
2-6 Pitt 8 Char (High Temperature) Pitt 8 TAR (High Temperature) 0.4102 
2-7 Pitt 8 Char (Low Temperature) Pitt 8 VOLATILES (Low 

Temperature) 
0.1491 

2-8 Pitt 8 Char (High Temperature) Pitt 8 VOLATILES (High 
Temperature) 

0.4102 

2-9 Millmerran Char (High 
Temperature) 

Millmerran TAR (High 
Temperature) 

0.545 

2-10 Millmerran Char (High 
Temperature) 

Millmerran VOLATILES (High 
Temperature 

0.545 

2-11 Millmerran Char (Low 
Temperature) 

Millmerran TAR (Low 
Temperature) 

0.313 

2-12 Millmerran Char (Low 
Temperature) 

Millmerran VOLATILES (Low 
Temperature) 

0.313 

 

60% of the DAF coal depending on pyrolysis conditions and coal type). The same variables of 

interest used in the one-mixture fraction comparison (temperature and the mole fractions of O2, 

CO2, CO, H2O, and graphite) were compared for all cases listed in Table 8-4. 

8.3.2.1 Temperature 

 To illustrate the temperature profiles for each fuel mixing condition, Figure 8-6 shows 

contour plots of the equilibrium temperature for two fuel cases (2-1, graphite and 2-8, Pitt 8 coal) 

for all fuel mixing conditions. The columns represent the percent of the fuel that was volatiles 

(vs. char) and the rows represent the given fuel considered. 

 Only two cases were used here to demonstrate the trends between cases and fuel mixing 

ratios. The plots for the other cases listed in Table 8-4 are found in Appendix E. A given column 

in Figure 8-6 shows a given fuel mixing condition for each type of fuel. The general shapes are  
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Figure 8-6. Equilibrium temperature calculations by Cantera. 

 

similar, however, there are slight differences, especially with a higher volatiles mixture (Yvol ≥ 

75%). The difference in shape of the temperature curves is more pronounced between the coal-

based fuels and the simpler surrogate gas fuels (not shown) but is less pronounced among the 

coal-based fuels, which is similar to the trends observed in the one-mixture fraction comparison. 

In addition, the simpler fuels tend to have higher temperatures than the coal-based fuels, 

particularly around stoichiometric conditions. Figure 8-7 shows the peak temperature ranges of 

all fuel cases listed in Table 8-4. The circles for each case represent the peak equilibrium 

temperature for each value of Yvol. For example, the peak temperatures in each of the subplots in 

Figure 8-6 for Case 2-8 range from 2250 K for Yvol = 0 to almost 2400 K for Yvol = 1. These 

temperature differences, even small differences, can potentially impact the accuracy of large-

scale simulations, especially in fuel-rich conditions where the difference is more pronounced. 

 The first part of this analysis was to determine if measured tar properties could 

reasonably be used as a surrogate for the total volatiles. There were four comparisons between 

tar and total volatiles:  1) cases 2-5 and 2-7, 2) cases 2-6 and 2-8, 3) cases 2-9 and 2-10, and 4) 

cases 2-11 and 2-12. Figure 8-7 shows that there is enough variability between the tar and  
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Figure 8-7. Peak temperature range for all fuel cases. 

 

volatiles cases that it is not a good idea to use tar instead of total volatiles. For example, the 

temperature range for case 2-6 spans less than 50 K while that for case 2-8 spans almost 150 K. 

Most of the similarity in the calculated temperatures comes from the char-only fuel mixtures 

(black circles, where Yvol = 0). The extremes of char-only (black circles) and volatiles-only 

(yellow circles, Yvol = 1) fuel mixtures would fall directly in line with the one-mixture fraction 

results using char-only or volatiles-only fuels. The one-mixture fraction results using the original 

coal properties of fuel would likely be better compared to the two-mixture fraction results where 

the char and volatiles are more evenly split (close to a Yvol of 0.5) or the pyrolysis yield results 

(e.g., Yvol of 0.4102). 

 The peak temperature depends highly on the fuels used in the two-mixture fraction 

system. Some mixtures have larger ranges (2-8, which uses the measured properties of high 
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temperature Pitt 8 pyrolysis products), while many others have much smaller ranges. Some of the 

surrogate gas cases are encompassed by the measured coal-based fuel cases, but others have no 

overlap. There is a large variability in the range and limits of equilibrium temperature depending 

highly on the fuels used. While these are peak adiabatic temperatures, which occur near φtot = 1, 

the discrepancies due to the fuel assumption would likely be very similar when used in real, non-

adiabatic systems. 

8.3.2.2  O2 Mole Fraction 

 The mole fractions of the key combustion-related species at equilibrium were also 

compared in graphs like Figure 8-6 and Figure 8-7. Like the one-mixture fraction comparison, 

the O2 mole fraction does not differ much between fuel cases, so the contour plots are not shown 

here, but can instead be found in Appendix E. Because of the similarity of the equilibrium O2 

mole fractions between fuels, the shapes and ranges are all very similar. This is understandable 

because the majority of the oxygen content comes from the air, even with coal-based fuels that 

have oxygen bound in the organic matrix. The peak O2 mole fractions for each fuel case and fuel 

mixing condition are shown in Figure 8-8. 

 While Figure 8-8 seems to show a large variability in oxygen mole fraction, especially in 

the ranges between the simple coal gas surrogates (first four lines from the left) and the coal-

based fuels, the axis range makes it seem larger. The peak O2 mole fraction only ranges between 

0.187 and 0.189. In addition, these peak O2 mole fractions only occur at the lowest equivalence 

ratios, in extreme fuel-lean conditions. This shows that the equilibrium oxygen content is not 

highly dependent on the fuel used in equilibrium calculations, but more dependent on the fuel-to-

oxidizer ratio used in the combustion process. 
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Figure 8-8. Peak O2 mole fraction range for all fuel cases. 

 

8.3.2.3  CO2 Mole Fraction 

 In the one-mixture fraction comparison, the CO2 mole fraction varied highly depending 

on the fuel type used. A representative CO2 mole fraction comparison of contour plots for the 

two-mixture fraction calculations are shown in Figure 8-9 (a complete series of plots are given in 

Appendix E). 

 Like the one-mixture fraction comparison, CO2 follows the same general trend as the 

temperature curves. However, like the temperature curves, the range of peak CO2 mole fractions 

are very different for each fuel. There are major differences when comparing the coal-based 

mixtures to the coal surrogate gas mixtures. The four surrogate gas mixtures approximate the 

char as pure carbon (graphite) and the volatiles surrogate changes with each case. With more 

char (graphite), the CO2 fraction is much greater than for the coal-based mixtures at the same  
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Figure 8-9. Equilibrium CO2 mole fraction calculations by Cantera. 

 

fuel mixing conditions, whereas when the volatiles are more favored in the mixture, the CO2 

mole fraction is a lot lower than the coal-based mixtures. This is because of the large discrepancy 

in the carbon content of the coals and coal surrogate gases. Graphite is pure carbon (much higher 

in carbon than any of the coal-based fuels) and the other simple hydrocarbon fuels have a lower 

carbon fraction than the coal-based fuels. The ranges of peak CO2 mole fractions for each fuel 

case are shown in Figure 8-10. 

 The CO2 mole fraction increases when more oxygen is present for complete combustion 

to occur. However, the peak CO2 mole fraction differs from the O2 mole fraction in the overall 

range of values. The peak CO2 range is largest with the coal surrogate gases and smaller in the 

coal-based fuels, with a maximum range between 8 and 19%. Note that the coal-based fuels 

include some fuel-bound oxygen while the surrogates contain no additional oxygen. 
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Figure 8-10. Peak CO2 mole fraction range for all fuel cases. 

 

8.3.2.4  CO Mole Fraction 

 The ratio between the CO2 and CO mole fractions is dependent on both local temperature 

and O2 content. Because of this, the CO/CO2 ratio increases as φ increases until graphite starts to 

form. The CO mole fraction contours for cases 2-1 and 2-8 are shown in Figure 8-11. 

 

Figure 8-11. Equilibrium CO mole fraction calculations by Cantera. 
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 Because of the lower oxygen content, CO becomes more prevalent in fuel rich 

conditions. There is very little difference in the shape of these contours between the CO mole 

fraction from tar properties compared to the CO mole fraction of total volatiles properties. Like 

the CO2 mole fractions, the differences become slightly more pronounced with higher volatiles 

mixtures, particularly in the gradient, or how fast CO increases with increasing equivalence ratio. 

 There is a significant difference between the calculated CO of the coal-based fuels and 

the simplified surrogate gases, as seen for the CO2 mole fractions. In mixtures that are almost all 

graphite, there is a larger range of very high CO mole fractions. However, with mostly volatile 

surrogates, the CO mole fraction is much smaller than with coal-based fuels. The peak CO mole 

fraction ranges for each fuel case are shown in Figure 8-12. 

 

 

Figure 8-12. Peak CO mole fraction range for all fuel cases. 
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 The peak CO mole fraction ranges follow a very similar trend as the CO2 mole fractions, 

although with even greater ranges, from 15 to 35 mol%. The peak CO mole fractions, however, 

occur only in extreme fuel-rich conditions. This trade-off between the locations of greatest CO 

and CO2 mole fractions is because the ratio of carbon dioxide and carbon monoxide are based on 

the available oxygen and temperature of the gas environment. 

8.3.2.5  H2O Mole Fraction 

 In the one-mixture fraction comparison, the H2O mole fraction was very different 

depending on what fuel was used in the equilibrium calculations. The H2O mole fraction 

contours for the two-mixture fraction comparison are given in Figure 8-13. 

 

 

Figure 8-13. Equilibrium H2O mole fractions as calculated by Cantera. 

 

 There is a significant difference in the H2O mole fraction when using tar properties 

compared to total volatiles, and an even greater difference when using surrogate gases. It is 

worth noting in the “char only” (first column) mixtures of the surrogate fuels, the plots appear to  

be blank (solid blue). This is not a mistake, rather, the fuel mixture is entirely graphite in those 

equilibrium states, and therefore there is no fuel hydrogen to contribute to an equilibrium 
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moisture content. There is no additional hydrogen in the air, so the H2O mole fraction at 

equilibrium is entirely dependent on the hydrogen content of the original fuel. In addition, the 

moisture content of the equilibrated mixture highly influences both gasification reactions and 

radiative heat transfer in the combustion system. The peak H2O mole fraction ranges are shown 

in Figure 8-14. 

 

 

Figure 8-14. Peak H2O mole fraction ranges for all two-mixture fraction fuel cases. 

 

 The peak H2O mole fraction is highly dependent on the fuel chosen (similar to the one-

mixture fraction results) and can range from no H2O produced (graphite) to almost 20 mol% 

produced (methane). Fuels with a higher hydrogen fraction end up with a higher equilibrium 

moisture content than fuels with less hydrogen. In coal pyrolysis, the volatiles tend to become 

enriched in hydrogen, especially in the light gas species that include compounds like methane 
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(CH4), ethane (C2H6), ethylene (C2H4) and other simple hydrocarbons. Accurately determining 

where fuel hydrogen is and when it is accessible to gas-phase chemistry is very important in 

determining other heterogeneous reactions as well as radiative heat transfer. This is not as 

important with a one-mixture fraction system but becomes more important in two- or three-

mixture fraction systems. 

8.3.2.6  Graphite Mole Fraction 

 Graphite (solid carbon) was shown in the one-mixture fraction approach to only matter in 

fuel-rich conditions. Industrial combustion applications usually do not operate in such conditions 

because it usually means some of the original fuel is not being completely burned, which can 

greatly impact many aspects of a combustion apparatus. The graphite mole fraction contours for 

cases 2-1 and 2-8 are shown in Figure 8-15. 

 

 

Figure 8-15. Equilibrium graphite mole fractions as calculated by Cantera. 

 

 Like the one-mixture fraction comparison, very little graphite is formed only in the fuel-

rich cases for all two-mixture fraction fuel cases. The peak graphite mole fraction ranges for each 

two-mixture fraction case are shown in Figure 8-16. 
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Figure 8-16. Peak graphite mole fraction ranges for all two-mixture fraction fuel cases. 

 

 The ranges of peak graphite mole fractions are quite varied, with the largest ranges in the 

surrogate gases, ranging between no equilibrium graphite to 15 mol% in the pure graphite fuel 

mixtures. None of the coal-based fuels exceed 9 mol% graphite at equilibrium, and many of the 

fuel cases fall well below that percentage. Incorrectly calculating solid carbon at equilibrium 

could cause major errors in large-scale simulations, particularly in deciding how much over-fire 

air might be needed to completely burn out the original fuel. 

8.3.2.7  Discussion 

 A two-mixture fraction approach seems to be more appropriate for coal-based fuels than 

a one-mixture fraction approach. In an industrial coal boiler, the coal particles enter the hot 

environment (typically in slightly fuel rich conditions) and almost immediately begin to 

pyrolyze. The whole pyrolysis process typically lasts milliseconds with the high particle heating 
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rates of pulverized coal particles. This means that the local gas composition is a mix of oxidizer 

and volatile gases from the coal. The char remains a solid until the reactive gases can make it to 

the char surface and begin to react, adding mass from the char into the gas mixture. This means 

that coal pyrolysis and char conversion can be easily described using separate mixture fractions. 

Care must be taken when choosing the compositions and heating values of the volatiles and char. 

The results here indicate that choosing a simple volatile or char surrogate gas as a direct 

replacement for measured coal properties results in large differences in the equilibrium mole 

fractions of CO2, CO, and H2O. Much of this difference in equilibrium composition can be traced 

back to the difference in elemental compositions between fuels, as illustrated in Table 8-2. This 

is one of the key reasons why more than one mixture fraction is needed to accurately describe 

coal combustion reactions. 

8.3.3 Three Mixture Fractions 

 Because coal pyrolysis results in three main products (char, tar, and light gas), coal 

pyrolysis can be easily divided into a three-mixture fraction approach. There was only one coal 

that included enough information to calculate an average light gas composition and heating 

value—the Pitt 8 coal, specifically with low temperature pyrolysis products (char, tar, and light 

gases). Because only one fuel was used to calculate equilibrium states based on a three-mixture 

fraction system, the results for this fuel were compared against the results for the same fuel using 

both one and two mixture fractions. 

 The procedure used to set up the three-mixture fraction comparison is described in 

greater detail in the introduction and approach sections; however, it is similar to the approach 

used in the two-mixture fraction comparisons, with the fuel mixing conditions being slightly 

more complex. In this case, the fractions of char and tar were allowed to vary between 0 and 1, 
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including the measured fractions of each at the reported pyrolysis conditions. The fraction of 

light gas was the remainder of the fuel mixture, and the sum of the three fuel fractions was 

constrained to sum to one. This approach allows for the testing of different local eddy 

compositions that would occur experimentally and in large-scale simulations. The oxidizer was 

handled the same way here as in the one- and two-mixture fraction approaches. The oxidizer 

contribution for each fuel stream was allowed to vary independently in an equivalence ratio 

between 0.1 and 3, with all stream contributions weighted by the fractions of each fuel stream. 

 The one-mixture fraction approach calculated at about 20 different equilibrium states 

over the whole range of equivalence ratios for each fuel; the two-mixture fraction approach 

calculated around 2,000 equilibrium states for each fuel; and the three-mixture fraction approach 

calculated almost 150,000 equilibrium states for a single fuel. The one-mixture fraction approach 

finished in generally under a minute for each fuel; the two-mixture fraction approach took 

anywhere from an hour to a couple of days in Cantera; and the three-mixture fraction approach 

took four or more days on a single processor. 

 Because of the large amount of data generated in the three-mixture fraction comparison, 

it would be difficult to compare the results of the coal-based fuels to the simple surrogate gases 

in any meaningful way. A more meaningful approach compares the results of all three mixture 

fraction approaches for one fuel. The same key variables were used to compare all three mixture 

fractions together, starting with the equilibrium temperature and H2O mole fraction shown in 

Figure 8-17. To compare similar values, all of these comparison plots are made with respect to 

the carbon mixture fraction (𝑍𝑍𝑐𝑐) rather than any of the component mixture fractions (𝑓𝑓𝑖𝑖) or 

equivalence ratios. For comparisons using the same parent fuel, any individual elemental mixture 

fraction, 𝑍𝑍𝑗𝑗, would have the same range regardless of the number of component mixture fractions 
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used, while allowing for a comparison of all mixture fraction approaches on one figure in one 

mixture fraction dimension. In this comparison, the carbon mixture fraction seemed to be the 

most appropriate to use since the bulk of the fuel is comprised of carbon. 

 

 

Figure 8-17. (a) Equilibrium temperature and (b) H2O mole fraction calculations by Cantera for 
the Pitt 8 coal using one (case 1-6), two (case 2-7), and three mixture fractions. 

 

Two sets of results are displayed for both the two- and three-mixture fraction approaches. 

The “full” results include all equilibrium states over the full range of fuel mixing conditions (the 

full range of eddy compositions, including the extremes of 100% mass from the char, 100% tar, 

and 100% light gases, along with everything in between) and the “viable” results limit the fuel 

mixing conditions to have a maximum char yield based on pyrolysis measurements. In 

combustion applications, the other pyrolysis products (tar and light gas) enter the gas phase 

before the solid char begins to react with the gas phase. For this reason, there are situations 

where there might be equilibrium between the volatile gases (tar and light gases) before any 

material from the char mixes in with the gas phase, but the reverse situation (i.e., all char and no 

pyrolysis gases) would not occur unless the starting fuel was only char. 
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 The peak temperature changes with the fuel mixing condition, especially in the three-

mixture fraction approach. Each distinct “line” of data points in the three-mixture fraction results 

corresponds to a different fuel mixing condition (i.e., a different set of 𝑓𝑓𝑖𝑖’s). The temperatures for 

the one- and two-mixture fraction approaches (Figure 8-17a) are very close to each other, with 

the two-mixture fraction temperatures having a slightly increased range (shown here as a wider 

temperature band). The three-mixture fraction approach, however, allows for much hotter 

temperatures (up to almost 3,000 K) in addition to some fuel mixtures with similar temperatures 

to both the one- and two-mixture fraction approaches. The hotter temperatures achieved by the 

three-mixture fraction approach correspond to mixtures with greater percentages of the light gas 

species, which would include some of the same simple hydrocarbon surrogates with much higher 

temperatures shown in the one-mixture fraction comparison. Both the two- and three-mixture 

fraction results include many more equilibrium states than the one-mixture fraction results. 

 In the one- and two-mixture fraction approaches, the H2O mole fraction was highly 

dependent on the fuel used. This result was also seen in the three-mixture fraction approach (see 

Appendix E), although the only case shown in Figure 8-17 is for a coal with realistic 

compositions and heating values of char, tar, and light gas. Note that this set of data was from a 

low temperature pyrolysis experiment. The H2O mole fraction is highly dependent on the fuel 

mixing conditions (how much of char, tar, and light gases are mixed into the overall reactant 

mix). The peak H2O mole fraction in Figure 8-17 varies between 6 and 13 mol% for the three-

mixture fraction approach and between 6 and 8 mol% using two mixture fractions. This large 

variability might be enough to cause large errors in large-scale simulations if fewer mixture 

fractions or even simple coal surrogate gases are used in the place of more complex mixture 

fraction approaches. 
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 Moisture can play a large role in large-scale combustion simulations, contributing to 

additional chemical reactions (mainly gasification) and impacting radiative heat transfer 

calculations. This was discussed to some extent in the two-mixture fraction comparison, 

however, in a three-mixture fraction system, knowing where hydrogen is in a system is even 

more important. The light gas components tend to be much more enriched in hydrogen than 

either the char or the tar. This is one of the reasons for the large variability in the equilibrium 

H2O mole fraction in a three-mixture fraction system as opposed to a one- or two-mixture 

fraction system. 

 The equilibrium O2 mole fraction was very similar over all fuel mixing conditions even in 

the three-mixture fraction calculations and are not shown here (see Appendix E). The CO2 mole 

fraction had a wide range in both the one- and two-mixture fraction comparisons, depending on 

the fuel choice. Figure 8-18 shows the comparison of the one-, two-, and three-mixture fraction 

calculations of the mole fractions of CO2 and CO for the Pitt 8 coal. The carbon in the fuel is the 

only source of carbon in these equilibrium calculations, so small changes in the total amount of 

each fuel component greatly influence the overall amount of CO2 formed at equilibrium. 

Including light gases as a separate fuel stream changes the amount of CO2 even more since the 

carbon content is greatly reduced in light gas components that tend to be enriched in hydrogen 

(e.g., methane) or oxygen (like CO or CO2). The three-mixture fraction calculations show that 

CO becomes more prominent in fuel-rich conditions where the carbon cannot fully oxidize to 

CO2. This result is similar to the findings from the one- and two-mixture fraction calculations. 

However, the CO mole fraction also tends to be a little more spread out in the three-mixture 

fraction approach for 𝑍𝑍𝑐𝑐 values ranging from 0.04 to 0.09. 
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Figure 8-18. (a) Equilibrium CO2 and (b) CO mole fraction calculations by Cantera for the Pitt 8 
coal using one, two, and three mixture fractions. 

 

 In summary, the three-mixture fraction approach results in much more variety in 

equilibrium states than a simpler one- or two-mixture fraction approach, which would likely 

increase overall accuracy of coal combustor simulations using gas-phase equilibrium 

calculations. However, this greater variety would of necessity include significantly greater 

computational time and complexity. A two-mixture fraction approach that combines the tar and 

light gases into a single “volatiles” mixture fraction would give greater variability and accuracy 

than a single coal mixture fraction while not greatly increasing computational complexity. 

8.3.4 Implications for Large Simulations 

 Carbon dioxide and water are two gases that greatly impact radiative heat transfer. Both 

of these gases are highly influenced by both the original fuel used and the number of mixture 

fractions used. The equilibrium H2O mole fraction in particular varies widely from zero with 

pure graphite in the one- and two-mixture fraction approaches to almost 20 mol% when using 

only methane as a surrogate gas in place of coal. Even when using measured values from coal 
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and coal-based fuels there is a moderate amount of variability in both CO2 and H2O mole 

fractions, regardless of the number of mixture fractions used. 

 While a three-mixture fraction approach increases the variability of equilibrium states, it 

also greatly increases the computational time and complexity, often more than is desirable for 

large-scale simulations. In large-scale simulations, equilibrium calculations are often used to 

generate lookup tables to use in calculating the gas chemistry reactions, which means most of the 

time spent on equilibrium calculations would be incurred at the beginning of a simulation. When 

parallelized, the equilibrium calculations likely would not be significant compared to the overall 

simulation time, potentially only being an issue in smaller simulations. A two-mixture fraction 

approach that splits coal fuels into char and total volatiles can strike a better compromise 

between increased variability and accuracy while keeping the computational complexity low. In 

industrial applications, pyrolysis often occurs so fast that it is hard to distinguish a difference in 

when tars and light gases enter the gas phase. 

 One of the conclusions from Flores and Fletcher (2000) was that their two-mixture 

fraction approach would be better than a one-mixture fraction analysis in accurately accounting 

for soot precursors. Tar was modeled as a constant fraction of the volatiles. In coal combustion 

systems, the primary source of soot precursors is the tar (Fletcher et al., 1997; Brown and 

Fletcher, 1998; Josephson et al., 2017). A two-mixture fraction approach would be much better 

than a one-mixture fraction approach for modeling tar precursors, but a three-mixture fraction 

approach that models tar separately from light gases would seem to be most beneficial in 

calculating soot precursors. Hybrid approaches have been used where a mixture fraction of tar is 

solved for soot formation purposes but not fully integrated into the gas-phase chemistry 

calculations (Fletcher et al., 1997; Brown and Fletcher, 1998; Josephson et al., 2017). 
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 The use of two or three fuel mixture fractions would not affect the outlet equilibrium 

composition of a combustor or gasifier if the coal achieved 100% conversion. The region of the 

combustor that would be most affected would be near the burner after pyrolysis but before 

significant char combustion or gasification occurred. This near-burner region plays a significant 

role in the formation of pollutants such as NOx and soot, and therefore accurate calculations in 

this region are very important. 

 All mixture fraction methods used here were based on complete equilibrium. While 

equilibrium can be a useful assumption in combustion systems, it might not be the best 

assumption to use in coal-based systems. Other such assumptions might include only products of 

complete combustion, or by substituting the water-gas shift reaction in place of complete 

equilibrium. It would be appropriate to test these different reaction assumptions using the 

mixture fraction methods discussed here in order to quantify any uncertainty in reaction 

assumptions, especially when applied to coal-based fuels. 

 Conclusions 

 The one-mixture fraction comparison showed that the NASA-CEA and Cantera 

equilibrium programs generally agree when using both simple hydrocarbon surrogate gases and 

more complex coal-based fuels. However, there was some significant deviation between the two 

programs with some of the high-rank coals (some anthracites and semi-anthracites) in very fuel-

rich conditions (φ > 2). These deviations occur due to the way Cantera was set up to handle 

unreacted fuel in order to minimize numerical instabilities in the equilibrium calculations. Both 

NASA-CEA and most of the Cantera equilibrium states convert the unreacted fuel to graphite, 

but in the few cases where deviation occurred, Cantera instead left the unreacted fuel with the 

same composition and properties of the original fuel. These deviations might be made smaller 
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with improvements to the solid coal Cantera mechanism subroutine to better account for higher 

rank coals. While most industrial combustion applications do not use either high rank coals or 

such fuel-rich conditions on an overall basis, the local stoichiometry likely will fall to the fuel-

rich extreme, especially in pyrolysis or gasification conditions. This means that more accurate 

modeling of fuel-rich conditions will be necessary for highly detailed, large-scale simulations of 

coal combustion systems. 

 In addition, the one-mixture fraction comparison showed that the equilibrium temperature 

and mole fractions of CO2 and H2O are highly dependent on the fuel used, and the CO mole 

fraction is highly dependent on the fuel only in fuel-rich conditions. In a one-mixture fraction 

system, this difference is nothing more than the difference in the elemental compositions of the 

original fuels, and this might be largely mitigated by using a combination of different surrogate 

gases and reference temperatures to match both composition and enthalpy of measured coal-

based fuels. This procedure might cause the gas temperature to be out of the range of normal 

combustion conditions or even to be an impossible temperature. However, using the surrogate 

gases individually as direct replacements for coal-based fuels will make large-scale simulations 

inaccurate for any combination of mixture fractions. This is especially true when trying to 

accurately model gas compositions for radiative heat transfer calculations, which are greatly 

influenced by both CO2 and H2O compositions. Not only do the gas compositions greatly affect 

the heat transfer processes, but also impact many heterogeneous and homogenous reaction rates, 

both in terms of actual reaction speed and diffusion speed. As a final note on the one-mixture 

fraction analysis, the equilibrium oxygen content was not significantly influenced by fuel choice, 

but more by the ratio of air to fuel. The O2 content plotted vs. equivalence ratio did not 
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significantly change even for coal-based fuels that can include a moderate amount of oxygen 

bound in the organic matrix. 

 The two-mixture fraction comparison showed similar results to the one-mixture fraction 

approach for equilibrium temperature and mole fractions of CO2, H2O, and CO, especially in the 

limiting cases of using only one fuel. Both the CO and H2O peak mole fractions varied by up to 

20 mol% based on fuel type, while the peak CO2 mole fraction varied by closer to 10 mol%. The 

peak temperature varied between 2,200 and 2,400 K, depending on the fuel. In addition, the two-

mixture fraction approach offers a broader range of values for the equilibrium temperature and 

mole fractions for the different combinations of component mixture fractions than the one-

mixture fraction approach. While the two-mixture fraction approach does take more time, this 

approach is closer to what occurs in a real coal combustion system during devolatilization. The 

total volatiles enter the gas phase earlier than gases from the char reactions, and the tar and the 

light gases seem to be released at similar times in the pyrolysis process which is consistent with a 

two-mixture fraction approach. The plots of mole fractions of O2 vs. equivalence ratio at 

equilibrium did not change much with respect to fuel choice in a manner similar to the one-

mixture fraction approach. The peak O2 mole fraction only varied by just over 0.2 mol% across 

all fuels in the two-mixture fraction comparison, with most of that variability in the coal 

surrogate fuels. 

 While none of the mixture fraction methods used here were validated against 

experimental data in this application, the one- and two-mixture fraction calculations indicated 

that using measured coal-based fuel properties will always be more accurate than using coal 

surrogate gases (like graphite, benzene, methane, or other simple hydrocarbons or their 

combinations) as a direct substitution for coal-based fuels, especially in accurately modeling the 
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CO2, CO and H2O mole fractions. Using surrogate compounds in the place of coal-based fuels 

might simplify gas-phase chemistry calculations (depending on the reaction scheme used), but 

the surrogate gases would have to be finely calibrated to achieve similar results to measured, 

coal-based fuels. This is typically accomplished by tuning the compound ratios and enthalpies of 

the surrogate gas, which can lead to gas temperatures that are either improbable in a real 

combustion application or that are physically impossible. 

 While the three-mixture fraction method offers a broader range of values in equilibrium 

temperatures and gas compositions than either the one- or two-mixture fraction methods, it is 

unclear whether a three-mixture fraction system is more realistic than a well-designed two-

mixture fraction method. The two-mixture fraction method, if well designed, will allow for 

enough variability in fuel properties to come close to real coal reactions without adding too much 

complexity. Since the tar and light gases are released at similar times during coal pyrolysis, it is 

easy to justify a two-mixture fraction method, especially in simulations that do not have small 

enough time steps to differentiate between tar and light gas release. There is potential benefit, 

however, in using a three-mixture fraction approach in modeling coal combustion when trying to 

accurately model soot and soot precursors, since most of the soot in coal systems comes from the 

tar. 
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9 SUMMARY AND CONCLUSIONS 

 The purpose of this project was to investigate ways to improve submodels of coal 

pyrolysis and volatiles combustion in large-scale simulations of coal combustors without adding 

significant computational burden. Research included analysis of simple pyrolysis rate models, 

elemental compositions of pyrolysis products (tar and char), heating values of tar and char, and 

mixture fraction approaches with equilibrium chemistry. This chapter starts with a summary of 

the work performed for this dissertation, followed by the conclusions from each preceding 

chapter, and finally a description of potential future work based on the findings presented here. 

 Summary 

 This work was intended to explore and improve various aspects of the modeling of the 

coal pyrolysis reactions in large-scale simulations. Simple models of the rate/yield of pyrolysis 

products were explored first, comparing the simple model predictions to the predictions of a 

more complex, trusted coal devolatilization model—the CPD model. Two simple pyrolysis 

rate/yield models were developed to improve model accuracy and utility over a wider range of 

conditions. 

 Next, correlations describing carbon aromaticity of coal based on several coal-specific 

structural and chemical parameters were explored by comparing the calculated aromaticity 

values to a large data set of measured carbon aromaticity values. Some improvement of 
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correlations found in the literature were made by re-fitting the suggested model coefficients 

using the aromaticity data set, and a new and better model was proposed (see Figure 5-1). The 

elemental composition (CHONS) of coal char and tar after pyrolysis was studied, and 

correlations describing the elemental composition of char and tar were developed (with the 

measured and correlated aromaticity along with other coal- and reaction-specific parameters) 

using a complex cross-validation and model refinement procedure. 

 After studying the chemical composition of pyrolysis products, the thermodynamic 

properties (fuel heating values, or enthalpies of combustion) of char, tar, and other hydrocarbon-

based fuels were explored, and several heating value correlations based on the chemical 

composition of the fuel were found in the literature. These literature correlations were tested 

using a very large data set of measured heating values of various fuels, and improved model 

coefficients were suggested to use for different fuel types. 

 The heating value correlations were used in conjunction with the experimentally 

measured heating values and chemical compositions of several coal-based fuels to test some 

simplifying assumptions made in calculating equilibrium states of coal-based fuels. Three levels 

of fuel mixture fractions were used to quantify uncertainty among different methods of 

equilibrium, different fuels used (including simple hydrocarbon coal surrogates), and two 

common equilibrium programs (NASA-CEA and Cantera). 

 Conclusions 

 The main conclusions for each of these projects are summarized below, in the following 

order: (1) pyrolysis rate/yield models, (2) carbon aromaticity of coal, (3) the elemental 

composition of coal pyrolysis products, (4) the heating value of coal, char, tar, and other fuels, 

and (5) mixture fraction equilibrium of coal-based fuels. Following the summary of key 
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conclusions of each project is a summary of potential areas of future work expanding on these 

research projects. 

9.2.1 Pyrolysis Rate/Yield Models 

 Several existing pyrolysis rate/yield models were tested by comparing their predictions to 

predictions made by a more accurate but computationally complex model—the CPD model. 

While most of these models can adequately predict coal pyrolysis rates and yields for one coal 

and reaction system, all fall short in using a single set of fitted coefficients to describe multiple 

reaction conditions simultaneously, with many failing spectacularly. Some models come close to 

exhibiting some key pyrolysis trends with respect to differing particle heating rates, but none 

were able to match all observed trends (see Table 4-10). One of the new models (called the RF 

model here) matched all trends and the CPD predictions nearly perfectly, however, with 18 fitted 

coefficients, it is potentially too computationally expensive for some large-scale simulations. The 

second model developed here (the RFE) was slightly less accurate with respect to the CPD 

calculations than the RF model, however, with only eight fitted coefficients, it could prove more 

computationally efficient in large-scale simulations. 

9.2.2 Carbon Aromaticity of Coal 

 Several literature correlations describing carbon aromaticity were tested against a well-

defined coal aromaticity data set along with many new model forms based on coal-specific 

parameters. While there was some promise with the literature models, especially after re-fitting 

the coefficients to the new data set, the proposed model presented in Chapter 5 performed the 

best. The proposed model had an 𝑅𝑅2 value of almost 0.8, while the closest literature model had a 

value of 0.77, which means that the proposed model will likely calculate the aromaticity more 
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accurately but many other of the re-fit literature models will be almost as accurate. These 

correlations can be used to limit the amount of expensive and often time-consuming NMR 

characterization of different coals. The correlations can even be used in other coal models or to 

predict other structural parameters generally only available from NMR characterizations. 

9.2.3 Elemental Composition of Coal Pyrolysis Products 

 Almost 200 different model forms were tested to develop correlations to calculate the 

elemental composition (CHONS) of coal char and tar after pyrolysis. Two sets of models were 

chosen for each of the elements in both the char and the tar—one with the best overall fit 

(according to the 𝑅𝑅2 value) and a second with the best “utility” (the best 𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 value). 

While some correlations were both the best overall fit and the best utility (carbon and hydrogen 

in the tar and hydrogen and oxygen in the char), most elements had two unique model forms. In 

most cases, the best overall fit is expected to give the most accurate prediction of each elemental 

composition, however, the correlations with the best utility will be almost as accurate with fewer 

fitted coefficients, making them perhaps more computationally efficient in large-scale 

simulations. 

Each elemental correlation generally agrees with the observed trends in experimental 

data, with some elements performing better than others. The correlations for the elements in the 

tar generally performed well when tested with the elemental composition data set, with most 

models showing an 𝑅𝑅2 value of 0.75 or higher. The correlations for elemental composition of the 

char did not perform as well, with many correlations falling to an 𝑅𝑅2 of between 0.45 and 0.55. 

While there is room for improvement in these correlations (particularly the char elemental 
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compositions), they can perhaps reduce overall uncertainty in large-scale simulations by more 

accurately predicting the local elemental compositions of coal pyrolysis products.  

9.2.4 Heating Value of Coal, Char, Tar, and Other Fuels 

 Heating values are an important part of combustion experiments and modeling. While 

this analysis began as a study of coal, char, and tar heating values, it expanded to include a total 

of 11 major fuel types. Several correlations were found in the literature that predict fuel heating 

values based on the primary organic (CHONS) elemental composition of the fuel, including 10 

mathematical forms with a total of 13 sets of unique fitted coefficients. Most of these literature 

correlations were originally developed to predict the heating values of the parent coal, with some 

applied to other fuels. In an effort to maximize the utility of these literature models and to 

minimize potential bias, both the original coefficients and coefficients re-fit to the heating value 

data sets were tested to determine the best possible fit. This was accomplished using two key 

statistical parameters: the mean square error (MSE) and the Akaike Information Criterion (AIC).  

 In most cases, many of the literature models with re-fit coefficients can adequately 

predict the fuel heating value based on primary elemental composition, however, the AIC 

method helped to identify which models might be the most correct choice by limiting the 

potential for overfitting. The literature correlation coefficients were re-fit to each data set with 

varying accuracy, with the fits to the char-only data set being the best overall fit (see Figure 7-4), 

with the best two models having a mean-square-error value of just under 0.4. Interestingly, the 

model with the best MSE value was over 80% less likely to be the correct fit according to the 

AIC probability. This is likely due to a larger potential for overfitting from the larger number of 

fitted coefficients, which is penalized in the AIC method. 
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 The other coal-based data sets also showed good agreement between the experimental 

and predicted heating values, which is not surprising since over 60% of the data were coal-based 

fuels (including coal, char, and tar samples). For the coal-based fuels, the predictions are the 

most accurate using the correlations re-fit to the individual data sets (i.e., using the coefficients 

fit to the coal-only data set to predict the heating value of coal). However, the coefficients re-fit 

to the combined coal-char-tar data set should allow for only slightly less accurate heating values 

of most coal-based fuels. 

 Out of all the coal-based fuels, the tar-only data set performed the worst with an 𝑅𝑅2 value 

of under 0.4 (see Appendix D) for the best literature model with re-fit coefficients. The tar 

samples have potential uncertainty because of the inherent difficulties in capturing and analyzing 

of coal tar in pyrolysis reactions. 

 In addition to coal-based fuels, the literature correlations presented in Chapter 7 can 

predict the heating value of other fuels (including biomass samples and other non-traditional 

fuels) with varying degrees of accuracy. The accuracy is much better when using coefficients fit 

to individual data sets rather than to combined data sets (see Table 7-21). In other words, a 

correlation with coefficients fit to a biomass-only data set would calculate heating values much 

more accurately than a correlation with coefficients fit to the full data set (which includes non-

biomass fuels). The best model fit to the full data set (the re-fit Given model ) had an 𝑅𝑅2 value of 

just under 0.9 and an average relative error of around 7% (see Appendix D). This means that the 

fit in general is pretty good, however, with a maximum relative error of over 300%, there are a 

few outliers in the experimental data. 

 Some of the fuels fit very well (coal char-only) whereas others did not perform as well 

(coal tar-only); however, with the exception of a few outlier samples, the fits for all data sets 
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were good. While the correlations presented in Chapter 7 might be improved in the future with 

better and more accurate data, they can be used in large-scale simulations to aid in the 

calculation of chemistry-turbulence interactions without the need to perform calorimetry 

experiments. 

9.2.5 Mixture Fraction Equilibrium of Coal-Based Fuels 

 Turbulence-chemistry interactions are an important part of combustion modeling and 

have been widely studied as part of coal combustion modeling. While a lot of improvement has 

been made over the years as computing resources advance, most large-scale simulations still use 

simplifying assumptions to make calculations faster and easier. Two simplifying assumptions are 

commonly made in modeling the gas-phase turbulent-chemistry interactions in large-scale 

simulations of coal combustion applications. The first assumption is made using a surrogate gas 

in the place of measured coal-gas properties. The second assumption is made by simplifying the 

mixing conditions of the fuel and oxidizing gases. A common way of representing the mixing 

conditions of a reacting system in large-scale combustion simulations is by using a mixture 

fraction method. The mixture fraction analysis presented here addressed both of these common 

simplifying assumptions. 

 Several conclusions were discussed in Section 8.4 with regards to the two common 

assumptions, however, several other conclusions were also made about the modeling of chemical 

interactions in coal combustion simulations. One of the first conclusions was based on a 

comparison between equilibrium states calculated by both NASA-CEA and Cantera equilibrium 

solvers. In a combustion system described by one fuel mixture fraction, the equilibrium states 

calculated by both the NASA-CEA and Cantera programs generally agree for both simple 

hydrocarbon surrogate gases as well as the more complex coal-based fuels. Some deviation 
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occurred between the two programs with some of the high-rank coals (some anthracites and 

semi-anthracites) in very fuel-rich conditions (φ > 2). It is likely that these deviations occur due 

to the way Cantera was set up to handle solid, unreacted fuel in order to minimize numerical 

instabilities in the equilibrium calculations. While most industrial combustion applications do not 

use either high rank coals or such fuel-rich conditions on an overall basis, local stoichiometry 

will likely fall in the fuel-rich extreme conditions, especially in pyrolysis or gasification 

conditions. 

 The mixture fraction comparison also showed that several key variables in combustion 

modeling depend highly on the fuel that is used, specifically the equilibrium temperature and the 

mole fractions of CO2 and H2O, with the CO mole fraction being highly dependent only in fuel-

rich conditions. In one-mixture fraction systems, this difference is likely nothing more than the 

difference in elemental compositions of the fuels used. In fact, most of this deviation between 

simple surrogate gases and coal-based fuels might be mitigated by using a combination of 

different surrogate gases and reference temperatures to match both composition and enthalpy of 

measured coal-based fuels. While this procedure might improve numerical agreement with 

measured coal-based fuel properties, a well-defined surrogate gas might have an equilibrium gas 

temperature out of the range of normal combustion conditions or might even result in an 

impossible temperature. In other words, using a surrogate gas in the place of measured coal-

based fuel properties can make certain calculations in a large-scale simulation easier, but it can 

make others much harder and potentially introduce a large amount of uncertainty. 

 The results of the two-mixture fraction comparison supported those of the one-mixture 

fraction comparison and also allowed for additional insight into coal combustion reactions. 

While a two-mixture fraction method is computationally more complex than a one-mixture 
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fraction method, a two-mixture fraction system is much better for describing the products of coal 

pyrolysis than a simple one-mixture fraction system. A two-mixture fraction approach offers a 

broader range of values for the equilibrium temperature and mole fractions for the different 

combinations of component mixture fractions than a one-mixture fraction approach. For coal 

combustion applications, this additional range of equilibrium states appears to match the physical 

processes of coal pyrolysis reactions much better than a one-mixture fraction approach. Both 

one- and two-mixture fraction methods demonstrate that using measured coal-based fuel 

properties will always be more accurate than using coal surrogate gases as a direct substitution 

for coal-based fuels. 

 A three-mixture fraction method is even more computationally expensive than the two-

mixture fraction method, generating almost 150,000 equilibrium states for a single fuel (one coal 

type, split into char, tar, and light gas components) compared to about 2,000 equilibrium states of 

the two-mixture fraction method. In addition, it is unclear whether a three-mixture fraction 

system is more realistic than a well-designed two-mixture fraction system because tar and light 

gases are released at similar times during coal pyrolysis. It is easy to justify using a simpler two-

mixture fraction method in simulations that do not have small enough time steps to differentiate 

between the tar and light gas release during pyrolysis. There is, however, a potential benefit to 

using a three-mixture fraction method in coal combustion simulations—when trying to 

accurately model soot and soot precursors. In coal systems, most of the soot comes from the tar, 

so it might be beneficial to separate the tar and light gases in these cases. 

 Future Work 

 While the results and conclusions presented here detail the best models, applications, and 

results possible using current experimental data and methods, improvements can always be made 
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with improvements in both experimental data and validation methods. Most of the models 

discussed here can and should be improved with careful study of the data sets and methods used, 

including the addition of more reliable data, removal of bad or unreliable data, and by improving 

the model with better model forms using existing independent variables or adding new variables 

that potentially affect the different aspects of the models. 

 A number of avenues of future work can be explored with the pyrolysis rate/yield 

models. These models can be improved by increasing the number of coal samples used to 

validate the models, both in terms of experimental data as well as CPD (or other network model) 

predictions. In addition to using more coals to validate the pyrolysis rate models, these models 

can also be applied to both tar and total volatiles. While some of the simple model forms are 

closer to modeling expected physical and chemical characteristics of coal pyrolysis, the model 

forms might be improved by looking at additional processes that occur in coal pyrolysis 

reactions. Another avenue of future work would be to correlate model coefficients with various 

coal- and condition-specific parameters, like Biagini and Tognotti (2014) did with their model. If 

this correlation of model coefficients is done well, it could help to bridge the gap between the 

flexibility and accuracy of network models and the computational efficiency of the simpler 

global kinetic models. The last avenue of future work for pyrolysis rate/yield models comes in 

the form of practical application. These models were tested against CPD model predictions, but a 

greater amount of validation and uncertainty quantification could be performed by incorporating 

these simple pyrolysis models into large-scale simulations and testing them for computational 

time, accuracy, and other related parameters. 

 The correlations describing the carbon aromaticity of coal can be extended or improved 

in a couple of ways. While the data set used to test and develop the correlations described here 



 

189 

was fairly well-rounded, including a wide variety of different coals and coal ranks, a greater 

analysis of model bias and uncertainty would be helped with the addition of more aromaticity 

samples. In addition, it may be possible to extend the carbon aromaticity correlations to other 

fuels such as coal char and tar or biomass and other non-coal fuels. This type of extension would 

require the careful measurement of carbon aromaticity of these different fuels, which would 

potentially be very expensive. The coal tar aromaticities would likely be very difficult to 

measure since it is difficult to collect sufficient quantities in most coal pyrolysis equipment. 

 The correlations of the elemental compositions of tar and char could be improved in two 

ways: (1) by increasing the amount of good data used to fit and test the correlations, and (2) by 

exploring additional variables that might affect the composition of pyrolysis products. There is 

room for significant improvement with the char elemental compositions. Either the data are 

inaccurate or incomplete, or there may be additional variables affecting char composition that 

were not explored here. 

 The heating value correlations have a lot of potential for improvement in a lot of ways. 

The analysis described here used a data set where almost 65 percent of samples were coal-based 

fuels. While this was important for the research described here, the addition of many more 

samples of other fuels, including more biomass and other non-traditional fuels, may lead to many 

avenues of future work, especially as some of the non-traditional fuels become more widely used 

in industrial applications. Additionally, the mixture fraction analysis revealed that the coal-based 

heating value correlations could use some improvement with the lowest- and highest-rank 

coals—lignites and anthracites. Equilibrium states using the correlated heating values for some 

lignites and anthracites were a poor replacement for equilibrium states using experimentally 

measured heating values. 
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 The mixture fraction analysis here used air as the oxidizer in calculating equilibrium 

states, however, this analysis could be extended to oxy-fuel conditions, which typically use 

various mixtures of O2 and CO2 as an oxidizer. Using a different oxidizer gas profile could 

change the equilibrium temperature and main compounds present at equilibrium, especially the 

CO2 and CO mole fractions. Additionally, the analysis can also be extended using the elemental 

composition correlations. This could reveal a few potential areas of future research, including 

quantifying uncertainty between the correlated and experimental elemental composition cases as 

well as identifying additional areas of improvement with the elemental composition correlations. 

 While the mixture fraction analysis attempted to quantify uncertainty when using several 

common simplifying assumptions, it only addressed these concerns on a very basic level. Several 

assumptions were used in this analysis that may or may not be strong. One key assumption was 

that the coal-gas combustion reaction followed equilibrium chemistry. Several other reaction 

schemes can be used in the place of equilibrium, including the water-gas shift reaction and 

products of complete combustion. While these reaction schemes are perhaps simpler than full 

equilibrium, they might allow for simplification without sacrificing accuracy. Another logical 

follow-up to this work would be to apply it to several simulations (from small- to large-scale) in 

order to ascertain just how much uncertainty there is in the simulations, like Flores and Fletcher 

(2000) did for their two-mixture fraction method. 

 All models and methods presented here can be combined for use in large-scale 

simulations, which would aid in determining the overall uncertainty in the pyrolysis processes. 

The following order would be perhaps the most logical, assuming the coal- and process-specific 

parameters (e.g., proximate and ultimate analysis, temperatures, residence times, etc.) are known 

or can be approximated a priori: 
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1. Use the proximate and ultimate analysis of the coal along with the process conditions 

with the elemental composition correlations (Chapter 6) to calculate the elemental 

compositions of the char and tar (and the average light gas composition by difference). 

2. Use the calculated elemental compositions of the char and tar to calculate the heating 

values (Chapter 7). 

3. Use the calculated elemental compositions and heating values of the char and tar with the 

two-mixture fraction model (Chapter 8). 

4. Use the new pyrolysis rate model(s) for the volatiles and tar yields as a function of time 

(Chapter 4) in conjunction with the two-mixture fraction model in a large simulation. 

5. Track a third non-participating mixture fraction to separate the light gas and tar yields 

and compositions so that the local tar information can be used to model soot formation 

and destruction. 

 

 Using the research presented in this dissertation will likely reveal additional avenues of 

future improvements to the modeling of coal pyrolysis reactions in large-scale simulations. 
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APPENDIX A. COMPUTATIONAL METHODS 

 This appendix chapter summarizes some of the computational tools and methods used in 

this dissertation. Included in this chapter are summaries of the MATLAB optimizers, equilibrium 

codes, and statistical toolkits used in the main chapters of this dissertation. 

A.1 MATLAB Tools 

 Most of the build-in MATLAB tools used in this dissertation are six optimizer 

algorithms: (1) fminunc, (2) fmincon, (3) MultiStart algorithm, (4) GlobalSearch algorithm, (5) 

particle swarm algorithm, and (6) genetic algorithm. MATLAB is organized into several libraries 

of built-in tools, called toolboxes. The six main optimization algorithms are found in two of 

these toolboxes—the Optimization Toolbox and the Global Optimization Toolbox. The first two 

optimizers (fminunc and fmincon) fall into the Optimization Toolbox and the others are in the 

Global Optimization Toolbox. The following sections summarize the key similarities and 

differences between the different optimizer algorithms. Most of these summaries include 

information directly from the documentation of MATLAB from MathWorks.com. 

A.1.1 fminunc Optimization Algorithm 

 The fminunc optimizer is one of the simpler algorithms designed to find the minimum of 

an unconstrained function. This function must have one output that is being minimized (usually 

some sort of error function, like SSE, when comparing a model to experimental data). This 
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function can have any number of variables and fitted coefficients. This optimizer has several 

algorithm choices built-in, including quasi-newton and trust-region. The quasi-newton is the 

default algorithm, not requiring user-defined gradients, whereas the trust-region algorithm does 

require an input of gradients. All analyses in this dissertation that used the fminunc optimizer 

used the default optimization algorithm. In addition to an input of the function to be minimized, 

the fminunc optimizer also requires an initial guess value for the fitted coefficients. Ideally, the 

guess values should be relatively close to the global minimum values for fminunc to find the 

global minimum rather than a local minimum. 

A.1.2 fmincon Optimization Algorithm 

 The fmincon optimizer is very similar in many ways to the fminunc optimizer, however, 

fmincon can include constraints (both linear and non-linear) on the multivariable function to be 

minimized. In addition to linear and non-linear constraints on the function, upper and lower 

bounds can be placed on the model coefficients. This can be useful if coefficients must conform 

to specific regions of numbers (e.g., non-negative values, some coefficients must be 

larger/smaller than others, etc.). This optimization algorithm also requires an initial guess value 

in addition to the optimized function and any constraints. The fmincon optimizer also includes 

some different optimization algorithms than fminunc, many of which can only be applied in 

certain situations and have their own dependencies (such as a user-defined gradient). Like the 

fminunc optimizer, the analyses that used fmincon in this dissertation used the default 

optimization algorithm (interior-point). 
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A.1.3 GlobalSearch and MultiStart 

 One of the key disadvantages of both fminunc and fmincon optimizers is the need to 

supply an initial condition, which could inadvertently result in either optimizer finding a local 

minimum rather than the global (or overall) minimum value. The optimizers from the Global 

Optimization Toolkit are designed to get around this problem in a couple of ways. The 

GlobalSearch and MultiStart algorithms are similar in the way they approach an optimization 

problem but can be used in slightly different ways. GlobalSearch tends to be better at finding the 

global minimum of a function, whereas MultiStart can be used to find multiple local minima. 

GlobalSearch uses fmincon as its main optimizer while MultiStart can use either fmincon or 

fminunc. Both algorithms use an initial guess value to run several iterations of the simpler 

optimizers in order to find either the global minimum or multiple local minima. Essentially, both 

optimization algorithms rely on multiple runs of the simpler optimization programs from slightly 

different starting values. If both fminunc and fmincon find the global minimum, it is likely both 

GlobalSearch and MultiStart algorithms will also find the same solutions. 

A.1.4 Particle Swarm Algorithm 

 Particle swarm algorithms are inspired by swarming insects, hence the name. The particle 

swarm algorithms can be either constrained or unconstrained. Another disadvantage of the 

simpler fminunc and fmincon optimizers is that the objective function must be continuous, 

otherwise the optimization algorithm generally will not work. A particle swarm algorithm can 

optimize an objective function that is neither differentiable nor continuous, although, it could 

optimize a function that is differentiable and continuous as well. In a particle swarm algorithm, 

the optimizer starts with a certain specified number of “particles,” or points in the optimization 

field. Each particle moves with a velocity and direction that is influenced by the best location 
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found by each individual particle as well as the best found by the swarm in general. Ideally, at 

the end of the optimization, all particles will end up in the same location—that of the global 

minimum. Applying a particle swarm algorithm to VUQ is advantageous because experimental 

data are often very noisy and comparing real-world values to model predictions results in 

objective functions that are not very smooth, meaning simpler optimizers often get stuck in local 

minima rather than the global minimum. 

A.1.5 Genetic Algorithm 

 Genetic algorithms are another optimization scheme that mimic biological systems, this 

time modeling principles of biological evolution. Like the particle swarm algorithm, genetic 

algorithms can be applied to continuous or non-continuous objective functions. The genetic 

algorithm introduces several different “steps” of evolution in the “population” of individual 

points, including selection of the best points, random mutations, and cross-over of different 

points. The genetic algorithm is a little more difficult to understand on the surface than other 

similar optimization schemes (such as particle swarm). Ideally, genetic algorithms will also find 

the global minimum. 

A.1.6 Optimization Algorithm Summary 

 MATLAB’s built-in optimization algorithms were very useful in the research detailed in 

this dissertation. Most of the research here used one or more of these optimizers to fit model 

coefficients to a supplied data set using a simple least-squares analysis. In several instances, 

multiple optimizer algorithms were applied to the same problem in the hope that one or more 

would find the global minimum, which would be the best possible fit of the model coefficients to 

each data set. While this generates a lot more data than using one optimizer, it helps to inspire 
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confidence in the model fits, that they are the best possible using the model forms and data sets 

in each analysis. 

A.2 Statistical Tools 

 As discussed in the main body of the dissertation, the optimization of the model 

coefficients used a simple minimization of the sum-of-squared-errors (SSE), also called a least-

squares analysis. While this is useful in finding the best fit for each model form, the SSE does 

not give a complete picture of the error between the model and experimental data. The statistical 

branch of VUQ (discussed in greater detail in Section 2.4) is full of different techniques and 

tools that can be used to paint a picture of the error between model predictions and real-world 

values. Several techniques and tools were considered as part of this dissertation, however, 

ultimately the set of validation metrics and techniques detailed in Section 2.4 were ultimately 

used here. The validation metrics (among other statistical measures such as standard deviation, 

confidence intervals, T-tests, etc.) were coded into a statistical package (written in MATLAB but 

can be applied to any number of other coding platforms) for use in conjunction with any of the 

built-in optimization algorithms. This package compares the experimental values to the model 

predictions and outputs all statistical values for each comparison in one concise package that can 

be further manipulated to find the best fits of multiple models. 

A.3 Equilibrium Solvers 

 The mixture fraction analysis (Chapter 8) used two equilibrium codes:  NASA-CEA and 

Cantera. While a summary of each program is found in that chapter, this section deals more with 

how each program was used and the motivation behind using either solver over the other. 
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A.3.1 NASA-CEA 

 The NASA-CEA equilibrium solver has been widely used in combustion calculations for 

years, being especially useful in the coal community for its ability to use non-standard 

compounds that are not included in the provided thermodynamic properties libraries. This code 

has several different problem types it can solve, depending on what conditions are known of the 

equilibrium state. One of the most common in many combustion applications is the problem type 

called HP, where the reactant enthalpies and system pressure are known. User-defined 

compounds are defined with an elemental composition (either on a mass or molar basis) and an 

enthalpy of formation. This is enough information along with the system pressure and all other 

reactants to calculate an equilibrium state of the mixture using Gibbs energy minimization. The 

code also allows for multiple independent equilibria based on multiple mixtures of reactants, 

which is useful when completing large numbers of equilibrium states. However, this is limited to 

a relatively small number of about 15 maximum equilibrium states for a single run of the NASA-

CEA code. 

 The original NASA-CEA code was freely available in a downloadable file with a 

graphical user interface allowing for programming of inputs and visualization of outputs, 

however, recent versions of the code are no longer freely available, with permission needed to 

access and download the code. There is currently a browser-based version of the CEA code, 

however, it does not currently have the same capabilities with user-defined compounds as the 

original code. 

A.3.2 Cantera 

 Cantera acts as a plug-in of libraries mainly for MATLAB or Python (and can also be 

used with C/C++ or Fortran 90) and is becoming more popular in combustion applications. 



 

223 

Cantera can be integrated into existing research codes for a wide variety of applications. This can 

make Cantera much more flexible than the stand-alone NASA-CEA code. The main equilibrium 

solver used in this dissertation also relies on Gibbs energy minimization to solve the equilibrium 

states based on an input of reactant information and system pressure. This application of Cantera 

even includes some of the same equations used by the NASA-CEA code to generate 

thermodynamic properties of user-defined compounds. Integrating directly into MATLAB or 

Python also allows for immediate numerical manipulation and even plotting of useful 

information in the same code as the equilibrium calculations. 

 Unlike the NASA-CEA code, Cantera does not include built-in thermodynamic libraries 

from which to draw reactant and product information. Cantera instead relies either on complex 

mechanisms (such as GRI3.0) or thermodynamic files (extension .cti) that include all relevant 

chemical and thermodynamic information for each compound, including user-defined and other 

common compounds (methane, ethane, etc.). 

 While there are a number of advantages to using Cantera, there are also a number of 

disadvantages. One of the main disadvantages is the learning curve necessary to know how to 

work with Cantera. Cantera includes extensive documentation, but it can be difficult to navigate 

when using Cantera for the first time. Another key disadvantage of Cantera is that it tends to take 

much longer to calculate some equilibrium states that the NASA-CEA code, which calculates 

most equilibrium states almost instantly. As discussed in Chapter 8, some of the more complex 

equilibrium calculations in Cantera took days to run on a single processor. The equilibrium 

calculations could be sped up using parallel computing, but that is beyond the scope of many 

small research projects that rely on single processors. 
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A.4 Code Availability 

 The research detailed in this dissertation generated a large amount of computer code. It 

would be impossible to include all of this code in the pages of this dissertation, even in an 

appendix format. For this reason, the key codes used in this research have been consolidated and 

are available free of charge by email (andrewprichards1@gmail.com). All codes are supplied as-

is, many likely not providing much documentation on how to use the codes. 
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APPENDIX B. EXPERIMENTAL DATA 

 This appendix chapter details the entirety of the experimental data sets used in the 

elemental composition analysis, the aromaticity correlation analysis, and the fuel heating value 

analysis. The descriptions of these data sets are included in Section 2.5, which describes the 

criteria for the selection process for each data set. 

B.1 Elemental Composition Data Set 

 The elemental composition analysis was divided into two parts:  elemental composition 

of coal char and coal tar at different residence times and reaction temperatures. The coal char 

data set is found in Table B-1 and the coal tar data set is found in Table B-2. The sources in each 

table are listed as follows, as described in Table 2-4: 

1. Freihaut et al. (1989b) 

2. Hambly (1998) 

3. Perry (Perry, 1999; Perry et al., 2000) 

4. Sandia, Fletcher and Hardesty (1992) 

5. Watt (1996) 

6. Tyler (1980) 

7. Freihaut et al. #2* (1989a) 

8. Parkash (1985) 
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 The second Freihaut source (source 7, marked with a *) is a DOE technical report that 

was only found in print, and not available online. Because of this, some of the information is 

missing from this report, namely the coal names and rank. Some of the tar values reported in this 

report were the same as in the first Freihaut source, however, some were different coals. It is 

likely that all were standard research coals from the Pennsylvania State Coal Databank, but the 

original report would be necessary to determine that information. In addition to the tar and parent 

coal information, the Freihaut technical report also contains char elemental compositions, 

whereas the first Freihaut source (an article from Energy & Fuels) only contains information on 

tars and their parent coal. 

 The elemental compositions are on a dry, ash-free wt.% basis, as are the volatiles yield 𝑉𝑉𝑖𝑖 

and the ASTM volatile matter. Maximum gas temperature (𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜) is in K, residence time 

(𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔) is in milliseconds, and the particle diameter (dp) is in microns. Oxygen is measured by 

difference, so some values are negative (colored red in the following tables). Note that some 

sources did not report some information, including oxygen and sulfur compositions of the coal, 

char, or tar, particle diameters, or volatiles yield. The volatiles yield is assumed to be the 

maximum for that particular residence time, so the ratio of 𝑉𝑉𝑖𝑖/𝑉𝑉𝑚𝑚𝑐𝑐𝑜𝑜 is equal to 1 for those 

samples. The particle diameter was not included in any of the correlations, and as such is 

unnecessary for the elemental composition analysis. It was briefly considered as an additional 

variable, but in the end was not included due to the lack of diverse particle size data reported. For 

those samples that did not report oxygen and sulfur contents, those samples were not included in 

the optimization of the correlation coefficients for correlations using those variables. 
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Table B-1. Char Elemental Composition Data 

Source Coal Rank Char Composition Parent Coal Composition 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 dp 𝑉𝑉𝑖𝑖 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
C H O N S C H O N S 

2   71.73 4.49 21.44 1.04 1.3 64.16 4.78 28.32 0.94 1.81 820 170 69 29.4 49 
2   81.61 3.34 12.59 1.26 1.2 64.16 4.78 28.32 0.94 1.81 1080 285 69 51.9 49 
2   78.53 5.3 14.02 1.33 0.81 74.23 5.48 18.35 1.3 0.65 820 170 69 10.7 45.68 
2   84.97 3.35 9.37 1.67 0.64 74.23 5.48 18.35 1.3 0.65 1080 285 69 51.2 45.68 
2   78.36 5.1 10.56 1.57 4.42 74.81 5.33 13.54 1.48 4.85 820 170 69 10.6 45.59 
2   86.25 3.43 4.75 1.86 3.7 74.81 5.33 13.54 1.48 4.85 1080 285 69 59.2 45.59 
2   84.9 5.49 6.58 1.8 1.24 82.77 5.61 8.9 1.74 0.98 820 170 69 10.3 38.69 
2   89.83 3.6 3.63 2.1 0.84 82.77 5.61 8.9 1.74 0.98 1080 285 69 47.9 38.69 
2   90.95 4.47 2.46 1.28 0.84 90.92 4.51 2.41 1.34 0.82 820 170 69 5.1 18.01 
2   96.62 3.7 -2.42 1.4 0.7 90.92 4.51 2.41 1.34 0.82 1080 285 69 27.1 18.01 
3   75.32 3.33 20.49 0.68 0.18 65.31 4.76 29.22 0.52 0.18 895 263 60 46 53.1 
3   84.09 2.95 12.09 0.73 0.14 65.31 4.76 29.22 0.52 0.18 1000 252 60 55 53.1 
3   87.65 2.57 8.94 0.7 0.13 65.31 4.76 29.22 0.52 0.18 1085 234 60 57.8 53.1 
3   78.25 3.77 16 1.52 0.46 71.37 5.36 21.55 1.18 0.55 895 263 60 41.6 51.3 
3   81.61 3.16 13.35 1.59 0.3 71.37 5.36 21.55 1.18 0.55 1000 252 60 51.1 51.3 
3   84.18 2.91 11.09 1.58 0.24 71.37 5.36 21.55 1.18 0.55 1085 234 60 54.4 51.3 
3   84.25 3.34 10.74 1.49 0.18 76.72 6.35 15.59 1.13 0.21 1000 252 60 58.3 54.7 
3   85.16 3.04 10.13 1.49 0.18 76.72 6.35 15.59 1.13 0.21 1085 234 60 60.4 54.7 
3   82.48 3.44 5.46 1.48 7.15 79.91 6.13 8.3 1.18 4.48 895 263 60 66.8 53 
3   85.28 3.42 4.08 1.44 5.78 79.91 6.13 8.3 1.18 4.48 1000 252 60 63.9 53 
3   89.97 3 1.13 1.4 4.49 79.91 6.13 8.3 1.18 4.48 1085 234 60 64.7 53 
3   87.18 4.08 5.92 2.35 0.46 82.82 5.43 9.18 2.08 0.48 895 263 60 38.6 37.2 
3   88.05 3.42 5.74 2.47 0.31 82.82 5.43 9.18 2.08 0.48 1000 252 60 43.8 37.2 
3   89.94 2.84 4.41 2.48 0.34 82.82 5.43 9.18 2.08 0.48 1085 234 60 47.9 37.2 
3   80.91 4.15 7.14 1.72 6.08 82.77 5.48 6.73 1.64 3.38 895 263 60 45.1 42.5 
3   82.46 4.06 5.73 1.78 5.97 82.77 5.48 6.73 1.64 3.38 960 263 60 47.2 42.5 
3   82.51 4.02 6.31 1.78 5.38 82.77 5.48 6.73 1.64 3.38 960 263 60 46.4 42.5 
3   87.49 3.37 3.41 1.92 3.82 82.77 5.48 6.73 1.64 3.38 1000 252 60 50.7 42.5 
3   87.99 3.08 3.43 1.78 3.72 82.77 5.48 6.73 1.64 3.38 1085 234 60 54.4 42.5 
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Table B-1. Char Elemental Composition Data, CONTINUED 

Source Coal Rank Char Composition Parent Coal Composition 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 dp 𝑉𝑉𝑖𝑖 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
C H O N S C H O N S 

3   85.47 3.09 5.01 1.61 4.82 84.15 5.13 4.6 1.55 4.56 895 263 60 42.9 33.4 
3   85.99 3.31 0.77 1.62 8.32 84.15 5.13 4.6 1.55 4.56 1000 252 60 49 33.4 
3   89.21 2.81 1.17 1.69 5.13 84.15 5.13 4.6 1.55 4.56 1085 234 60 45.2 33.4 
3   91.54 4.32 2.05 1.35 0.73 91.57 4.57 1.74 1.36 0.76 895 263 60 13.4 20.1 
3   93.31 3.45 1.14 1.43 0.67 91.57 4.57 1.74 1.36 0.76 1000 252 60 21.7 20.1 
3   92.45 2.96 2.56 1.42 0.61 91.57 4.57 1.74 1.36 0.76 1085 234 60 25.8 20.1 
4   77.29 5.56 15.11 1.35 0.69 75.6 5.26 17.33 1.32 0.49 1050 0 115.5 0 46.77 
4   73.16 4.92 20 1.3 0.62 75.6 5.26 17.33 1.32 0.49 1050 59 115.5 0 46.77 
4   79.55 5.11 13.2 1.45 0.68 75.6 5.26 17.33 1.32 0.49 1050 88 115.5 6.1 46.77 
4   79.39 4.63 13.75 1.53 0.7 75.6 5.26 17.33 1.32 0.49 1050 123 115.5 30.8 46.77 
4   79.02 4.98 13.87 1.47 0.66 75.6 5.26 17.33 1.32 0.49 1050 120 115.5 22 46.77 
4   79.42 4.13 14.15 1.59 0.71 75.6 5.26 17.33 1.32 0.49 1050 180 115.5 39 46.77 
4   83.01 3.75 10.85 1.74 0.65 75.6 5.26 17.33 1.32 0.49 1050 253 115.5 46.9 46.77 
4   81.92 6.45 8.72 1.65 1.26 81.92 6.45 8.72 1.65 1.26 1050 0 115.5 0 39.83 
4   82.96 5.53 8.91 1.49 1.12 81.92 6.45 8.72 1.65 1.26 1050 54 115.5 0 39.83 
4   82.22 5.49 9.43 1.7 1.16 81.92 6.45 8.72 1.65 1.26 1050 112 115.5 1.1 39.83 
4   82.67 5.14 9.79 1.26 1.15 81.92 6.45 8.72 1.65 1.26 1050 167 115.5 19 39.83 
4   81.75 4.94 10.14 1.82 1.36 81.92 6.45 8.72 1.65 1.26 1050 231 115.5 37.7 39.83 
4   82.49 4.09 10.26 1.87 1.29 81.92 6.45 8.72 1.65 1.26 1050 337 115.5 43.8 39.83 
4   84.23 5.54 7.56 1.65 1.01 84.23 5.54 7.56 1.65 1.01 1050 0 69 0 38.7 
4   84.32 5.4 8.06 1.64 0.58 84.23 5.54 7.56 1.65 1.01 1050 63 69 0 38.7 
4   84.36 5.44 7.92 1.64 0.64 84.23 5.54 7.56 1.65 1.01 1050 95 69 12.5 38.7 
4   83.28 4.82 9.14 1.7 1.07 84.23 5.54 7.56 1.65 1.01 1050 136 69 25.1 38.7 
4   84.66 4.43 8.2 1.78 0.94 84.23 5.54 7.56 1.65 1.01 1050 167 69 33.7 38.7 
4   83.37 3.98 9.61 1.82 1.22 84.23 5.54 7.56 1.65 1.01 1050 200 69 33.2 38.7 
4   86.29 3.79 7.03 1.89 1 84.23 5.54 7.56 1.65 1.01 1050 287 69 55.5 38.7 
4   74.12 4.96 13.08 1.45 6.29 74.12 4.96 13.18 1.45 6.29 1050 0 115.5 0 43.4 
4   73.98 4.76 13.07 1.38 6.8 74.12 4.96 13.18 1.45 6.29 1050 61 115.5 1.8 43.4 
4   75.34 4.99 12.18 1.42 6.07 74.12 4.96 13.18 1.45 6.29 1050 91 115.5 27.9 43.4 
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Table B-1. Char Elemental Composition Data, CONTINUED 

Source Coal Rank Char Composition Parent Coal Composition 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 dp 𝑉𝑉𝑖𝑖 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
C H O N S C H O N S 

4   75.49 4.35 12.16 1.59 6.41 74.12 4.96 13.18 1.45 6.29 1050 127 115.5 29.3 43.4 
4   74.36 4.01 11.72 1.54 8.37 74.12 4.96 13.18 1.45 6.29 1050 156 115.5 36.7 43.4 
4   73.45 3.67 11.95 1.43 9.49 74.12 4.96 13.18 1.45 6.29 1050 186 115.5 38.3 43.4 
4   75.22 3.28 10.53 1.42 9.55 74.12 4.96 13.18 1.45 6.29 1050 266 115.5 43.5 43.4 
4   66.56 4.26 25.16 1.12 2.89 66.56 4.26 25.16 1.12 2.89 1050 0 90.5 0.0 49.6 
4   64.41 4.07 24.75 1.13 5.64 66.56 4.26 25.16 1.12 2.89 1050 60 90.5 0.0 49.6 
4   64.83 3.97 24.82 1.1 5.28 66.56 4.26 25.16 1.12 2.89 1050 90 90.5 0.0 49.6 
4   68.7 3.41 21.7 1.2 5 66.56 4.26 25.16 1.12 2.89 1050 109 90.5 21.5 49.6 
4   67.26 2.63 22.88 1.32 5.92 66.56 4.26 25.16 1.12 2.89 1050 160 90.5 47.3 49.6 
4   69.43 2.69 21.32 1.37 5.19 66.56 4.26 25.16 1.12 2.89 1050 193 90.5 30.4 49.6 
4   74.6 2.77 17.62 1.36 3.65 66.56 4.26 25.16 1.12 2.89 1050 278 90.5 52.5 49.6 
4   67.99 4.24 24.83 0.99 1.95 66.56 4.26 25.16 1.12 2.89 1050 0 90.5 0.0 49.6 
4   72.79 3.15 19.58 1.16 3.32 66.56 4.26 25.16 1.12 2.89 1050 160 90.5 29.0 49.6 
4   71.39 2.98 19.79 1.11 4.73 66.56 4.26 25.16 1.12 2.89 1050 193 90.5 37.8 49.6 
4   73.32 3.17 19.11 1.21 3.19 66.56 4.26 25.16 1.12 2.89 1050 278 90.5 30.5 49.6 
4   88.83 4.37 5.14 1.06 0.6 88.83 4.37 5.14 1.06 0.60 1050 0 115.5 0.0 17.18 
4   88.56 4.39 5.41 1.04 0.6 88.83 4.37 5.14 1.06 0.60 1050 60 115.5 0.0 17.18 
4   87.66 4.3 6.49 0.98 0.58 88.83 4.37 5.14 1.06 0.60 1050 89 115.5 0.0 17.18 
4   88.78 4.34 5.32 0.98 0.57 88.83 4.37 5.14 1.06 0.60 1050 127 115.5 0.0 17.18 
4   90.06 4.34 4.06 1 0.53 88.83 4.37 5.14 1.06 0.60 1050 155 115.5 3.0 17.18 
4   90.29 4.31 3.76 1.06 0.58 88.83 4.37 5.14 1.06 0.60 1050 185 115.5 5.3 17.18 
4   89.24 4.12 5.04 1.01 0.59 88.83 4.37 5.14 1.06 0.60 1050 269 115.5 6.6 17.18 
5   73.79 4.35 -a 0.92 - 69.99 5.59 21.19 1.17 2.08 850 140 69 23.0 49 
5   76.34 3.62 - 1.29 - 69.99 5.59 21.19 1.17 2.08 900 160 69 38.2 49 
5   80.89 3.01 - 1.49 - 69.99 5.59 21.19 1.17 2.08 1050 210 69 44.8 49 
5   75.34 4.78 - 1.34 - 75.03 5.35 18.03 1.12 0.47 850 110 69 17.9 17.92 
5   76.86 4.34 - 1.49 - 75.03 5.35 18.03 1.12 0.47 900 130 69 26.2 26.15 
5   76.7 4.74 - 1.23 - 75.03 5.35 18.03 1.12 0.47 920 110 69 31.7 31.67 
5   78.98 5.05 - 1.44 - 77.29 5.69 14.96 1.27 0.79 850 140 69 17.7 45.68 
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Table B-1. Char Elemental Composition Data, CONTINUED 

Source Coal Rank Char Composition Parent Coal Composition 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 dp 𝑉𝑉𝑖𝑖 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
C H O N S C H O N S 

5   79.3 4.83 - 1.28 - 77.29 5.69 14.96 1.27 0.79 900 160 69 23.2 45.68 
5   83.8 3.24 - 1.83 - 77.29 5.69 14.96 1.27 0.79 1050 210 69 47.1 45.68 
5   76.77 4.67 - 1.9 - 76.65 4.93 10.01 1.47 6.93 850 140 69 9.0 45.59 
5   77.21 4.39 - 1.56 - 76.65 4.93 10.01 1.47 6.93 900 160 69 37.5 45.59 
5   82.16 3.26 - 1.93 - 76.65 4.93 10.01 1.47 6.93 1050 210 69 45.5 45.59 
5   84.93 5.43 - 1.25 - 84.7 5.4 7.26 1.71 0.92 850 140 69 21.5 38.69 
5   83.73 3.9 - 1.86 - 84.7 5.4 7.26 1.71 0.92 900 160 69 45.9 38.69 
5   88.11 3.32 - 1.91 - 84.7 5.4 7.26 1.71 0.92 1050 210 69 45.0 38.69 
5   93.46 4.38 - 1.14 - 90.52 4.6 2.52 1.6 0.77 850 140 69 6.6 18.01 
5   89.89 4.25 - 1.13 - 90.52 4.6 2.52 1.6 0.77 900 160 69 11.8 18.01 
5   90.16 3.35 - 1.18 - 90.52 4.6 2.52 1.6 0.77 1050 210 69 13.0 18.01 
7   82.82 5.15 - 1.56 - 83.98 5.48 7.41 1.67 1.46 780.2 580 25 15.0 37.76 
7   82.6 5.05 - 1.55 - 83.98 5.48 7.41 1.67 1.46 842.2 545 25 22.0 37.76 
7   82.77 4.96 - 1.63 - 83.98 5.48 7.41 1.67 1.46 933.2 515 25 24.0 37.76 
7   82.68 4.76 - 1.63 - 83.98 5.48 7.41 1.67 1.46 1069 450 25 26.0 37.76 
7   64 4.05 - 1.22 - 71.42 5.17 21.01 1.35 1.06 1098 450 25 -a 57.5 
7   65.02 3.3 - 0.9 - 72.49 4.32 20.22 1.09 1.88 1098 450 25 - 50.45 
7   66.46 4.08 - 0.95 - 73.67 5.9 18.22 1.11 1.1 1098 450 25 - 48.18 
7   74.16 4.35 - 1.27 - 76.72 5.44 15.65 1.28 0.91 1098 450 25 - 44.4 
7   73.72 4.33 - 1.35 - 78.79 5.16 10.15 1.48 4.42 1098 450 25 - 43.9 
7   82.77 4.96 - 1.63 - 83.98 5.48 7.41 1.67 1.46 1098 450 25 - 37.76 
7   85.82 4.45 - 1.43 - 80.53 5.11 1.5 1.59 1.26 1098 450 25 - 19.58 
8   78.2 3 17.1 1.5 0.2 75 4.4 19.3 1.1 0.2 823.2 575 -a - 39.6 
8   79.6 2.8 16.2 1.2 0.2 75 4.4 19.3 1.1 0.2 923.2 608 - - 39.6 
8   83.9 2.2 12.3 1.5 0.1 75 4.4 19.3 1.1 0.2 973.2 625 - - 39.6 
8   78.5 2.9 16.1 1.7 0.8 74.1 4.3 19.1 2 0.5 823.2 575 - - 43 
8   83.7 2.4 11.3 1.9 0.7 74.1 4.3 19.1 2 0.5 923.2 608 - - 43 
8   86.3 2.2 8.7 2.2 0.6 74.1 4.3 19.1 2 0.5 973.2 625 - - 43 
8   80.5 3.2 13 2.3 1 75.8 5.4 16.1 1.8 0.9 823.2 575 - - 47.1 
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Table B-1. Char Elemental Composition Data, CONTINUED 

Source Coal Rank Char Composition Parent Coal Composition 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 dp 𝑉𝑉𝑖𝑖 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
C H O N S C H O N S 

8   85.4 2.5 8.7 2.5 0.9 75.8 5.4 16.1 1.8 0.9 923.2 608 -a - 47.1 
8   88.3 2.2 6 2.7 0.8 75.8 5.4 16.1 1.8 0.9 973.2 625 - - 47.1 

a These values were not reported in the cited sources and were not included in the respective correlations. 

Table B-2. Tar Elemental Composition Data 

Source Coal Rank Tar Composition Parent Coal Composition 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 dp 𝑉𝑉𝑖𝑖 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
C H O N S C H O N S 

1   84.05 6.07 -a 1.64 - 83.98 5.48 7.41 1.67 1.46 780 580 25 - 37.76 
1   84.07 5.94 - 1.67 - 83.98 5.48 7.41 1.67 1.46 842 545 25 - 37.76 
1   84.37 5.86 - 1.68 - 83.98 5.48 7.41 1.67 1.46 933 515 25 - 37.76 
1   84.46 5.93 - 1.76 - 83.98 5.48 7.41 1.67 1.46 933 515 25 - 37.76 
1   84.62 5.55 - 1.69 - 83.98 5.48 7.41 1.67 1.46 1069 450 25 - 37.76 
1   83.97 6.22 - 1.64 - 84.7 5.4 7.26 1.71 0.92 780 580 69 - 38.69 
1   84.47 5.83 - 1.72 - 84.7 5.4 7.26 1.71 0.92 933 515 69 - 38.69 
1   84.16 5.79 - 1.74 - 84.7 5.4 7.26 1.71 0.92 933 515 69 - 38.69 
1   78.21 8.43 - 0.63 - 73.67 5.9 18.22 1.11 1.1 780 580 25 - 48.18 
1   78.53 8.19 - 0.68 - 73.67 5.9 18.22 1.11 1.1 842 545 25 - 48.18 
1   78.15 7.83 - 0.79 - 73.67 5.9 18.22 1.11 1.1 933 515 25 - 48.18 
1   77.78 7.63 - 0.81 - 73.67 5.9 18.22 1.11 1.1 933 515 25 - 48.18 
1   89.38 5.6 - 1.39 - 88.88 4.71 4.3 1.49 1.25 842 569 25 - 19.58 
1   88.78 5.25 - 1.29 - 88.88 4.71 4.3 1.49 1.25 933 660 25 - 19.58 
1   89.6 5.24 - 1.44 - 88.88 4.71 4.3 1.49 1.25 1069 450 25 - 19.58 
1   89.75 5.23 - 1.46 - 88.88 4.71 4.3 1.49 1.25 1069 450 25 - 19.58 
2   71.02 8.71 18.19 0.38 1.71 64.16 4.78 28.32 0.94 1.81 820 170 69 29.4 49 
2   78.71 4.9 12.71 1.3 2.38 64.16 4.78 28.32 0.94 1.81 1080 285 69 51.9 49 
2   78.39 6.59 13.3 1.2 0.52 74.23 5.48 18.35 1.3 0.65 820 170 69 10.7 45.68 
2   83.61 4.85 9.2 1.68 0.66 74.23 5.48 18.35 1.3 0.65 1080 285 69 51.2 45.68 
2   78.88 5.96 11.05 1.51 2.6 74.81 5.33 13.54 1.48 4.85 820 170 69 10.6 45.59 
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Table B-2. Tar Elemental Composition Data, CONTINUED 

Source Coal Rank Tar Composition Parent Coal Composition 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 dp 𝑉𝑉𝑖𝑖 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
C H O N S C H O N S 

2   85.23 4.89 5 1.8 3.08 74.81 5.33 13.54 1.48 4.85 1080 285 69 59.2 45.59 
2   83.39 6 8.04 1.74 0.83 82.77 5.61 8.9 1.74 0.98 820 170 69 10.3 38.69 
2   87.68 4.94 4.55 1.96 0.88 82.77 5.61 8.9 1.74 0.98 1080 285 69 47.9 38.69 
2   92.13 4.86 0.73 1.34 0.93 90.92 4.51 2.41 1.34 0.82 1080 285 69 27.1 18.01 
3   73.25 5.79 20.3 0.54 0.12 65.31 4.76 29.22 0.52 0.18 895 263 60 46 53.1 
3   79.19 4.64 15.22 0.78 0.17 65.31 4.76 29.22 0.52 0.18 1000 252 60 55 53.1 
3   86.37 4.58 7.9 0.91 0.23 65.31 4.76 29.22 0.52 0.18 1085 234 60 57.8 53.1 
3   78.82 6.69 16 1.18 0.41 71.37 5.36 21.55 1.18 0.55 895 263 60 41.6 51.3 
3   81.48 4.82 11.46 1.69 0.54 71.37 5.36 21.55 1.18 0.55 1000 252 60 51.1 51.3 
3   84.66 4.65 8.35 1.77 0.58 71.37 5.36 21.55 1.18 0.55 1085 234 60 54.4 51.3 
3   85.55 5.75 6.84 1.63 0.23 76.72 6.35 15.59 1.13 0.21 1000 252 60 58.3 54.7 
3   87.51 4.76 5.76 1.72 0.25 76.72 6.35 15.59 1.13 0.21 1085 234 60 60.4 54.7 
3   85.42 6.06 4.47 1.38 2.68 79.91 6.13 8.3 1.18 4.48 895 263 60 66.8 53 
3   86.99 4.76 3.6 1.59 3.07 79.91 6.13 8.3 1.18 4.48 1000 252 60 63.9 53 
3   89.89 4.36 1.69 1.65 2.4 79.91 6.13 8.3 1.18 4.48 1085 234 60 64.7 53 
3   84.62 6.02 6.86 2.07 0.43 82.82 5.43 9.18 2.08 0.48 895 263 60 38.6 37.2 
3   86.54 4.92 5.67 2.38 0.48 82.82 5.43 9.18 2.08 0.48 1000 252 60 43.8 37.2 
3   91.12 4.44 1.42 2.54 0.48 82.82 5.43 9.18 2.08 0.48 1085 234 60 47.9 37.2 
3   84.12 5.87 7.33 1.71 0.97 82.77 5.48 6.73 1.64 3.38 895 263 60 45.1 42.5 
3   85.5 5.65 6.08 1.76 1.02 82.77 5.48 6.73 1.64 3.38 960 263 60 47.2 42.5 
3   86.55 5.66 4.94 1.81 1.03 82.77 5.48 6.73 1.64 3.38 960 263 60 46.4 42.5 
3   86.5 4.85 5.36 1.91 1.38 82.77 5.48 6.73 1.64 3.38 1000 252 60 50.7 42.5 
3   88.92 4.43 3.2 1.99 1.47 82.77 5.48 6.73 1.64 3.38 1085 234 60 54.4 42.5 
3   87.95 5.53 3.94 1.6 0.97 84.15 5.13 4.6 1.55 4.56 895 263 60 42.9 33.4 
3   89.51 4.73 2.82 1.79 1.15 84.15 5.13 4.6 1.55 4.56 1000 252 60 49 33.4 
3   92.25 4.24 0.27 1.93 1.31 84.15 5.13 4.6 1.55 4.56 1085 234 60 45.2 33.4 
3   90.8 5.26 1.91 1.34 0.69 91.57 4.57 1.74 1.36 0.76 895 263 60 13.4 20.1 
3   92.32 4.78 0.81 1.41 0.69 91.57 4.57 1.74 1.36 0.76 1000 252 60 21.7 20.1 
3   92.64 4.5 0.74 1.45 0.67 91.57 4.57 1.74 1.36 0.76 1085 234 60 25.8 20.1 
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Table B-2. Tar Elemental Composition Data, CONTINUED 

Source Coal Rank Tar Composition Parent Coal Composition 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 dp 𝑉𝑉𝑖𝑖 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
C H O N S C H O N S 

5   70.4 8.17 -a 0.4 - 69.99 5.59 21.19 1.17 2.08 850 140 69 23.01 49 
5   76.29 6.95 - 0.94 - 69.99 5.59 21.19 1.17 2.08 900 160 69 38.18 49 
5   73.61 5.02 - 1.23 - 69.99 5.59 21.19 1.17 2.08 1050 210 69 44.75 49 
5   77.93 7.62 - 0.9 - 77.29 5.69 14.96 1.27 0.79 850 140 69 17.68 45.68 
5   79.07 7.07 - 1.22 - 77.29 5.69 14.96 1.27 0.79 900 160 69 23.16 45.68 
5   80.49 4.98 - 1.74 - 77.29 5.69 14.96 1.27 0.79 1050 210 69 47.06 45.68 
5   68.54 5.35 - 1.38 - 76.65 4.93 10.01 1.47 6.93 850 140 69 8.95 45.59 
5   79.36 5.66 - 1.27 - 76.65 4.93 10.01 1.47 6.93 900 160 69 37.5 45.59 
5   81.645 4.92 - 1.77 - 76.65 4.93 10.01 1.47 6.93 1050 210 69 45.51 45.59 
5   82.5 6.13 - 1.5 - 84.7 5.4 7.26 1.71 0.92 850 140 69 21.5 38.69 
5   86.61 5.48 - 2.12 - 84.7 5.4 7.26 1.71 0.92 900 160 69 45.9 38.69 
5   85.46 4.95 - 1.94 - 84.7 5.4 7.26 1.71 0.92 1050 210 69 45.03 38.69 
5   74 7 - 0.4 - 90.52 4.6 2.52 1.6 0.77 850 140 69 6.6 18.01 
5   80.63 4.97 - 1.05 - 90.52 4.6 2.52 1.6 0.77 900 160 69 11.84 18.01 
5   89.98 4.9 - 1.25 - 90.52 4.6 2.52 1.6 0.77 1050 210 69 12.96 18.01 
6   81 6.4 - -a - 80.5 4.9 -a 1.9 - 873.15 700 -a 38 34.4 
6   83.2 6.3 - - - 85.9 4.7 - 1.9 - 873.15 700 - 30 26.3 
6   78.8 6 - - - 81.6 4.7 - 1.9 - 873.15 700 - 36 33.2 
6   77.5 6.3 - - - 77.9 5.1 - 1.6 - 873.15 700 - 45 40 
6   80.1 6.3 - - - 82.1 5.3 - 1.7 - 873.15 700 - 50 37.3 
6   80.3 7 - - - 80.5 5.7 - 2 - 873.15 700 - 61 41.6 
6   81.4 6.8 - - - 80.3 5.8 - 2 - 873.15 700 - 52 45.6 
6   80.3 7.6 - - - 78.4 6.4 - 1.2 - 873.15 700 - 54 51.4 
6   80.2 6.5 - - - 77.7 5.6 - 0 - 873.15 700 - 60 44.6 
6   80.3 6.6 - - - 81.3 5.3 - 0 - 873.15 700 - 41 -a 

7   84.05 6.07 - 1.64 - 83.98 5.48 7.41 1.67 1.46 780.15 580 25 15 37.76 
7   84.07 5.94 - 1.67 - 83.98 5.48 7.41 1.67 1.46 842.15 545 25 22 37.76 
7   84.37 5.86 - 1.68 - 83.98 5.48 7.41 1.67 1.46 933.15 515 25 24 37.76 
7   84.62 5.55 - 1.69 - 83.98 5.48 7.41 1.67 1.46 1069.15 450 25 26 37.76 
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Table B-2. Tar Elemental Composition Data, CONTINUED 

Source Coal Rank Tar Composition Parent Coal Composition 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 dp 𝑉𝑉𝑖𝑖 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
C H O N S C H O N S 

7   80.27 8.88 -a 0.76 - 71.42 5.17 21.01 1.35 1.06 1098.15 450 25 - 57.5 
7   77.58 7.86 - 0.73 - 72.49 4.32 20.22 1.09 1.88 1098.15 450 25 - 50.45 
7   77.78 7.63 - 0.81 - 73.67 5.9 18.22 1.11 1.1 1098.15 450 25 - 48.18 
7   78.15 7.83 - 0.79 - 73.67 5.9 18.22 1.11 1.1 1098.15 450 25 - 48.18 
7   78.56 6.24 - 1.27 - 76.72 5.44 15.65 1.28 0.91 1098.15 450 25 - 44.4 
7   79.52 5.51 - 1.44 - 78.79 5.16 10.15 1.48 4.42 1098.15 450 25 - 43.9 
7   84.37 5.86 - 1.68 - 83.98 5.48 7.41 1.67 1.46 1098.15 450 25 - 39.98 
7   89.18 5.18 - 0.96 - 89.71 4.29 4.27 1.1 0.63 1098.15 450 25 - 16.91 
7   88.78 5.25 - 1.29 - 88.88 4.71 4.3 1.49 1.25 1098.15 450 25 - 19.58 

a These values were not reported in the cited sources and were not included in the respective correlations. 
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B.2 Aromaticity Data Set 

 The aromaticity data set is described in Section 2.5 and all sources used in the aromaticity 

data set are shown in Table B-3. The sources are as follows: 

1. Genetti et al. (Genetti et al., 1999; Genetti, 1999) 

2. Solum et al. (1989) 

3. Hambly/Watt (Watt, 1996; Hambly, 1998) 

4. Sandia, Fletcher and Hardesty (1992) 

5. Perry (1999) 

6. Gerschel and Schmidt (2016) 

7. Cui et al. (2019) 

8. Ahmed et al. (2003) 

9. Ibarra et al. (1991) 

10. Lin et al. (2016) 

11. Russell et al. (1983) 

12. Suggate and Dickinson (2004) 

13. Wang et al. (2010) 

14. Zhang et al. (1995) 

 The elemental composition values listed here are on a DAF wt.% basis. The aromaticity 

values (𝑓𝑓𝑐𝑐′) are the corrected aromaticity, without the carbonyl contributions. The other NMR 

parameters are actual measured values. ASTM volatile matter is also on a DAF wt.% basis. If no 

ASTM volatile matter is reported for a specific sample, that sample was excluded from the 

analysis if the model form of interest used the ASTM volatile matter as a variable. 
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Table B-3. Coal Aromaticity Data Set 

Source Coal Rank Elemental Composition 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑀𝑀𝛿𝛿 𝑀𝑀𝑐𝑐𝑐𝑐 𝑝𝑝0 𝜎𝜎 + 1 𝑓𝑓𝑐𝑐′ 
C H O N S 

1, 2 Beulah-Zap ligA 72.9 4.83 20.34 1.15 0.7 49.8 40 269 0.64 4.1 0.54 
1, 2 Wyodak  subC 75 5.35 18.02 1.12 0.47 49 42 408 0.55 5.6 0.55 
1, 2 Blind Canyon  hvBb 80.7 5.76 11.58 1.57 0.37 48.1 36 366 0.49 5.1 0.64 
1, 2 Illinois #6  hvCb 77.7 5 13.51 1.37 2.38 47.4 27 322 0.63 5 0.72 
1, 2 Pittsburgh #8  hvAb 83.2 5.32 8.83 1.64 0.89 41.7 28 330 0.64 4.7 0.72 
1, 2 Stockton  hvAb 82.6 5.25 9.83 1.56 0.65 37.6 20 272 0.69 4.8 0.75 
1, 2 Upper Freeport  mvb 85.5 4.7 7.51 1.55 0.74 31.6 17 312 0.67 5.3 0.81 
1, 2 Pocahontas #3 lvb 91.1 4.44 2.47 1.33 0.5 19.5 13 307 0.74 4.4 0.86 
2 Zap lig 66.5 4.8 26.5 1.1 1.1 -a 46 339 0.63 4.5 0.58 
2 Rosebud subB 72.1 4.9 20.3 1.2 1.2 - 48 459 0.57 5.8 0.53 
2 Illinois #6 hvBb 73.9 5.1 15.4 1.4 4.2 - 29 267 0.61 4.6 0.67 
1, 3 Lower Wilcox  ligA 72.3 5.21 20.11 1.35 0.94 78.7 36 297 0.59 4.8 0.56 
1, 3 Dietz subB 76 5.23 17.27 0.94 0.53 44.2 37 310 0.54 4.7 0.56 
1, 3 Buck Mountain an 95.4 1.38 1.86 0.84 0.53 3.9 7.5 661.5 1 4.7 0.94 
1, 4 Blue #1  hvCb 75.6 5.26 17.33 1.32 0.49 48.2 47 410 0.42 5.0 0.53 
1, 4 Pittsburgh #8 hvAb 84.2 5.54 7.56 1.65 1.01 38.7 34 356 0.45 5.0 0.6 
1, 4 Illinois #6 hvAb 74.1 4.96 13.18 1.45 6.29 43.4 34 270 0.56 4.1 0.67 
1, 4 Beulah-Zap ligA 66.6 4.26 25.16 1.12 2.89 49.6 52 440 0.48 5.2 0.57 
1, 4 Pocahontas #3 mvb 88.8 4.37 5.14 1.06 0.6 17.2 23 316 0.59 4.0 0.77 
1 not named hvb 87.9 3.77 4.65 1.31 2.37 36.9 21 264 0.64 4.8 -a 

1 not named lvb 88.5 4.94 1.4 -a 1.75 19.3 19 295 0.65 5.0 - 
1 Bottom subC 70.7 5.83 20.83 1.47 1.18 53.6 55 505 0.42 5.8 - 
1 Adaville #1 hvCb 72.5 5.22 20.09 1.17 1.04 45.6 43 381 0.55 5.1 - 
1 Beulah-Zap ligA 68.5 4.94 24.96 1 0.64 61.7 42 329 0.68 4.6 - 
1 Sewell mvb 85.5 4.91 7.12 1.72 0.72 33.2 72 483 0.72 4.5 - 
1 Kentucky #9 hvBb 79.4 5.62 8.57 1.74 4.71 44.6 35 370 0.48 5.3 - 
1 Elkhorn #3 hvAb 82.7 5.73 8.76 1.78 0.99 40.5 21 247 0.64 4.7 - 
1 Lykens Valley #2 an 93.8 2.72 1.96 0.92 0.62 5.1 13 216 1 3.8 - 
1 Deadman subA 76.5 5.24 15.95 1.53 0.76 40.6 34 361 0.55 5.2 - 
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Table B-3. Coal Aromaticity Data Set, CONTINUED 

Source Coal Rank Elemental Composition 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑀𝑀𝛿𝛿 𝑀𝑀𝑐𝑐𝑐𝑐 𝑝𝑝0 𝜎𝜎 + 1 𝑓𝑓𝑐𝑐′ 
C H O N S 

1 Penna. Semian. C sa 88.4 4.02 5.47 1.24 0.86 11.8 4 231 1 6.0 -a 

1 Lower Kittanning lvb 86.2 4.86 4.64 1.81 2.45 21.6 21 354 0.35 4.5 - 
1 Smith-Roland subC 67.4 5.37 24.39 1 1.84 53.4 46 282 0.64 3.7 - 
1 Lower Hartshorne lvb 91.2 4.56 1.53 1.82 0.89 23.5 14 225 0.69 4.4 - 
5 Yallourn brown 65.31 4.76 29.22 0.52 0.18 53.1 46 452 0.6 6.1 0.57 
5 South Banko brown 71.37 5.36 21.55 1.18 0.55 51.3 46 405 0.55 5.3 0.54 
5 Taiheiyo sub 76.72 6.35 15.59 1.13 0.21 54.7 47 430 0.4 5.5 0.51 
5 Miike hvb 79.91 6.13 8.3 1.18 4.48 53 31 329 0.57 5.0 0.64 
5 Hunter Valley hvb 82.82 5.43 9.18 2.08 0.48 37.2 21 266 0.67 4.9 0.71 
5 Pittsburgh hvb 82.77 5.48 6.73 1.64 3.38 42.5 28 311 0.62 4.5 0.7 
5 Upper Freeport mvb 84.15 5.13 4.6 1.55 4.56 33.4 18 317 0.67 5.3 0.81 
5 Pocahontas lvb 91.57 4.57 1.74 1.36 0.76 20.1 13 305 0.74 4.4 0.86 
6 Schoningen lig 70.8 5.53 15.75 0.4 7.51 58.59 -a - - - 0.67 
7  an 81.4 3.51 11.12 1.16 2.81 -a - - - - 0.7368 
8   74.52 5.07 16.77 1.6 2.04 - - - - - 0.59 
8   75.14 5.81 15.16 1.43 2.46 - - - - - 0.58 
8   77.18 6.45 13.42 1.33 1.62 - - - - - 0.47 
8   74.53 6.36 13.17 1.25 4.69 - - - - - 0.46 
8   75.33 6.47 13.94 1.26 3 - - - - - 0.46 
8   73.15 5.79 15.85 1.47 3.74 - - - - - 0.47 
9 Arino  69.8 3.3 21.7 0.3 4.9 40.7 - - - - 0.58 
9 Canizar  65.3 3.3 26.6 0.2 4.6 42.5 - - - - 0.6 
9 Arino  67.2 3.5 23.1 0.5 5.7 42.2 - - - - 0.59 
9 Castellote  73.4 3.8 19.9 0.5 2.4 39.7 - - - - 0.61 
9 Utrillas  68.8 4.5 24.1 0.5 2.1 40.4 - - - - 0.58 
9 Estercuel  59.7 3.3 33 0.6 4.3 40.3 - - - - 0.58 
9 Torrelapaja  73.7 4.2 19.1 0.5 2.5 40.1 - - - - 0.6 
9 Corta Alloza  63.8 3 28.4 0.6 4.2 43.3 - - - - 0.53 
9 Mequinenza  69.2 4.7 16.9 0.7 8.5 57.5 - - - - 0.43 
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Table B-3. Coal Aromaticity Data Set, CONTINUED 

Source Coal Rank Elemental Composition 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑀𝑀𝛿𝛿 𝑀𝑀𝑐𝑐𝑐𝑐 𝑝𝑝0 𝜎𝜎
+ 1 

𝑓𝑓𝑐𝑐′ 
C H O N S 

10  brown 69.2 5.14 24.49 0.89 0.28 54.63 -a - - - 0.3412 
11 Loy Yang  70 4.9 23.4 0.6 0.4 -a - - - - 0.53 
11 Callide  68.3 4.5 22.6 0.8 0.2 - - - - - 0.76 
11 Wambo  76 5.3 12.7 2.9 0.4 - - - - - 0.61 
11 Liddell  74.7 4.9 10.7 1.9 0.4 - - - - - 0.68 
11 Bayswater  72.3 4.9 8 1.8 0.3 - - - - - 0.64 
11 Bulli  77.8 4.4 3.2 2.4 0.3 - - - - - 0.74 
12 d1385  80 5.9 10.2 1.4 2 46.35 - - - - 0.609 
12 d1385  81.7 5.7 10.8 1.3 0.5 41.95 - - - - 0.628 
12 d1281  80.5 5.6 9.5 1.2 3.2 42.75 - - - - 0.643 
12 d1281  82.2 5.8 10.2 1.2 0.6 41.21 - - - - 0.677 
12 PR d2  84 6.3 5.6 1.2 3 49.26 - - - - 0.588 
12 PR d2  83.6 6 8.5 1 0.8 45.62 - - - - 0.708 
12 d1334  79.2 5.9 8.2 0.9 5.7 47.72 - - - - 0.666 
12 PR d6  81.8 6 4.6 0.8 6.9 48.26 - - - - 0.625 
12 PR d6  84.7 6.1 5.9 1 2.4 46.25 - - - - 0.638 
12 PR d6  84.6 6.2 7.7 0.9 0.7 44.50 - - - - 0.675 
12 d1215  85 5.3 6 1.1 2.7 33.71 - - - - 0.695 
12 d1222  85.7 5.4 4.8 1.2 3 33.37 - - - - 0.728 
12 d1222  87.4 5.2 5 1.2 1.2 29.92 - - - - 0.752 
12 d1222  85.2 5.1 4.7 1 4 29.34 - - - - 0.758 
12 d1241  87.6 5.2 4.7 1.3 1.2 30.76 - - - - 0.745 
12 d1241  86.2 4.9 3.8 1.1 4 28.25 - - - - 0.769 
12 Cape  76.7 4.9 17 0.7 0.7 36.27 - - - - 0.711 
12 Farewell-1  79.8 6.4 9.2 1.1 3.5 50.84 - - - - 0.598 
12 Farewell-1  81.9 6.1 8.5 1.3 2.2 43.51 - - - - 0.684 
12 Farewell-1  83.6 6.4 7.3 1.4 1.3 45.85 - - - - 0.652 
12 Farewell-1  84.7 6.1 6.9 1.4 0.9 42.79 - - - - 0.691 
12 Kupe  71.1 5.1 18.9 1.2 3.8 49 - - - - 0.617 
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Table B-3. Coal Aromaticity Data Set, CONTINUED 

Source Coal Rank Elemental Composition 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑀𝑀𝛿𝛿 𝑀𝑀𝑐𝑐𝑐𝑐 𝑝𝑝0 𝜎𝜎 + 1 𝑓𝑓𝑐𝑐′ 
C H O N S 

12 South-4  76.9 5.6 15.3 1.7 0.6 41.81 -a - - - 0.653 
12 Tahi-1  73.9 5.6 18.7 1.2 0.7 48.14 - - - - 0.552 
12 Tahi-1  72.7 5 20.5 1.1 0.8 42.34 - - - - 0.641 
12 North  77.8 5.7 14.3 1.2 1 43.35 - - - - 0.653 
12 Tasman-1  80 6 11.8 1.4 1.2 45.03 - - - - 0.633 
12 Tasman-1  80.7 6.4 10.7 1.3 1 46.82 - - - - 0.63 
12 Tasman-1  80.9 6 10.7 1.4 1.1 43.78 - - - - 0.664 
12 Toru-1  73 5.3 18.2 1.4 2.1 46.67 - - - - 0.567 
12 Toru-1  79.5 5.5 12.1 1.4 1.6 42.31 - - - - 0.695 
12 Tane-1  79.9 5.7 12 1.3 1 41.71 - - - - 0.656 
12 Tane-1  81.7 6.1 9.6 1.2 1.5 43.78 - - - - 0.671 
12 Tane-1  83.5 5.9 8.7 1.3 0.7 38.28 - - - - 0.706 
12 Tane-1  83.4 6.3 8.2 1.3 0.8 42.19 - - - - 0.665 
13 HM  83.26 3.44 12.2 0.77 0.33 24.52 - - - - 0.877 
13 LW  79.71 3.84 15.28 0.71 0.46 30.91 - - - - 0.839 
13 SD  79.53 4.16 14.92 0.91 0.48 33.72 - - - - 0.807 
13 PS  80.41 5.2 11.95 1.38 1.06 37.19 - - - - 0.756 
14 Xundian lig 66.08 5.21 26.46 0.96 1.29 - - - - - 0.65 
14 Huelinhe lig 71.08 4.75 21.96 1.09 1.12 - - - - - 0.75 
14 Fushun  76.6 5.44 16.3 1.15 0.5 - - - - - 0.77 
14 Laohutai  79.02 5.58 13.45 1.3 0.64 - - - - - 0.8 
14 Fengfeng fat  87.8 5.15 4.77 1.11 1.16 - - - - - 0.85 
14 Fengfeng coking  88.03 5.27 4.59 1.64 0.49 - - - - - 0.85 
14 Fengfeng lean  89.29 4.07 3.67 1.14 1.83 - - - - - 0.9 
14 Shanxi Meagre  90.6 3.72 2.36 0.85 2.46 - - - - - 0.93 
14 Jincheng an 92.79 2.79 3.06 0.99 0.38 - - - - - 0.96 

a Some sources did not report information including VASTM and NMR parameters (including aromaticity). These samples were not 
used in correlations where this information was necessary. Some sources also did not include coal name or rank information. 
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B.3 Fuel Heating Value Data Set 

 The sources for this data set are detailed in Table 2-5. Table B-4 details the entire heating 

value data set. Included in Table B-4 are the following columns:  (1) source, which is either the 

institution or primary author of the cited paper, (2) the fuel type or major fuel group from Table 

7-1, (3) coal rank (if the fuel is coal and rank was reported), (4) the country of origin (mostly 

coals with reported countries of origin), (5) the CHONS wt.% on a dry, ash-free basis, and (6) 

the higher heating value (HHV) in MJ/kg and also on a dry, ash-free basis. Appropriate 

abbreviations are defined both in the nomenclature section. Sources are in the same order in this 

table as in Table 2-5. 

 
Table B-4. Heating Value of Various Fuels 

Source Fuel 
Type 

Coal 
Rank 

Country C H O N S HHV 

Argonne Coal MVB US 85.50 4.70 7.51 1.55 0.74 36.08 
Coal SUB US 75.03 5.35 18.03 1.12 0.47 29.88 
Coal HVB US 77.72 5.00 13.52 1.37 2.38 32.91 
Coal HVB US 83.30 5.33 8.84 1.64 0.89 34.97 
Coal LVB US 91.23 4.45 2.47 1.33 0.50 36.77 
Coal HVB US 80.71 5.76 11.58 1.57 0.37 34.00 
Coal HVB US 82.68 5.26 9.84 1.56 0.65 34.31 
Coal Lig US 72.97 4.83 20.35 1.15 0.70 28.35 

Penn 
State 
Coal 
Data 
Bank 

Coal LVB US 91.53 4.38 2.10 1.10 0.63 36.56 
Coal HVC US 74.99 5.64 17.21 1.40 0.75 32.14 
Coal HVA US 83.34 5.41 8.11 1.58 1.58 34.67 
Coal subB US 76.03 5.23 17.28 0.94 0.53 30.78 
Coal HVC US 78.10 4.92 9.61 1.50 5.87 32.82 
Coal HVC US 80.06 5.26 12.89 1.23 0.56 32.33 
Coal LigA US 71.57 5.04 20.81 0.95 1.63 28.25 
Coal LVB US 88.83 4.68 3.29 1.64 1.56 35.96 
Coal LigA US 72.39 5.21 20.12 1.35 0.94 29.27 
Coal subB US 73.78 2.77 20.95 1.11 1.38 30.54 
Coal HVA US 84.04 5.58 7.82 1.54 1.01 35.04 
Coal an US 95.42 1.38 1.86 0.84 0.53 34.33 
Coal MVB US 88.85 5.12 3.17 1.87 0.99 36.39 
Coal MVB US 81.85 5.50 10.29 1.66 0.71 34.05 
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Table B-4. Heating Value of Various Fuels, CONTINUED 

Source Fuel 
Type 

Coal 
Rank 

Country C H O N S HHV 

Penn 
State, 
cont. 

Coal LigA US 72.57 4.71 20.76 1.10 0.86 27.88 

Foster 
Wheeler 

Coal MVB US 84.67 5.34 5.14 2.14 2.71 34.75 
Coal LigA US 68.60 4.85 23.00 1.37 2.18 26.82 
Coal Sub US 71.83 5.39 20.85 1.44 0.49 29.03 
Coal HVB US 77.54 5.52 10.23 2.11 4.60 32.46 
Coal lig US 59.58 6.89 28.94 1.06 3.53 24.19 
Coal HVA US 76.71 5.83 10.22 1.56 5.68 31.46 
Coal HVB US 76.68 5.83 10.91 1.75 4.82 31.86 

Ahmed Coal sub Spain 71.17 3.38 17.12 0.90 7.43 28.04 
Char - Spain 86.85 2.38 4.88 1.13 4.76 29.70 

Proscia Coal HVA US 82.36 5.51 8.56 1.65 1.92 33.92 
Coal LVB US 86.47 4.75 4.85 1.63 2.30 35.14 
Char - US 83.01 5.24 8.23 1.68 1.84 33.56 
Char - US 83.03 4.68 8.64 1.71 1.94 32.85 
Char - US 85.22 4.41 6.96 1.85 1.56 32.75 
Char - US 85.42 4.03 7.13 1.81 1.60 31.73 
Char - US 88.44 4.73 3.55 1.61 1.69 35.39 
Char - US 88.20 4.50 3.84 1.64 1.82 33.65 
Char - US 88.62 4.21 3.76 1.62 1.79 34.99 
Char - US 89.52 3.50 3.62 1.65 1.72 35.64 
Tar - US 85.02 6.40 5.68 1.63 1.27 35.12 
Tar - US 85.12 5.91 5.88 1.77 1.32 35.22 
Tar - US 85.70 5.82 5.47 1.78 1.23 35.24 
Tar - US 86.38 5.60 5.08 1.80 1.14 34.65 

Shamsi Coal sub US 53.21 4.28 40.92 0.72 0.87 21.15 
Char - US 69.32 3.52 25.03 1.08 1.05 27.34 
Char - US 69.51 3.61 24.76 1.03 1.09 27.50 
Char - US 65.61 3.49 29.09 0.96 0.85 25.34 
Char - US 63.79 3.68 30.48 1.00 1.05 24.93 

Lazaro Coal lig Spain 68.70 5.39 13.85 0.96 11.10 23.23 
Coal lig Spain 75.90 5.34 12.27 0.71 5.78 20.21 

Ferrara Coal bit S. Africa 93.46 3.09 1.21 1.63 0.61 34.57 
Coal sub Italy 73.67 5.16 11.00 1.85 8.32 29.49 
biomass - Italy 58.15 6.25 35.53 0.07 0.00 20.79 

Tomasz. coal LigB Poland 64.68 5.05 27.70 0.69 1.88 25.20 
coal LigB Poland 67.31 4.97 24.96 0.84 1.92 26.17 
coal LigB Poland 68.27 5.02 25.15 0.75 0.80 26.41 
coal LigA Poland 70.33 6.19 21.64 0.69 1.15 29.37 
coal SubB Poland 78.19 4.48 14.54 1.22 1.58 30.94 
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Table B-4. Heating Value of Various Fuels, CONTINUED 

Source Fuel 
Type 

Coal 
Rank 

Country C H O N S HHV 

Tomasz., 
cont. 

coal SubA Poland 78.65 5.08 13.62 1.21 1.45 31.63 
coal hvCb Poland 80.81 4.76 11.77 1.26 1.39 31.55 
coal hvCb Poland 83.75 5.11 9.12 1.43 0.59 33.94 
coal hvAb Poland 84.04 5.00 8.32 1.47 1.17 33.86 
coal hvCb Poland 82.92 5.21 8.50 1.69 1.68 33.14 
coal hvAb Poland 85.44 4.82 7.92 1.46 0.36 33.89 

Tourunen coal bit Poland 81.51 5.04 11.14 1.40 0.91 33.60 
Ding coal lig China 71.40 2.74 23.70 1.41 0.75 33.10 

coal bit China 84.45 2.48 11.06 1.20 0.82 30.26 
petcoke - China 89.39 3.73 4.04 0.75 2.09 36.18 
petcoke - China 88.23 3.79 1.35 0.36 6.27 36.88 

Kajitani Coal bit Aus. 82.50 5.10 10.50 1.40 0.50 34.69 
Coal bit China 78.40 5.60 14.90 1.00 0.10 30.81 

Roberts Coal - Aus. 82.00 5.23 10.80 1.70 0.27 37.84 
Coal - Aus. 82.90 5.95 8.40 1.83 0.88 31.33 
Coal - Aus. 76.00 5.85 16.50 1.15 0.49 31.88 

Wang Coal bit UK 82.60 6.15 8.75 1.98 0.52 36.46 
Coal bit UK 79.77 5.29 12.55 1.66 0.73 35.17 

Franchetti Coal bit Aus. 84.79 5.19 7.70 1.77 0.52 34.32 
Suggate Coal - New 

Zealand 
80.60 5.90 10.20 1.40 2.00 33.96 

Coal - New 
Zealand 

81.70 5.70 10.80 1.30 0.50 34.10 

Coal - New 
Zealand 

80.50 5.60 9.50 1.20 3.20 34.09 

Coal - New 
Zealand 

82.20 5.80 10.20 1.20 0.60 34.66 

Coal - New 
Zealand 

84.00 6.30 5.60 1.20 3.00 35.78 

Coal - New 
Zealand 

83.60 6.00 8.50 1.00 0.80 35.18 

Coal - New 
Zealand 

79.20 5.90 8.20 0.90 5.70 34.01 

Coal - New 
Zealand 

81.80 6.00 4.60 0.80 6.90 35.32 

Coal - New 
Zealand 

84.70 6.10 5.90 1.00 2.40 36.10 

Coal - New 
Zealand 

84.60 6.20 7.70 0.90 0.70 36.24 

Coal - New 
Zealand 

85.00 5.30 6.00 1.10 2.70 35.70 
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Table B-4. Heating Value of Various Fuels, CONTINUED 

Source Fuel 
Type 

Coal 
Rank 

Country C H O N S HHV 

Suggate, 
cont. 

Coal - New 
Zealand 

85.70 5.40 4.80 1.20 3.00 36.12 

Coal - New 
Zealand 

87.40 5.20 5.00 1.20 1.20 36.38 

Coal - New 
Zealand 

85.20 5.10 4.70 1.00 4.00 35.73 

Coal - New 
Zealand 

87.60 5.20 4.70 1.30 1.20 36.63 

Coal - New 
Zealand 

86.20 4.90 3.80 0.10 4.00 35.65 

Coal - New 
Zealand 

76.70 4.90 17.00 0.70 0.70 30.40 

Coal - New 
Zealand 

79.80 6.40 9.20 1.10 3.50 34.12 

Coal - New 
Zealand 

81.90 6.10 8.50 1.30 2.20 34.36 

Coal - New 
Zealand 

83.60 6.40 7.30 1.40 1.30 35.23 

Coal - New 
Zealand 

84.70 6.10 6.90 1.40 0.90 35.37 

Coal - New 
Zealand 

71.10 5.10 18.90 1.20 3.80 28.01 

Coal - New 
Zealand 

76.90 5.60 15.30 0.70 0.60 31.31 

Coal - New 
Zealand 

73.90 5.60 18.70 1.20 0.70 29.93 

Coal - New 
Zealand 

72.70 5.00 20.50 1.10 0.80 28.62 

Coal - New 
Zealand 

77.80 5.70 14.30 1.20 1.00 31.82 

Coal - New 
Zealand 

80.00 6.00 11.80 1.40 1.20 33.28 

Coal - New 
Zealand 

80.70 6.40 10.70 1.30 1.00 33.89 

Coal - New 
Zealand 

80.90 6.00 10.70 1.40 1.10 33.52 

Coal - New 
Zealand 

73.00 5.30 18.20 1.40 2.10 29.18 

Coal - New 
Zealand 

79.50 5.50 12.10 1.40 1.60 32.74 

Coal - New 
Zealand 

79.90 5.70 12.00 1.30 1.00 33.04 
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Table B-4. Heating Value of Various Fuels, CONTINUED 

Source Fuel 
Type 

Coal 
Rank 

Country C H O N S HHV 

Suggate, 
cont. 

Coal - New 
Zealand 

81.70 6.10 9.60 1.20 1.50 34.15 

Coal - New 
Zealand 

83.50 5.90 8.70 1.30 0.70 34.79 

Coal - New 
Zealand 

83.40 6.30 8.20 1.30 0.80 35.26 

Peat - New 
Zealand 

61.10 5.50 32.20 0.70 0.50 22.00 

Peat - New 
Zealand 

63.70 5.70 29.40 0.70 0.50 22.92 

Peat - New 
Zealand 

62.40 5.20 31.20 0.60 0.60 21.56 

Peat - New 
Zealand 

63.50 5.30 30.20 0.50 0.50 22.37 

Peat - New 
Zealand 

63.70 5.40 30.00 0.50 0.50 22.37 

Peat - New 
Zealand 

62.40 5.10 31.10 0.50 1.10 20.02 

Peat - New 
Zealand 

61.80 5.00 31.60 0.60 1.20 21.12 

Peat - New 
Zealand 

65.00 6.20 27.50 0.70 0.70 24.97 

Ra Coal hvBb Indo 71.13 5.04 14.85 1.68 1.38 28.50 
Reichel Coal lig Germ 67.50 4.80 26.60 0.80 0.30 26.45 
Riaza Coal an Spain 94.70 1.60 2.00 1.00 0.70 34.03 

Coal semi-
an 

Spain 91.70 3.50 1.30 1.90 1.60 35.61 

Coal MVB Mexico 86.20 5.50 5.90 1.60 0.80 35.23 
Coal HVB S. 

Africa 
81.50 5.00 10.50 2.10 0.90 32.71 

Riaza Coal HVB Col 73.00 5.20 18.60 2.20 1.00 33.10 
Biomass - UK 51.49 3.14 44.70 0.55 0.12 17.93 

Riaza Biomass - UK 52.80 6.50 39.10 1.60 0.00 21.75 
Biomass - UK 52.70 5.80 41.20 0.20 0.10 20.88 

Seo Coal - China 82.68 4.87 11.26 1.08 0.11 33.69 
Shadle Coal sub US 73.34 5.51 19.79 0.89 0.47 28.91 

Coal bit US 78.46 5.70 10.58 1.25 4.02 31.82 
Coal bit US 84.12 5.03 9.05 1.41 0.39 30.98 

Shaw Coal - - 84.42 5.45 7.06 1.69 1.38 34.98 
Coal - - 82.37 5.52 9.07 1.86 1.18 33.99 
Coal - - 84.12 5.77 5.92 1.73 2.46 35.44 
Coal lig US 58.91 6.76 33.21 0.91 0.21 30.00 
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Table B-4. Heating Value of Various Fuels, CONTINUED 

Source Fuel Type Coal 
Rank 

Country C H O N S HHV 

Shaw, 
cont. 

Coal hvAb US 82.69 5.85 7.81 1.65 2.00 34.28 
Coal SubB US 76.00 5.27 17.27 0.94 0.53 30.76 
Coal hvBb US 78.07 4.92 9.65 1.50 5.87 32.80 
Coal hvCb US 80.04 5.26 12.91 1.23 0.56 32.33 
Coal lig US 71.55 5.04 20.83 0.95 1.63 28.25 
Coal hvCb US 74.97 5.64 17.23 1.40 0.75 32.13 
Coal - - 79.09 5.45 10.60 1.34 3.52 32.22 
Coal lig - 70.05 5.21 21.55 1.01 1.35 27.64 
Coal lig US 70.30 5.23 20.02 0.75 3.67 28.45 
Coal lig US 72.34 5.21 20.18 1.35 0.94 29.25 

Tufano Coal HVB US 81.26 5.57 10.62 1.54 2.16 33.42 
Vascellari Coal sub Aus. 75.80 4.98 16.73 1.38 1.12 29.17 

Coal bit Aus. 86.35 5.22 7.70 1.89 1.20 34.01 
Coal Semi-

an 
Aus. 92.81 3.69 0.89 1.90 0.71 35.83 

Coal + 
Limestone 

Semi-
an 

Aus. 93.41 3.96 0.00 1.92 0.70 35.28 

Coal sub Aus. 78.80 5.80 14.04 1.01 0.35 32.01 
Weiland Coal HVB US 72.10 5.40 15.66 1.35 5.50 27.19 

Biomass - US 49.16 6.36 43.73 0.63 0.13 20.14 
Wen Coal bit Aus. 84.79 5.19 7.70 1.77 0.52 34.32 
Wu Coal lig US 69.21 5.47 21.76 2.04 0.76 28.12 

Coal lig US 73.29 5.16 19.19 1.46 0.90 28.57 
Sahu Coal hvBb - 80.47 5.69 9.33 1.82 1.72 33.25 

Coal hvBb - 83.85 5.78 5.88 1.39 3.10 35.40 
Coal hvAb - 82.66 5.43 8.09 1.50 1.50 33.69 

Parkash Coal sub Canada 75.80 5.10 16.90 1.70 0.50 29.80 
Coal sub Canada 75.80 4.20 18.40 1.10 0.50 29.70 
Coal sub Canada 75.10 4.10 19.50 0.90 0.40 28.40 
Coal sub Canada 75.00 4.40 19.30 1.10 0.20 28.80 
Coal sub Canada 75.70 4.10 18.50 1.20 0.50 29.20 
Coal sub Canada 74.20 4.50 19.30 1.60 0.40 28.30 
Coal sub Canada 73.40 4.40 19.20 1.60 1.20 27.90 
Coal sub Canada 74.40 5.00 18.50 1.50 0.60 29.40 
Coal sub Canada 73.70 4.60 19.20 1.70 0.80 28.10 
Coal sub Canada 76.80 5.10 15.60 1.70 0.80 28.70 
Coal sub Canada 75.80 5.40 16.10 1.80 0.90 30.60 

Babcock 
& Wilcox 

Coal HVB US 81.44 5.68 8.57 1.80 2.51 33.84 
Coal lig US 71.93 5.33 20.02 1.52 1.21 28.67 

Miller Coal an US 93.50 1.90 2.40 1.20 1.00 25.26 
Coal an US 90.80 2.60 5.20 0.80 0.60 29.31 
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Table B-4. Heating Value of Various Fuels, CONTINUED 

Source Fuel 
Type 

Coal 
Rank 

Country C H O N S HHV 

Miller, 
cont. 

Coal an US 91.30 3.90 3.00 0.60 1.20 32.85 
Coal semi-

an 
US 89.60 3.80 3.60 1.40 1.60 26.04 

Coal semi-
an 

US 91.50 3.40 2.70 1.60 0.80 32.79 

Coal semi-
an 

US 92.20 3.90 1.00 2.10 0.80 33.43 

Coal LVB US 88.80 4.70 3.20 1.60 1.60 32.62 
Coal LVB US 87.20 4.70 3.30 1.50 3.30 29.16 
Coal MVB US 87.00 5.50 2.90 1.70 2.90 32.58 
Coal MVB US 87.40 5.90 4.30 1.70 0.70 34.63 
Coal MVB US 88.20 5.00 4.60 1.50 0.70 34.59 
Coal hvAb US 83.30 5.70 8.30 1.40 1.30 31.48 
Coal hvAb US 84.50 5.60 7.50 1.40 1.00 30.87 
Coal hvAb US 85.20 5.50 5.80 1.50 2.00 31.82 
Coal hvAb US 81.30 6.20 10.50 1.60 0.40 32.38 
Coal hvAb US 86.50 5.50 6.00 1.40 0.60 32.32 
Coal hvBb US 82.80 5.50 9.30 1.60 0.80 31.10 
Coal hvBb US 80.60 5.70 11.40 1.40 0.90 30.85 
Coal hvBb US 79.10 5.80 8.90 1.40 4.80 29.51 
Coal hvBb US 79.90 5.60 8.30 1.60 4.60 29.38 
Coal hvCb US 77.50 5.50 14.60 1.80 0.60 29.68 
Coal hvCb US 78.40 5.20 10.10 1.40 4.90 29.59 
Coal hvCb US 79.70 4.90 10.40 1.60 3.40 28.59 
Coal subB US 75.50 6.10 16.90 1.00 0.50 28.25 
Coal subB US 75.30 5.10 17.60 1.10 0.90 27.18 
Coal subB US 75.50 6.20 16.90 1.00 0.40 28.42 
Coal subB US 75.10 5.20 18.50 0.90 0.30 27.35 
Coal LigA US 73.10 4.50 20.60 1.00 0.80 25.73 
Coal lig US 72.30 5.20 20.20 1.40 0.90 22.99 
Coal an Germ 91.80 3.60 2.60 1.40 0.70 35.91 
Coal an Spain 87.20 2.50 8.00 0.90 1.40 32.77 
Coal an Russia 94.60 1.80 1.80 1.00 0.80 33.94 
Coal semi-

an 
Russia 90.00 4.20 2.10 1.50 2.20 35.77 

Coal brown Germ 68.30 5.00 27.50 0.50 0.50 26.38 
Coal lig Germ 74.00 5.50 14.50 1.40 4.60 29.73 
Coal lig Greece 60.50 6.20 30.60 1.30 1.40 24.45 
Coal brown Yugoslavia 61.90 4.30 29.80 0.90 3.10 21.98 
Coal brown Turkey 61.40 5.10 29.60 0.80 5.10 23.70 
Coal lig Poland 71.40 5.80 20.20 0.60 2.00 29.10 
Coal lig Russia 72.20 4.30 22.10 1.10 0.30 26.03 



 

247 

Table B-4. Heating Value of Various Fuels, CONTINUED 

Source Fuel 
Type 

Coal 
Rank 

Country C H O N S HHV 

Miller, 
cont. 

Coal hvAb Poland 82.90 5.20 9.90 1.00 1.00 33.84 
Coal lvb Russia 88.00 4.50 2.90 1.50 3.10 35.82 
Coal hvAb Russia 83.00 5.10 5.60 1.50 4.80 35.22 
Coal hvBb Russia 82.00 5.50 8.50 1.50 2.50 33.96 
Coal hvCb Russia 77.00 5.60 12.30 1.60 3.50 32.33 
Coal mvb India 83.60 4.50 9.90 1.30 0.70 34.04 
Coal MVB S. 

Africa 
84.60 4.90 7.20 2.20 1.10 32.73 

Coal hvAb Aus. 81.20 6.10 11.00 1.10 0.60 34.03 
Coal hvBb Aus. 77.40 5.50 15.30 1.20 0.60 31.38 

Al-Abbas Coal brown Aus. 69.00 4.72 25.44 0.53 0.31 28.13 
Alvarez Coal an Spain 94.70 1.60 2.00 1.00 0.70 34.03 

Coal hvb S. 
Africa 

81.50 5.00 10.50 2.10 0.90 32.71 

Benito Coal lig Spain 65.30 5.50 17.00 0.60 11.50 29.24 
Coal lig Spain 64.90 4.90 18.40 0.50 11.30 29.01 
Coal lig Spain 65.60 4.30 24.90 0.30 4.90 27.94 
Coal lig Spain 64.60 4.30 27.60 0.40 3.10 27.45 

Bharadwaj Biomass - US 49.01 6.07 44.82 0.07 0.01 19.43 
Biomass - US 48.80 6.09 42.47 2.40 0.23 19.52 

Brewster Coal hvAb - 84.00 6.00 7.70 1.80 0.60 35.10 
Coal hvBb - 80.00 5.90 8.70 2.10 3.40 33.90 
Coal subC - 72.60 5.50 20.10 1.10 0.60 29.80 

Chakravarty Tar hvAb US 74.70 8.90 12.10 2.20 2.10 36.53 
Tar mvb US 83.90 8.60 3.90 1.00 2.60 40.56 
Tar hvAb US 79.40 8.70 9.20 1.70 1.00 36.74 
Tar hvAb US 85.00 8.90 3.60 1.70 0.80 39.60 
Tar hvAb US 86.00 9.40 2.30 2.10 0.20 39.12 
Tar subC US 78.60 9.70 9.20 2.00 0.50 37.50 
Tar hvAb US 80.70 9.10 7.90 1.60 0.70 36.58 
Tar hvAb US 84.00 9.10 3.40 3.00 0.50 39.08 
Tar hvAb US 84.90 10.20 2.20 2.00 0.70 40.59 
Tar - US 78.70 11.70 7.10 1.80 0.70 38.88 
Tar hvAb US 79.70 8.70 8.10 3.00 0.50 34.97 
Oil 
shale tar 

- US 84.40 11.30 1.60 2.00 0.70 42.57 

Tar hvCb US 76.20 9.00 12.60 1.70 0.50 33.80 
Tar hvAb US 80.30 8.70 6.60 2.90 1.50 33.00 
Tar hvAb US 83.90 9.40 4.20 1.80 0.70 39.35 
Tar subA US 83.00 9.40 5.20 1.90 0.50 38.99 
Tar hvCb US 66.70 9.10 19.50 2.50 2.20 35.57 
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Table B-4. Heating Value of Various Fuels, CONTINUED 

Source Fuel 
Type 

Coal 
Rank 

Country C H O N S HHV 

Chakravarty, 
cont. 

Resinite 
tar 

- US 87.70 11.10 0.00 1.00 0.20 42.86 

Tar hvAb US 84.60 10.10 2.90 2.00 0.40 35.75 
Tar 
sand tar 

- US 87.30 11.30 0.00 1.70 0.30 44.14 

Tar hvBb US 73.10 8.60 14.30 1.60 2.40 36.61 
Tar hvAb US 82.40 9.60 4.40 2.40 1.20 31.93 
Oil 
shale tar 

- US 82.30 9.90 4.40 1.50 1.90 40.79 

Channiwala Biomass - - 50.58 5.74 43.68 0.00 0.00 20.64 
Biomass - - 50.41 5.71 43.46 0.41 0.00 20.25 
Biomass - - 51.53 5.98 41.88 0.62 0.00 21.05 
Biomass - - 46.76 5.87 47.12 0.25 0.00 19.92 
Biomass - - 48.73 5.94 45.29 0.03 0.00 20.02 
Biomass - - 47.64 6.02 46.03 0.31 0.00 19.29 
Biomass - - 49.40 6.36 43.92 0.32 0.00 19.12 
Biomass - - 49.73 6.45 43.62 0.20 0.00 20.96 
Biomass - - 49.21 6.39 44.32 0.08 0.00 20.66 
Biomass - - 47.66 6.27 45.78 0.29 0.00 19.76 
Biomass - - 48.76 6.27 44.82 0.15 0.00 20.24 
Biomass - - 49.16 6.00 43.37 1.48 0.00 19.40 
Biomass - - 47.90 6.20 44.93 0.97 0.00 18.65 
Biomass - - 46.14 6.18 47.67 0.01 0.00 20.00 
Biomass - - 46.13 5.75 50.47 0.00 0.00 19.32 
Biomass - - 46.20 6.15 47.61 0.04 0.00 19.70 
Biomass - - 44.81 5.80 49.16 0.35 0.00 18.65 
Biomass - - 48.88 6.60 43.94 0.57 0.00 18.66 
Biomass - - 47.84 6.29 45.19 0.68 0.00 18.79 
Biomass - - 45.72 5.25 47.31 1.72 0.00 19.05 
Biomass - - 46.98 6.16 46.70 0.15 0.00 19.35 
Biomass - - 44.28 5.72 49.67 0.44 0.00 16.60 
Biomass - - 43.36 6.15 50.31 0.18 0.00 17.77 
Biomass 
char 

- - 87.05 2.03 10.91 0.01 0.00 31.60 

Biomass 
char 

- - 89.37 1.07 6.48 3.08 0.00 31.26 

Biomass 
char 

- - 84.98 1.49 12.40 1.14 0.00 30.82 

Biomass 
char 

- - 91.61 0.75 6.22 1.42 0.00 32.05 

Biomass 
char 

- - 57.50 4.56 35.29 2.65 0.00 19.95 
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Table B-4. Heating Value of Various Fuels, CONTINUED 

Source Fuel 
Type 

Coal 
Rank 

Country C H O N S HHV 

Channiwala, 
cont. 

Liq Gas - - 74.85 25.15 0.00 0.00 0.00 55.35 
Liq Gas - - 81.70 18.30 0.00 0.00 0.00 50.24 
Liq Gas - - 82.40 17.60 0.00 0.00 0.00 49.60 
Liq Gas - - 0.00 5.92 0.00 0.00 94.08 16.41 
Liq Gas - - 83.22 16.78 0.00 0.00 0.00 48.54 
Liq Gas - - 85.01 14.99 0.00 0.00 0.00 47.04 
Liq Gas - - 92.25 7.75 0.00 0.00 0.00 41.79 
Liq Gas - - 88.34 11.66 0.00 0.00 0.00 44.53 
Liq Gas - - 85.10 14.90 0.00 0.00 0.00 47.30 
Liq Gas - - 86.50 13.20 0.00 0.00 0.00 45.70 
Liq Gas - - 85.43 11.40 0.20 0.16 2.80 42.92 
Liq Gas - - 37.50 12.50 50.00 0.00 0.00 22.69 
Liq Gas - - 57.29 7.74 33.37 1.11 0.20 24.82 
Liq Gas - - 76.72 6.46 14.68 2.14 0.00 31.31 
Liq Gas - - 71.40 8.90 14.20 5.60 0.00 34.30 
Coal an - 94.39 1.77 2.13 0.71 1.00 34.63 
Coal hvb US 84.17 5.57 5.46 1.34 3.46 35.40 
Coal an UK 91.26 3.88 3.10 0.60 1.15 35.84 
Coal semi-

an 
UK 86.42 3.92 5.29 1.30 3.00 34.22 

Coal hvBb Germ 81.80 5.10 11.60 0.58 0.45 33.08 
Coal mvb US 89.70 4.77 3.31 1.52 1.01 36.25 
Coal hvBb US 76.05 5.87 7.63 1.65 8.70 33.18 
Coal subC US 69.87 5.38 23.08 0.72 0.95 28.53 
Coal - India 79.08 4.90 13.47 1.88 0.57 32.08 
Coal lig Germ 66.90 5.20 25.70 0.60 0.50 26.28 
Coke - - 96.47 0.47 1.06 0.92 1.08 33.69 
Charcoal - - 92.99 2.48 2.99 0.54 1.01 34.74 
Peat - - 57.73 5.15 36.08 1.03 0.00 21.31 
Biomass - - 50.58 5.74 43.68 0.00 0.00 20.64 
Biomass - - 52.48 5.70 41.50 0.21 0.11 20.51 
Biomass - - 51.53 5.93 42.33 0.10 0.10 20.50 
Biomass - - 50.69 6.19 43.04 0.06 0.02 20.40 
Biomass - - 49.96 5.41 42.79 0.58 0.03 19.83 
Biomass - - 48.72 5.99 44.67 0.39 0.01 19.44 
Biomass - - 47.67 6.12 46.00 1.51 0.02 19.12 
Biomass - - 50.49 6.03 44.57 0.43 0.01 19.53 
Biomass - - 46.22 6.06 45.00 2.58 0.14 18.61 
Biomass - - 48.73 5.94 45.29 0.03 0.00 20.02 
Biomass - - 49.16 6.00 43.37 1.48 0.00 19.36 
Biomass - - 50.05 6.22 42.85 0.69 0.17 21.21 
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Table B-4. Heating Value of Various Fuels, CONTINUED 

Source Fuel 
Type 

Coal 
Rank 

Country C H O N S HHV 

Channiwala, 
cont. 

Biomass - - 48.01 6.44 40.92 2.82 1.83 18.56 
Other - - 54.09 6.82 37.39 1.36 0.34 22.59 
Other - - 49.65 7.34 36.71 3.85 2.45 16.59 
Other - - 52.22 6.29 38.22 3.26 0.00 20.23 
Other - - 49.91 6.93 42.81 0.77 0.00 21.76 
Other - - 45.88 6.93 50.59 3.27 0.52 17.52 
Biomass 
char 

- - 82.17 3.65 13.76 0.21 0.21 31.77 

Other - - 93.37 1.36 3.06 1.87 0.34 31.73 
Other - - 80.57 3.14 15.66 0.49 0.12 29.56 
Char lig - 89.00 1.10 8.90 0.70 0.30 31.30 
Other - - 100.00 0.00 0.00 0.00 0.00 33.82 
Other - - 50.21 6.76 41.57 1.25 0.20 20.28 
Other - - 53.56 7.65 34.24 3.93 0.62 23.49 
Other - - 51.58 6.96 39.48 1.77 0.21 20.22 
Other - - 46.18 6.19 47.15 0.27 0.21 18.74 
Other - - 47.74 6.62 45.01 0.53 0.11 18.14 
Other - - 58.29 6.72 26.31 9.81 2.35 24.49 
Other - - 59.99 8.33 25.91 4.29 1.75 25.48 
Other - - 68.22 7.14 19.03 6.46 0.02 28.14 
Other - - 85.93 10.68 2.97 0.15 0.27 43.28 
Other - - 85.56 14.35 0.00 0.06 0.03 46.44 
Other - - 54.47 6.90 29.60 7.75 1.30 23.60 
Other - - 86.28 11.50 0.00 0.00 2.22 29.27 
Other - - 79.87 11.51 6.21 2.39 0.00 37.23 
Other - - 84.71 7.28 6.32 0.11 1.61 34.63 
Other - - 72.05 10.42 16.96 0.49 0.08 34.52 

Chern Coal an UK 95.20 2.90 0.30 1.00 0.60 35.64 
Coal bit UK 81.30 4.80 11.50 1.28 1.12 32.82 
Coal bit UK 80.40 5.70 10.90 1.37 1.63 33.00 
Coal bit UK 84.30 4.60 7.90 1.80 1.40 34.68 

Cope Coal ligA US 69.44 4.56 23.89 0.89 1.22 26.33 
Coal subC US 74.78 5.33 18.70 0.87 0.33 30.11 
Coal hvCb US 75.37 5.38 13.29 1.37 4.58 31.27 

Costa Coal lig Greece 58.24 6.12 28.89 1.88 4.87 23.31 
Coal lig S. 

Africa 
70.48 4.41 22.62 1.79 0.69 26.07 

Coal bit UK 75.78 5.27 15.98 1.35 1.62 30.57 
Daood Coal - Russia 80.80 5.35 10.91 2.55 0.42 33.27 
Eatough Coal hvBb US 80.24 5.23 12.75 1.22 0.56 29.28 

Coal lig US 74.57 5.01 20.28 1.24 0.73 23.37 
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Table B-4. Heating Value of Various Fuels, CONTINUED 

Source Fuel 
Type 

Coal 
Rank 

Country C H O N S HHV 

Hees Coal lig Germ 69.05 4.83 25.13 0.69 0.30 26.88 
Huéscar 
Medina 

Biomass - Norway 53.39 6.22 40.29 0.00 0.00 21.31 
Biomass - Norway 59.89 5.68 33.55 0.77 0.00 22.51 
Biomass - - 53.36 5.95 42.01 0.66 0.00 21.39 
Biomass - - 58.44 5.63 35.17 0.76 0.00 23.38 
Coal bit UK 82.07 5.18 6.94 3.03 2.78 34.34 

Ibarra Coal sub Spain 69.80 3.30 21.70 0.30 4.90 21.10 
Coal sub Spain 65.30 3.30 26.60 0.20 4.60 20.60 
Coal sub Spain 67.20 3.50 23.10 0.50 5.70 22.30 
Coal sub Spain 73.40 3.80 19.90 0.50 2.40 22.10 
Coal sub Spain 68.80 4.50 24.10 0.50 2.10 23.70 
Coal sub Spain 59.70 3.30 33.00 0.60 4.30 21.60 
Coal sub Spain 73.70 4.20 19.10 0.50 2.50 24.70 
Coal sub Spain 63.80 3.00 28.40 0.60 4.20 22.00 
Coal sub Spain 69.20 4.70 16.90 0.70 8.50 22.00 

Idris Coal sub Malaysia 60.04 5.06 32.62 1.93 0.28 24.60 
Biomass - Malaysia 51.52 5.45 40.91 1.89 0.23 19.00 
Biomass - Malaysia 48.68 4.77 45.27 1.17 0.20 16.30 
Biomass - Malaysia 47.65 5.20 44.97 1.82 0.36 16.80 

Arenillas Coal sub US 77.30 5.90 13.70 0.70 2.30 30.81 
Coal sub Spain 79.70 6.20 11.30 0.50 2.30 28.41 
Coal hvb Aus. 84.80 5.90 7.50 0.90 1.00 34.15 
Coal hvb Portugal 80.50 5.70 11.00 0.90 1.90 32.73 
Coal hvb UK 82.40 5.70 10.10 1.20 0.60 32.26 
Coal sub UK 82.60 7.40 6.60 1.20 2.20 36.97 

Jayaraman Coal - India 72.82 4.65 19.91 1.79 0.83 28.14 
Jin Coal bit China 71.74 4.64 22.24 0.88 0.50 23.08 

Other - - 69.91 5.02 23.72 0.90 0.45 22.62 
Other - - 68.23 5.37 25.11 0.91 0.40 22.21 
Other - - 66.66 5.70 26.38 0.92 0.35 21.80 
Other - - 63.83 6.29 28.69 0.94 0.26 21.05 
Other - - 58.12 7.49 33.32 0.99 0.08 19.47 

Khan Coal hvb US 77.18 5.03 14.36 1.44 1.98 35.27 
Coal hvb US 69.30 4.75 21.43 1.32 3.20 33.27 

Khatami Coal hvAb US 83.31 5.45 8.00 1.62 1.62 36.50 
Coal subB US 75.54 6.17 16.88 0.97 0.43 30.52 
Coal ligA US 73.23 4.42 20.58 1.00 0.77 28.43 
Coal ligA US 72.26 5.22 20.10 1.40 0.89 29.26 

Lemaire Coal hvb France 86.24 5.15 6.89 0.85 0.87 34.82 
Lloyd Coal hvb US 84.46 5.53 5.66 2.17 2.18 35.32 

Coal hvb US 81.53 5.75 7.90 1.85 2.98 34.48 
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Table B-4. Heating Value of Various Fuels, CONTINUED 

Source Fuel 
Type 

Coal 
Rank 

Country C H O N S HHV 

Lloyd, 
cont. 

Coal hvb US 83.35 5.54 6.18 1.77 3.15 35.16 
Coal hvb US 80.26 5.39 8.92 1.59 3.84 33.48 
Coal hvb US 80.51 5.48 8.21 1.78 4.02 33.93 
Coal hvb US 83.62 5.51 8.19 1.84 0.83 34.78 

Lu Biomass - Taiwan 51.73 5.30 42.80 0.17 0.00 20.29 
Biomass 
char 

- Taiwan 58.16 5.19 36.65 0.00 0.00 22.55 

Biomass 
char 

- Taiwan 73.30 4.35 22.35 0.00 0.00 26.60 

Coal an Aus. 86.56 4.93 6.20 1.70 0.61 27.34 
Man Coal - China 90.10 4.30 3.40 1.70 0.40 30.10 

Coal an Vietnam 93.30 3.50 1.50 0.90 0.70 26.10 
Coal bit UK 83.43 5.32 7.23 1.81 2.31 28.11 
Coal mvb S. Africa 83.90 5.00 9.00 1.70 0.40 25.80 
Coal lvb China 89.55 4.52 4.22 1.41 0.30 28.54 
Coal - UK 91.80 3.90 1.90 1.30 0.90 33.40 
Coal - UK 92.50 3.80 1.40 1.30 0.90 33.40 

Matali Coal sub Malaysia 72.80 4.60 20.30 1.90 0.40 24.60 
Other - Malaysia 80.60 14.00 5.20 0.60 0.10 45.10 

Nugroho Coal lig Indo 62.54 4.20 32.01 1.25 0.00 23.00 
Coal sub Indo 65.36 4.51 29.08 1.05 0.00 28.70 
Coal bit Indo 76.78 5.50 15.96 1.76 0.00 31.90 
Coal bit Indo 72.02 4.99 21.44 1.55 0.00 29.00 

Park Coal bit Russia 88.52 5.29 2.96 2.54 0.68 34.27 
Coal bit Aus. 88.00 5.69 3.03 1.94 1.32 34.34 
Coal sub Indo 75.61 5.36 15.79 1.79 1.47 30.29 
Coal sub Indo 76.16 5.29 16.79 1.27 0.49 29.18 

Pielsticker Coal hvb Col 78.99 5.36 12.92 1.79 0.88 32.56 
Saito Coal sub Japan 77.67 6.53 14.61 0.95 0.24 31.52 
CSIRO Coal sub Aus. 78.40 6.70 13.10 1.20 0.60 33.42 

Coal sub Aus. 79.12 6.50 12.60 1.20 0.60 33.57 
Coal sub Aus. 79.00 6.30 12.80 1.20 0.70 33.01 
Coal sub Aus. 78.20 6.70 13.20 1.20 0.70 33.60 
Tar - Aus. 80.40 8.30 9.75 0.90 0.65 37.40 
Tar - Aus. 80.90 8.50 9.10 0.90 0.60 38.00 
Tar - Aus. 81.40 7.60 9.28 1.10 0.62 36.80 
Tar - Aus. 80.70 7.70 10.03 0.90 0.67 36.50 
Tar - Aus. 79.80 8.30 10.32 0.90 0.68 37.00 
Tar - Aus. 80.20 8.30 9.94 0.90 0.66 37.30 
Tar - Aus. 80.90 7.60 9.85 1.00 0.65 36.50 
Tar - Aus. 81.00 7.70 9.66 1.00 0.64 36.70 
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Table B-4. Heating Value of Various Fuels, CONTINUED 

Source Fuel 
Type 

Coal 
Rank 

Country C H O N S HHV 

CSIRO, 
cont. 

Tar - Aus. 81.20 7.90 9.28 1.00 0.62 37.20 
Tar - Aus. 80.50 7.60 10.22 1.00 0.68 36.30 
Tar - Aus. 79.80 7.90 10.69 0.90 0.71 36.40 
Tar - Aus. 80.80 7.90 9.66 1.00 0.64 36.90 
Tar - Aus. 81.50 7.50 9.38 1.00 0.62 36.60 
Tar - Aus. 81.10 7.10 10.22 0.90 0.68 35.80 
Char - Aus. 84.90 4.10 8.60 1.70 0.70 32.80 
Char - Aus. 83.20 3.89 10.60 1.60 0.70 31.76 
Char - Aus. 80.26 5.16 12.30 1.50 0.70 32.27 
Char - Aus. 86.76 3.39 7.40 1.80 0.60 32.80 
Char - Aus. 80.92 4.11 12.80 1.70 0.50 30.88 
Char - Aus. 90.40 2.86 3.10 3.20 0.60 34.04 
Char - Aus. 80.30 5.50 12.10 1.40 0.70 32.80 
Char - Aus. 82.20 4.00 11.50 1.60 0.70 31.42 
Char - Aus. 82.10 4.50 11.10 1.60 0.70 31.98 
Char - Aus. 82.00 4.10 11.60 1.60 0.70 31.63 
Char - Aus. 78.70 6.30 13.00 1.30 0.70 32.90 
Char - Aus. 80.30 4.40 13.00 1.60 0.70 31.04 
Char - Aus. 80.00 4.60 13.10 1.50 0.80 31.47 
Char - Aus. 77.20 4.80 15.47 1.50 1.03 30.10 
Char - Aus. 76.80 4.30 16.60 1.50 0.80 29.13 
Char - Aus. 89.60 2.50 5.91 1.60 0.39 32.60 
Char - Aus. 88.90 2.50 6.56 1.60 0.44 32.20 
Char - Aus. 89.20 2.60 6.10 1.70 0.40 32.60 
Char - Aus. 81.60 5.40 10.90 1.40 0.70 33.30 
Char - Aus. 83.00 4.40 10.30 1.60 0.70 32.50 
Char - Aus. 80.10 4.10 13.60 1.50 0.70 30.50 
Char - Aus. 83.60 3.00 11.00 1.60 1.80 30.60 
Char - Aus. 80.30 4.70 12.60 1.60 0.80 31.60 
Char - Aus. 83.90 3.80 10.00 1.70 0.60 32.00 
Char - Aus. 82.00 4.00 11.80 1.60 0.60 31.30 
Char - Aus. 81.70 4.00 12.10 1.60 0.60 31.10 
Coal bit Aus. 80.64 6.02 10.88 2.06 0.40 33.83 
Coal bit Aus. 82.80 5.90 8.80 2.10 0.40 34.00 
Tar - Aus. 83.20 6.90 7.60 1.90 0.40 36.60 
Tar - Aus. 83.10 7.10 7.51 1.90 0.39 36.90 
Tar - Aus. 82.20 7.10 8.46 1.80 0.44 36.40 
Tar - Aus. 83.10 6.10 8.17 2.20 0.43 35.30 
Tar - Aus. 83.20 6.30 7.98 2.10 0.42 35.70 
Tar - Aus. 83.20 7.70 7.03 1.70 0.37 37.80 
Tar - Aus. 82.70 7.60 8.17 1.10 0.43 37.30 
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Table B-4. Heating Value of Various Fuels, CONTINUED 

Source Fuel 
Type 

Coal 
Rank 

Country C H O N S HHV 

CSIRO, 
cont. 

Char - Aus. 82.50 3.70 10.70 2.30 0.80 31.30 
Char - Aus. 83.80 3.40 9.58 2.50 0.72 31.50 
Char - Aus. 84.90 2.80 9.21 2.40 0.69 31.00 
Char - Aus. 80.60 4.50 11.82 2.20 0.88 31.50 
Coal brown Aus. 71.00 4.80 23.30 0.60 0.30 27.10 

Stournas coal lig Greece 60.40 5.90 29.00 1.80 2.90 24.42 
peat - Greece 56.70 5.50 34.90 1.80 1.10 20.36 
coal lig Greece 63.20 5.20 28.40 1.60 1.60 23.43 

Niessen Other - - 46.18 6.19 47.15 0.27 0.21 18.72 
Other - - 49.90 6.19 43.69 0.05 0.16 19.99 
Other - - 45.39 6.15 47.85 0.00 0.11 18.13 
Other - - 42.98 6.46 50.35 0.09 0.12 16.62 
Other - - 46.20 6.02 47.46 0.10 0.22 18.25 
Other - - 46.59 6.35 46.80 0.19 0.08 18.46 
Other - - 59.91 9.36 30.50 0.12 0.10 27.64 
Other - - 48.07 6.55 45.04 0.16 0.17 19.18 
Other - - 43.89 6.27 49.54 0.20 0.10 17.20 
Biomass - - 51.58 6.96 39.48 1.77 0.21 20.22 
Biomass - - 49.68 5.88 43.16 1.15 0.12 19.29 
Other - - 62.78 9.98 25.97 1.07 0.20 30.47 
Other - - 73.14 11.54 14.82 0.43 0.07 38.28 
Other - - 53.56 7.65 34.24 3.93 0.62 23.48 
Other - - 53.40 7.36 35.35 3.80 0.32 21.52 
Biomass - - 50.63 6.46 42.69 0.14 0.08 9.88 
Biomass - - 53.81 5.66 40.12 0.21 1.23 15.25 
Biomass - - 51.41 6.25 42.14 0.10 0.10 18.59 
Biomass - - 49.70 6.14 43.96 0.10 0.10 17.06 
Biomass - - 50.41 6.19 43.20 0.10 0.10 18.46 
Biomass - - 49.81 6.72 41.52 1.76 0.20 20.83 
Biomass - - 55.05 6.88 36.33 1.54 0.21 22.89 
Biomass - - 49.15 6.96 42.33 1.27 0.27 19.66 
Biomass - - 49.42 6.38 38.98 4.77 0.45 20.69 
Biomass - - 46.47 6.48 44.70 2.31 0.05 19.18 
Biomass - - 54.46 6.38 31.69 7.30 0.17 21.55 
Biomass - - 44.12 6.48 49.13 0.22 0.05 17.90 
Biomass - - 50.97 6.03 42.80 0.15 0.05 20.22 
Biomass - - 46.38 6.44 44.94 2.18 0.05 19.99 
Biomass - - 46.33 6.48 44.83 2.30 0.06 18.91 
Biomass - - 51.77 6.79 38.06 3.00 0.37 20.89 
other - - 48.46 6.28 44.86 0.31 0.10 17.87 
other - - 84.69 7.28 6.32 0.11 1.61 34.64 
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Table B-4. Heating Value of Various Fuels, CONTINUED 

Source Fuel 
Type 

Coal 
Rank 

Country C H O N S HHV 

Niessen, 
cont. 

other - - 66.74 8.90 12.79 11.12 0.44 22.89 
other - - 54.46 6.90 29.60 7.75 1.30 23.59 
other - - 76.13 10.14 11.10 0.72 1.92 36.70 
other - - 86.28 11.50 0.00 0.00 2.22 29.29 
other - - 66.82 8.02 25.17 0.00 0.00 37.19 
other - - 72.05 10.42 16.96 0.49 0.08 34.56 
other - - 85.56 14.35 0.00 0.06 0.03 46.49 
other - - 87.49 8.49 3.98 0.21 0.02 38.38 
other - - 67.89 6.72 18.94 6.43 0.02 27.27 
other - - 85.93 10.68 2.97 0.15 0.27 23.25 
other - - 66.20 7.36 25.76 0.14 0.55 26.61 
other - - 56.38 6.77 31.98 4.22 0.13 18.23 
other - - 47.70 6.62 43.22 2.25 0.21 19.29 
other - - 79.87 11.51 6.21 2.39 0.00 37.19 
other - - 52.55 6.97 29.57 9.22 1.69 23.15 
other - - 74.44 9.28 14.44 1.81 0.04 31.73 
other - - 46.27 6.35 46.93 0.19 0.27 18.59 
other - - 47.74 6.62 45.01 0.53 0.11 18.13 
other - - 93.96 1.68 2.68 0.00 1.68 32.54 
Biomass - - 52.38 6.04 41.31 0.02 0.25 9.22 
Biomass - - 47.31 6.16 45.71 0.68 0.14 8.53 
Coal meta-

an 
US 93.90 2.10 2.30 0.30 1.40 34.52 

Coal an US 93.50 2.60 2.30 0.90 0.70 35.10 
Coal semi-

an 
US 90.70 4.20 3.30 1.00 0.80 35.62 

Coal lvb US 90.40 4.80 2.70 1.30 0.80 36.43 
Coal lvb US 89.40 4.80 2.40 1.50 1.90 36.30 
Coal mvb US 88.60 4.80 3.10 1.60 1.90 36.12 
Coal mvb US 87.60 5.20 3.30 1.40 2.50 36.33 
Coal hvAb US 85.00 5.40 5.80 1.70 2.10 35.48 
Coal hvAb US 85.50 5.50 6.70 1.60 0.70 35.73 
Coal hvAb US 80.90 5.70 7.40 1.40 4.60 34.24 
Coal hvBb US 80.50 5.50 9.10 1.60 3.30 33.54 
Coal hvBb US 79.80 5.60 11.80 1.70 1.10 33.15 
Coal hvCb US 79.20 5.70 9.50 1.50 4.10 33.47 
Coal subA US 80.90 5.10 12.20 1.30 0.50 32.80 
Coal subB US 75.90 5.10 17.00 1.60 0.40 30.45 
Coal subC US 74.00 5.60 18.60 0.90 0.90 30.15 
Coal ligA US 72.70 4.90 20.80 0.90 0.70 28.66 
Coal hvBb Aus. 81.90 5.10 10.80 1.80 0.40 32.50 
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Table B-4. Heating Value of Various Fuels, CONTINUED 

Source Fuel 
Type 

Coal 
Rank 

Country C H O N S HHV 

Niessen, 
cont. 

Coal hvBb China 80.20 4.90 13.20 1.10 0.60 31.94 
Coal hvAb France 81.90 5.30 10.30 1.50 1.00 33.55 
Coal hvAb S. 

Africa 
81.40 5.30 10.60 1.90 0.80 33.05 

Coal hvBb Indo 76.10 5.60 16.90 1.20 0.20 30.77 
Coal semi-

an 
Korea 90.10 1.20 5.80 0.30 2.60 28.87 

Coal subB Spain 62.20 4.60 19.10 1.50 12.60 23.82 
Liq Gas - - 85.90 13.30 0.00 0.00 0.01 45.72 
Liq Gas - - 86.10 11.80 0.00 0.00 0.05 44.56 
Liq Gas - - 86.50 10.60 0.00 0.00 0.20 42.49 
Liq Gas - - 86.50 10.50 0.00 0.00 0.50 42.07 
Liq Gas - - 86.51 9.50 0.00 0.00 0.70 40.47 
Liq Gas - - 86.70 14.10 0.00 0.10 0.50 46.16 
Liq Gas - - 88.20 13.90 0.00 0.10 1.00 45.91 
Liq Gas - - 89.29 13.01 0.00 0.00 2.00 45.18 
Liq Gas - - 89.29 12.01 0.00 0.00 3.00 44.26 
Liq Gas - - 90.65 12.06 0.00 0.00 3.52 44.36 
Liq Gas - - 75.25 23.53 0.00 1.22 0.00 53.86 
Liq Gas - - 74.72 23.30 1.22 0.76 0.00 53.24 
Liq Gas - - 69.12 23.20 1.58 5.76 0.34 51.30 
Liq Gas - - 69.26 22.68 0.00 8.06 0.00 50.73 
Liq Gas - - 64.84 20.85 1.41 12.90 0.00 46.86 

Biagini Coal - Col 77.75 5.46 14.29 1.68 0.82 28.71 
Coal - Germ 84.39 5.31 7.71 1.69 0.90 34.18 
Coal bit Col 78.90 5.20 13.73 1.49 0.68 29.86 
Coal lig Germ 79.20 5.20 12.86 1.48 1.26 29.66 
Coal mvb S. 

Africa 
81.20 4.40 12.00 1.83 0.57 26.40 

Coal - US 83.70 5.30 8.50 1.60 0.90 30.78 
Coal - S. 

Africa 
81.90 4.50 10.80 2.00 0.80 27.72 

Coal -  80.20 4.70 12.50 1.80 0.80 28.36 
Coal - Poland 79.98 4.30 12.72 1.80 1.20 29.57 
Coal -  80.60 4.69 12.06 1.73 0.92 27.15 
Coal - Egypt 73.55 6.03 16.35 1.23 2.84 30.33 
Coal - S. 

Africa 
77.80 5.43 14.22 1.65 0.90 28.70 

Coal mvb S. 
Africa 

81.31 4.27 12.03 1.83 0.56 29.17 

Coal - Poland 82.73 4.72 10.84 1.23 0.48 29.46 
Coal - Canada 84.80 4.10 9.50 1.20 0.40 32.23 
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Table B-4. Heating Value of Various Fuels, CONTINUED 

Source Fuel 
Type 

Coal 
Rank 

Country C H O N S HHV 

Biagini, 
cont. 

Coal bit UK 65.80 3.90 27.60 1.10 1.60 24.09 
Coal bit UK 63.40 3.50 30.50 1.10 1.50 22.21 
Coal hvb S. 

Africa 
68.70 3.80 25.10 1.60 0.80 27.77 

Coal sub Canada 67.00 2.70 28.80 1.30 0.20 25.05 
Coal bit UK 80.36 5.18 9.99 1.81 2.66 28.75 

Chen Biomass - - 53.32 7.14 27.86 10.04 1.63 23.33 
Coal semi-

an 
China 80.52 6.04 11.27 0.99 1.17 27.55 

Gövert Coal bit Col 78.72 5.26 12.82 2.11 1.09 32.32 
Guo Coal bit China 81.33 4.92 11.91 1.10 0.73 25.82 
Hashimoto Coal bit Aus. 82.27 5.67 9.69 1.89 0.48 28.28 

Coal sub Indo 68.44 5.31 24.41 1.23 0.64 26.28 
Coal sub Indo 71.56 5.26 22.06 0.97 0.09 28.15 

Rabaçal Coal bit UK 82.60 6.15 8.75 1.98 0.52 30.96 
Rieth Coal bit Aus. 84.79 5.19 7.70 1.77 0.52 29.16 

Coal hvb Germ 79.30 4.70 13.70 1.30 1.00 33.28 
Sadhukhan Coal lig India 78.53 5.26 14.74 1.12 0.35 30.00 

Coal sub India 78.34 4.26 13.70 1.94 1.76 23.63 
Coal sub India 86.46 4.51 7.06 1.82 0.51 30.29 

Sorensen Coke - Norway 97.00 0.20 0.80 0.90 1.10 29.59 
Toftegaard Coal bit Col 80.70 5.41 11.47 1.69 0.73 29.62 
Tolvanen Peat - - 56.62 5.92 35.97 1.33 0.15 22.16 

Coal - - 78.56 5.33 13.36 2.36 0.38 29.13 
Coal - - 76.60 5.32 14.02 2.45 1.62 29.28 
Biomass - - 53.31 6.01 40.46 0.20 0.02 22.29 

Wen Coal hvb Germ 80.36 5.08 12.17 1.45 0.94 33.35 
Yang Coal - China 83.10 5.02 10.04 0.66 1.17 25.17 

Coal bit Col 80.92 5.12 11.79 1.65 0.52 31.80 
Zhang Coal sub China 78.81 3.64 15.87 1.24 0.44 28.81 

Char - China 86.56 3.14 8.91 0.97 0.37 30.25 
Char - China 89.65 2.57 6.51 0.92 0.35 31.82 
Char - China 93.16 1.45 4.01 1.00 0.37 31.95 
Char - China 94.91 0.27 3.46 0.93 0.42 30.68 
Char - China 95.12 0.70 2.79 0.98 0.41 30.85 
Char - China 95.80 0.00 2.86 0.92 0.42 30.53 

Zhang Coal - - 78.13 4.10 16.41 1.11 0.25 23.43 
Ringen Oil 

Shale 
- Aus. 84.64 11.50 3.00 0.56 0.30 43.73 

Oil 
Shale 

- Aus. 84.44 11.98 2.62 0.57 0.43 44.19 
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Table B-4. Heating Value of Various Fuels, CONTINUED 

Source Fuel Type Coal 
Rank 

Country C H O N S HHV 

Ringen, 
cont. 

Oil Shale - Aus. 85.18 11.84 2.00 0.56 0.42 44.15 
Oil Shale - Aus. 85.56 12.02 1.51 0.52 0.39 44.38 
Oil Shale - Aus. 85.39 12.00 1.63 0.54 0.44 44.08 
Oil Shale - Aus. 84.37 12.04 2.63 0.48 0.48 44.24 
Oil Shale - Aus. 85.56 10.57 2.53 0.72 0.62 42.33 
Oil Shale - Brazil 83.32 11.73 3.79 0.97 0.24 43.87 
Oil Shale - Brazil 84.28 12.05 2.32 1.10 0.25 43.96 
Oil Shale - Brazil 85.66 11.53 2.21 0.00 0.60 43.29 
Oil Shale - Brazil 85.15 12.02 2.40 0.00 0.43 43.80 
Oil Shale - Brazil 85.08 12.44 2.10 0.00 0.38 44.26 
Oil Shale - France 84.88 11.36 2.61 0.84 0.31 43.43 
Oil Shale - France 85.07 11.43 2.06 1.12 0.32 43.22 
Oil Shale - France 84.56 11.28 2.63 1.18 0.35 43.12 
Oil Shale - France 85.24 11.58 1.67 1.00 0.21 44.01 
Oil Shale - France 83.74 10.54 2.30 0.66 2.76 42.47 
Oil Shale - France 85.16 11.26 2.53 0.59 0.46 43.22 
Oil Shale - Man 81.24 11.91 5.82 0.84 0.19 42.43 
Oil Shale - New 

Zealand 
83.35 11.80 3.61 0.60 0.64 43.36 

Oil Shale - Sweden 84.96 9.00 3.61 0.71 1.72 40.61 
Oil Shale - Sweden 85.87 9.76 2.33 0.72 1.32 41.82 
Oil Shale - Thailand 84.42 12.44 1.63 1.10 0.41 44.01 
Oil Shale - South 

Africa 
84.98 10.82 3.53 0.00 0.67 41.82 

Oil Shale - South 
Africa 

84.84 11.13 3.39 0.00 0.64 42.22 

Oil Shale - South 
Africa 

84.99 11.11 3.27 0.00 0.63 42.31 

Oil Shale - South 
Africa 

85.13 11.46 2.82 0.00 0.59 42.73 

Oil Shale - South 
Africa 

84.99 11.55 2.93 0.00 0.53 43.12 

Annamalai Other - - 54.71 6.45 37.34 1.16 0.35 17.36 
Other - - 58.01 8.63 30.77 1.21 1.37 15.12 
Other - - 56.35 7.58 34.10 1.15 0.82 18.54 
Other - - 52.90 5.96 35.96 4.01 1.16 12.49 
Other - - 52.88 5.97 35.99 4.01 1.16 11.30 
Other - - 49.35 5.52 38.39 5.56 1.18 4.40 

Sun Prop - - 16.22 2.72 43.22 37.84 0.00 7.83 
Prop - - 27.59 3.47 36.75 32.18 0.00 12.60 
Prop - - 31.92 4.29 34.01 29.78 0.00 14.78 
Prop - - 31.92 4.29 34.01 29.78 0.00 15.07 
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Table B-4. Heating Value of Various Fuels, CONTINUED 

Source Fuel 
Type 

Coal 
Rank 

Country C H O N S HHV 

Sun, 
cont. 

Prop - - 27.59 3.47 36.75 32.18 0.00 8.91 
Prop - - 35.64 4.99 31.65 27.72 0.00 16.92 

Lee Liq 
Gas 

- - 82.66 17.34 0.00 0.00 0.00 46.05 

Liq 
Gas 

- - 83.23 16.77 0.00 0.00 0.00 45.35 

Liq 
Gas 

- - 83.62 16.38 0.00 0.00 0.00 45.10 

Liq 
Gas 

- - 83.90 16.10 0.00 0.00 0.00 44.92 

Liq 
Gas 

- - 84.12 15.88 0.00 0.00 0.00 44.78 

Liq 
Gas 

- - 84.28 15.72 0.00 0.00 0.00 44.68 

Liq 
Gas 

- - 84.41 15.59 0.00 0.00 0.00 44.60 

Prop - - 48.46 9.15 0.00 42.39 0.00 29.38 
Prop - - 53.06 9.80 0.00 37.14 0.00 31.17 
Prop - - 56.65 10.30 0.00 33.04 0.00 32.55 
Prop - - 59.53 10.71 0.00 29.76 0.00 33.67 
Prop - - 61.89 11.04 0.00 27.07 0.00 34.59 
Prop - - 63.86 11.31 0.00 24.83 0.00 35.36 
Prop - - 65.52 11.55 0.00 22.93 0.00 36.01 
Prop - - 28.56 4.79 0.00 66.64 0.00 20.24 
Prop - - 34.27 5.75 0.00 59.97 0.00 22.60 
Prop - - 38.95 6.54 0.00 54.52 0.00 24.53 
Prop - - 42.84 7.19 0.00 49.97 0.00 26.14 
Prop - - 46.13 7.74 0.00 46.13 0.00 27.50 
Prop - - 48.95 8.22 0.00 42.83 0.00 28.67 
Prop - - 51.40 8.63 0.00 39.97 0.00 29.68 
Prop - - 53.54 8.99 0.00 37.47 0.00 30.56 
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APPENDIX C. ADDITIONAL ELEMENTAL COMPOSITION ANALYSIS 

 This appendix contains extra analysis information for the aromaticity (Chapter 5) and 

elemental composition (Chapter 6) correlations. The majority of the information here is taken 

from the supplemental material section of Richards et al. (2019), starting with the aromaticity 

analysis followed by the elemental composition analysis. 

C.1 Coal Aromaticity 

 The experimental data used in the coal aromaticity analysis is found in Table B-3. This 

appendix chapter includes all aromaticity correlation model forms tested as part of the analysis, 

the original and re-fit coefficients of the literature models (see Table 2-2 for the mathematical 

forms), and the complete statistical results of the aromaticity correlation tests. All variables are 

defined in the nomenclature section.  

 Table C-1 includes all model forms tested in the aromaticity analysis. Table C-2 shows 

both the original and re-fit coefficients of the literature correlations (Models 37-44 in Table C-1). 

All elemental compositions are on a mass basis, unless otherwise stated. Table C-3 shows the 

complete statistical results of the aromaticity correlation analysis. Model 4 is the proposed 

aromaticity correlation in Chapter 5. Looking at Table C-3, there are a few models with better 

statistical results, however, these models were not chosen for the proposed correlation because 

they require measured NMR parameters, which require a measured carbon aromaticity to 

calculate, effectively making the aromaticity correlation unnecessary. 
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Table C-1. Aromaticity Model Forms 

Model Equation 
1 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝑐𝑐𝑐𝑐,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 
2 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝑐𝑐𝑐𝑐,𝑟𝑟𝑒𝑒−𝑒𝑒𝑖𝑖𝑖𝑖 
3 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑐𝑐 ⋅ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑑𝑑 ⋅ 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑒𝑒 ⋅ 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑓𝑓 ⋅ 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑔𝑔 ⋅ 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + ℎ ⋅ (100 − 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) + 𝑖𝑖 ⋅ (100 − 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)2 
4* 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑐𝑐 ⋅ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑑𝑑 ⋅ 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑒𝑒 ⋅ 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑓𝑓 ⋅ 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑔𝑔 ⋅ 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + ℎ ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑖𝑖 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2  
5 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 
6 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝑟𝑟𝑒𝑒−𝑒𝑒𝑖𝑖𝑖𝑖 
7 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑐𝑐 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
8 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝑟𝑟𝑒𝑒−𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑐𝑐 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
9 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝑚𝑚𝑒𝑒𝑐𝑐𝑔𝑔 + 𝑐𝑐 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
10 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑐𝑐 ⋅ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
11 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝑟𝑟𝑒𝑒−𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑐𝑐 ⋅ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
12 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝑚𝑚𝑒𝑒𝑐𝑐𝑔𝑔 + 𝑐𝑐 ⋅ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
13 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑐𝑐 ⋅ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑑𝑑 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
14 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝑟𝑟𝑒𝑒−𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑐𝑐 ⋅ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑑𝑑 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
15 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝑚𝑚𝑒𝑒𝑐𝑐𝑔𝑔 + 𝑐𝑐 ⋅ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑑𝑑 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
16 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑐𝑐 ⋅ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑑𝑑 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑒𝑒 ⋅ 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
17 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝑟𝑟𝑒𝑒−𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑐𝑐 ⋅ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑑𝑑 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑒𝑒 ⋅ 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
18 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝑚𝑚𝑒𝑒𝑐𝑐𝑔𝑔 + 𝑐𝑐 ⋅ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑑𝑑 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑒𝑒 ⋅ 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
19 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑐𝑐 ⋅ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑑𝑑 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑒𝑒 ⋅ 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
20 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝑟𝑟𝑒𝑒−𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑐𝑐 ⋅ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑑𝑑 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑒𝑒 ⋅ 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
21 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝑚𝑚𝑒𝑒𝑐𝑐𝑔𝑔 + 𝑐𝑐 ⋅ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑑𝑑 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑒𝑒 ⋅ 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
22 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑐𝑐 ⋅

𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 

23 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝑟𝑟𝑒𝑒−𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑐𝑐 ⋅
𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 

24 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝑚𝑚𝑒𝑒𝑐𝑐𝑔𝑔 + 𝑐𝑐 ⋅
𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
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Table C-1. Aromaticity Model Forms, CONTINUED 

Model Equation 
25 

𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑐𝑐 ⋅
𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝑑𝑑 ⋅ �
𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�
2

 

26 
𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝑟𝑟𝑒𝑒−𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑐𝑐 ⋅

𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝑑𝑑 ⋅ �
𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�
2

 

27 
𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝑚𝑚𝑒𝑒𝑐𝑐𝑔𝑔 + 𝑐𝑐 ⋅

𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝑑𝑑 ⋅ �
𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�
2

 

28 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑐𝑐 ⋅ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑑𝑑 ⋅ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2  
29 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝑟𝑟𝑒𝑒−𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑐𝑐 ⋅ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑑𝑑 ⋅ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2  
30 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿𝑚𝑚𝑒𝑒𝑐𝑐𝑔𝑔 + 𝑐𝑐 ⋅ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑑𝑑 ⋅ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2  
31 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑐𝑐 ⋅

𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝑑𝑑 ⋅
𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 

32 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝑟𝑟𝑒𝑒−𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑐𝑐 ⋅
𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝑑𝑑 ⋅
𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 

33 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝑚𝑚𝑒𝑒𝑐𝑐𝑔𝑔 + 𝑐𝑐 ⋅
𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝑑𝑑 ⋅
𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 

34 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑐𝑐 ⋅
𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝑑𝑑 ⋅
𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝑒𝑒 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

35 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝑟𝑟𝑒𝑒−𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑐𝑐 ⋅
𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝑑𝑑 ⋅
𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝑒𝑒 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

36 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑀𝑀𝛿𝛿,𝑚𝑚𝑒𝑒𝑐𝑐𝑔𝑔 + 𝑐𝑐 ⋅
𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝑑𝑑 ⋅
𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝑒𝑒 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

37 (Ko) 
𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ �

𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
100 �

+ 𝑐𝑐 ⋅ �
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
100 �

2

 

38 
(Gerstein) 

𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

39 
(Maroto-
Valer) 

𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 on a mass fraction basis 
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Table C-1. Aromaticity Model Forms, CONTINUED 

Model Equation 
40 
(Maroto-
Valer) 

𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 on an atomic basis 
41 (SK 1) 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
42 (SK 2) 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑐𝑐 ⋅ 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

Elemental ratios on atomic basis 
43 (SK 3) 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑐𝑐 ⋅ 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑑𝑑 ⋅ 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

Elemental ratios on atomic basis 
44 (SK 4) 𝑓𝑓𝑐𝑐′ = 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑐𝑐 ⋅ 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑑𝑑 ⋅ 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑒𝑒 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

Elemental ratios on atomic basis 
 

Table C-2. Original and Re-Fit Coefficients for Aromaticity Literature Correlations 
Model Name Coefficients a b c d e 
37 Ko et al. Original 0.8305 -2.0081 2.2412   

Re-fit 3.7746 -9.2248 6.6376   
38 Gerstein et al. Original -0.564 0.0159    

Re-fit -0.3944 0.0133    
40 Maroto-Valer 

et al. 
Original 1.22 -0.58    
Re-fit 1.2075 -0.6711    

41 Singh & 
Kakati 1 

Original 1.2029 -0.0126    
Re-fit 0.9714 -0.0073    

42 Singh & 
Kakati 2 

Original 1.364 -0.5372 -0.7846   
Re-fit 1.1667 -0.5567 -0.5395   

43 Singh & 
Kakati 3 

Original 1.3656 -0.5119 -0.0211 -0.7865  
Re-fit 1.2582 0.6547 -1.0025 -0.6532  

44 Singh & 
Kakati 4 

Original 174.4405 621.6823 -856.495 -629.617 9.1339 
Re-fit 1.0513 -1.0735 0.3826 -0.3099 -0.017 
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Table C-3. Statistical Results for Each Aromaticity Correlation 

Model Ncoeff Nvar R2 L1 Norm L2 Norm Infinity Norm SSE 
Original Coefficients 
Ko 3 1 0.595 0.058 0.076 0.215 0.458 
Gerstein 2 1 0.549 0.075 0.089 0.195 0.626 
Maroto-
Valer 

2 1 0.626 0.091 0.113 0.367 1.012 

SK 1 2 1 0.649 0.055 0.082 0.349 0.406 
SK 2 3 2 0.716 0.053 0.070 0.231 0.394 
SK 3 4 3 0.716 0.053 0.070 0.231 0.393 
SK 4 5 4 0.057 27.473 45.616 274.318 1.269×105 

Fitted Models 
1 2 1 0.018 0.068 0.097 0.369 0.570 
2 2 1 0.030 0.067 0.096 0.402 0.563 
3 9 4 0.791 0.034 0.045 0.170 0.122 
4 9 4 0.797 0.033 0.044 0.166 0.118 
5 2 1 0.660 0.042 0.057 0.209 0.197 
6 2 1 0.697 0.043 0.054 0.193 0.176 
7 3 2 0.724 0.037 0.051 0.209 0.160 
8 3 2 0.748 0.037 0.049 0.198 0.146 
9 3 2 0.933 0.026 0.033 0.073 0.026 
10 3 2 0.662 0.042 0.057 0.202 0.196 
11 3 2 0.699 0.042 0.053 0.189 0.174 
12 3 2 0.896 0.031 0.040 0.094 0.043 
13 4 3 0.725 0.037 0.051 0.203 0.159 
14 4 3 0.749 0.037 0.049 0.196 0.146 
15 4 3 0.941 0.023 0.031 0.066 0.023 
16 5 4 0.746 0.037 0.049 0.188 0.148 
17 5 4 0.753 0.037 0.048 0.187 0.143 
18 5 4 0.941 0.023 0.031 0.066 0.023 
19 5 4 0.744 0.036 0.049 0.204 0.149 
20 5 4 0.755 0.036 0.048 0.200 0.142 
21 5 4 0.953 0.021 0.027 0.061 0.018 
22 3 2 0.707 0.039 0.053 0.223 0.170 
23 3 2 0.727 0.040 0.051 0.209 0.158 
24 3 2 0.945 0.023 0.029 0.063 0.022 
25 4 2 0.708 0.039 0.053 0.223 0.170 
26 4 2 0.727 0.040 0.051 0.209 0.158 
27 4 2 0.945 0.023 0.029 0.064 0.022 
28 4 2 0.682 0.040 0.055 0.217 0.184 
29 4 2 0.715 0.040 0.052 0.202 0.166 
30 4 2 0.950 0.022 0.027 0.059 0.020 
31 4 3 0.774 0.035 0.046 0.172 0.131 
32 4 3 0.772 0.034 0.047 0.175 0.132 
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Table C-3. Statistical Results for Each Aromaticity Correlation, CONTINUED 

Model Ncoeff Nvar R2 L1 Norm L2 Norm Infinity Norm SSE 
33 4 3 0.946 0.023 0.029 0.064 0.022 
34 5 4 0.780 0.034 0.046 0.174 0.128 
35 5 4 0.777 0.034 0.046 0.177 0.129 
36 5 4 0.950 0.023 0.028 0.060 0.019 
37 3 1 0.641 0.053 0.070 0.228 0.395 
38 2 1 0.549 0.063 0.079 0.198 0.497 
39 2 1 0.626 0.056 0.072 0.274 0.411 
40 2 1 0.626 0.056 0.072 0.273 0.411 
41 2 1 0.649 0.040 0.058 0.232 0.204 
42 3 2 0.724 0.047 0.062 0.201 0.304 
43 4 3 0.729 0.046 0.061 0.212 0.298 
44 5 4 0.777 0.034 0.046 0.176 0.129 

 

C.2 Elemental Composition Analysis 

 This section contains all the extra material for the elemental composition analysis, 

including all tested model forms and the 𝑅𝑅2 values for each completed test. This section also 

includes all the average statistical values for the initial cross-validation analysis. Next are the 

results of the final training step, which details the results using the complete data set (see Table 

B-1 and Table B-2 for complete data sets for char and tar, respectively).The final training results 

include the complete statistical values for each test in table format and in figures to better show 

trends. Finally, this appendix details the complete results of the model refinement step with an 

additional cross-validation and final training cycle. 

C.2.1 Elemental Correlation Summary 

 Table C-4 contains the totality of the tested composition model forms. This table is 

broken into two main sections:  models used in the initial cross-validation analysis and models 

developed through model refinement. Also included in the table are the total number of 

coefficients and the number of variables in each tested model form. 
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Table C-4. Elemental Composition Model Forms 

Model Ncoeff Nvar Equation 
1 12 4 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ exp(𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔) + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3

+ 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03  
2 9 4 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔𝑒𝑒 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚
𝑔𝑔 + ℎ ⋅ 𝑋𝑋𝑖𝑖0𝑖𝑖  

3 17 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

3 + 𝑒𝑒 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
4 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + ℎ ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑖𝑖 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔4

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑘𝑘 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑝𝑝 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑚𝑚 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚4 + 𝑒𝑒 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑜𝑜 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑞𝑞 ⋅ 𝑋𝑋𝑖𝑖𝑐𝑐4  
4 5 4 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ ln�𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜� + 𝑐𝑐 ⋅ ln(𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔) + 𝑑𝑑 ⋅ ln(𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚) + 𝑒𝑒 ⋅ ln(𝑋𝑋𝑖𝑖0) 

5 5 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ log10�𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜� + 𝑐𝑐 ⋅ log10(𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔) + 𝑑𝑑 ⋅ log10(𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚) + 𝑒𝑒 ⋅ log10(𝑋𝑋𝑖𝑖0) 

6 9 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ exp�𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜� + 𝑑𝑑 ⋅ exp(𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔) + 𝑓𝑓 ⋅ exp(𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚) + ℎ ⋅ exp(𝑖𝑖 ⋅ 𝑋𝑋𝑖𝑖0) 

7 5 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 +
𝑏𝑏

𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
+

𝑐𝑐
𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔

+
𝑑𝑑

𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚
+

𝑒𝑒
𝑋𝑋𝑖𝑖0

 

8 17 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
1/2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

1/3 + 𝑒𝑒 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
1/4 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔

1/2 + ℎ ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔
1/3 + 𝑖𝑖 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔

1/4

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑘𝑘 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚
1/2 + 𝑝𝑝 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚

1/3 + 𝑚𝑚 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚
1/4 + 𝑒𝑒 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑜𝑜 ⋅ 𝑋𝑋𝑖𝑖0

1/2 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖0
1/3 + 𝑞𝑞 ⋅ 𝑋𝑋𝑖𝑖𝑐𝑐

1/4 
9 13 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ exp(𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔) + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3

+ 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑓𝑓𝑐𝑐′ 
10 14 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ exp(𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔) + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3

+ 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑓𝑓𝑐𝑐′ + 𝑒𝑒 ⋅ 𝑓𝑓𝑐𝑐′2 
11 13 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ exp(𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔) + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3

+ 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ ln(𝑓𝑓𝑐𝑐′) 



 

 

267 

Table C-4. Elemental Composition Model Forms, CONTINUED 

Model Ncoeff Nvar Equation 
12 14 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ exp(𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔) + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3

+ 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑐𝑐0 + 𝑒𝑒 ⋅ 𝑐𝑐02 
13 14 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ exp(𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔) + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3

+ 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑒𝑒 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
2  

14 14 5 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

3 + 𝑒𝑒 ⋅ exp(𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔) + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3

+ 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖  

15 13 5 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

3 + 𝑒𝑒 ⋅ exp(𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔) + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3

+ 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
16 14 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ exp(𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔) + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3

+ 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑒𝑒 ⋅ 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2  
17 13 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ exp(𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔) + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3

+ 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
18 14 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ exp(𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔) + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3

+ 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑒𝑒 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2  
19 14 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ exp(𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔) + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3

+ 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖  
20 20 9 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ exp(𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔) + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3

+ 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑐𝑐0 + 𝑒𝑒 ⋅ 𝑐𝑐02 + 𝑜𝑜 ⋅ ln(𝑓𝑓𝑐𝑐′) + 𝑝𝑝 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
𝑞𝑞 + 𝑒𝑒 ⋅ 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑠𝑠

⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖  
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Table C-4. Elemental Composition Model Forms, CONTINUED 

Model Ncoeff Nvar Equation 
21 17 4 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 +

1
𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

4 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 +
1

𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + ℎ ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑖𝑖 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔4

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 +
1

1 + 𝑘𝑘 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑝𝑝 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑚𝑚 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚4 + 𝑒𝑒 ⋅ 𝑋𝑋𝑖𝑖0 +
1

𝑜𝑜 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑞𝑞 ⋅ 𝑋𝑋𝑖𝑖04
 

22 13 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03  
23 14 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ 𝑐𝑐0 
24 14 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ ln(𝑐𝑐0) 
25 14 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ 𝑓𝑓𝑐𝑐′ 
26 15 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ 𝑓𝑓𝑐𝑐′ + 𝑜𝑜 ⋅ 𝑓𝑓𝑐𝑐′2 
27 14 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ ln(𝑓𝑓𝑐𝑐′) 
28 14 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 
29 15 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑜𝑜 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
2  
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Table C-4. Elemental Composition Model Forms, CONTINUED 

Model Ncoeff Nvar Equation 
30 14 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
31 15 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑜𝑜 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2  
32 16 7 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ 𝑐𝑐0 + 𝑜𝑜 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑝𝑝 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
33 15 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ 𝑐𝑐0 + 𝑜𝑜 ⋅ 𝑐𝑐02 
34 16 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ 𝑐𝑐0 + 𝑜𝑜 ⋅ 𝑐𝑐02 + 𝑝𝑝 ⋅ 𝑐𝑐03 
35 15 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
𝑐𝑐  

36 14 5 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
37 15 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐  
38 19 9 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ 𝑐𝑐0 + 𝑜𝑜 ⋅ 𝑐𝑐02 + 𝑝𝑝 ⋅ 𝑓𝑓𝑐𝑐′ + 𝑞𝑞 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑒𝑒 ⋅ 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
+ 𝑠𝑠 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 



 

 

270 

Table C-4. Elemental Composition Model Forms, CONTINUED 

Model Ncoeff Nvar Equation 
39 16 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ 𝑓𝑓𝑐𝑐′ + 𝑜𝑜 ⋅ 𝑓𝑓𝑐𝑐′2 + 𝑝𝑝 ⋅ 𝑓𝑓𝑐𝑐′3 
40 14 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ (𝜎𝜎 + 1)𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 
41 15 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ (𝜎𝜎 + 1)𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑜𝑜 ⋅ (𝜎𝜎 + 1)𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖2  
42 15 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ (𝜎𝜎 + 1)𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐  
43 16 7 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ 𝑐𝑐0 + 𝑜𝑜 ⋅ 𝑓𝑓𝑐𝑐′ + 𝑝𝑝 ⋅ (𝜎𝜎 + 1)𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 
44 12 4 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑝𝑝 ⋅ 𝑜𝑜𝑖𝑖03  
45 13 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑝𝑝 ⋅ 𝑜𝑜𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑐𝑐0 
46 15 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑝𝑝 ⋅ 𝑜𝑜𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑐𝑐0 + 𝑒𝑒 ⋅ 𝑐𝑐02 + 𝑜𝑜 ⋅ 𝑐𝑐03 
47 13 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑝𝑝 ⋅ 𝑜𝑜𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑓𝑓𝑐𝑐′ 
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Table C-4. Elemental Composition Model Forms, CONTINUED 

Model Ncoeff Nvar Equation 
48 14 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑝𝑝 ⋅ 𝑜𝑜𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑓𝑓𝑐𝑐′ + 𝑒𝑒 ⋅ 𝑓𝑓𝑐𝑐′2 
49 13 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑝𝑝 ⋅ 𝑜𝑜𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 
50 13 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑝𝑝 ⋅ 𝑜𝑜𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
51 15 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑝𝑝 ⋅ 𝑜𝑜𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑒𝑒 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑜𝑜 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3  
52 13 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑝𝑝 ⋅ 𝑜𝑜𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
53 15 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑝𝑝 ⋅ 𝑜𝑜𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑒𝑒 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 + 𝑜𝑜 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴3  
54 21 9 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑝𝑝 ⋅ 𝑜𝑜𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑐𝑐0 + 𝑒𝑒 ⋅ 𝑐𝑐02 + 𝑜𝑜 ⋅ 𝑐𝑐03 + 𝑝𝑝 ⋅ 𝑓𝑓𝑐𝑐′ + 𝑞𝑞 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑒𝑒 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑠𝑠
⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑡𝑡 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3 + 𝑢𝑢 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

55 12 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02

+ 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03  
56 14 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02

+ 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑐𝑐0 + 𝑒𝑒 ⋅ 𝑐𝑐02 
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Model Ncoeff Nvar Equation 
57 15 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02

+ 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑐𝑐0 + 𝑒𝑒 ⋅ 𝑐𝑐02 + 𝑜𝑜 ⋅ 𝑐𝑐03 
58 13 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02

+ 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ ln(𝑐𝑐0) 
59 14 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02

+ 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑓𝑓𝑐𝑐′ + 𝑒𝑒 ⋅ 𝑓𝑓𝑐𝑐′2 
60 15 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02

+ 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑓𝑓𝑐𝑐′ + 𝑒𝑒 ⋅ 𝑓𝑓𝑐𝑐′2 + 𝑜𝑜 ⋅ 𝑓𝑓𝑐𝑐′3 
61 13 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02

+ 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 
62 14 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02

+ 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑒𝑒 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
2  

63 15 5 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02

+ 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑒𝑒 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
2 + 𝑜𝑜 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

3  
64 14 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02

+ 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖  

65 13 5 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02

+ 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
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Model Ncoeff Nvar Equation 
66 14 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02

+ 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑒𝑒 ⋅ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2  
67 15 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02

+ 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑒𝑒 ⋅ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑜𝑜 ⋅ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3  
68 13 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02

+ 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
69 15 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02

+ 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑒𝑒 ⋅ 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑜𝑜 ⋅ 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3  
70 15 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02

+ 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑒𝑒 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑜𝑜 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3  
71 13 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02

+ 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
72 14 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02

+ 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑒𝑒 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2  
73 15 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02

+ 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑒𝑒 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 + 𝑜𝑜 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴3  
74 14 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02

+ 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖  
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Model Ncoeff Nvar Equation 
75 13 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02

+ 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅
𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 

76 14 5 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02

+ 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅
𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝑒𝑒 ⋅ �
𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�
2

 

77 15 5 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02

+ 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅
𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝑒𝑒 ⋅ �
𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�
2

+ 𝑜𝑜 ⋅ �
𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�
3

 

78 13 5 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02

+ 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ ln �
𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

� 

79 22 9 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02

+ 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑐𝑐0 + 𝑒𝑒 ⋅ 𝑐𝑐02 + 𝑜𝑜 ⋅ 𝑐𝑐03 + 𝑝𝑝 ⋅ 𝑓𝑓𝑐𝑐′ + 𝑞𝑞 ⋅ 𝑓𝑓𝑐𝑐′2 + 𝑒𝑒 ⋅ 𝑓𝑓𝑐𝑐′3 + 𝑠𝑠 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑡𝑡

⋅ ln �
𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

� + 𝑢𝑢 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑣𝑣  

80 26 10 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02

+ 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑐𝑐0 + 𝑒𝑒 ⋅ 𝑓𝑓𝑐𝑐′ + 𝑜𝑜 ⋅ 𝑓𝑓𝑐𝑐′2 + 𝑝𝑝 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑞𝑞 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
2 + 𝑒𝑒 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑠𝑠 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑡𝑡

⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3 + 𝑢𝑢 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑒𝑒 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 + 𝑤𝑤 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴3 + 𝑜𝑜 ⋅
𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝑦𝑦 ⋅ �
𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�
2

+ 𝑧𝑧 ⋅ �
𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�
3
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Table C-4. Elemental Composition Model Forms, CONTINUED 

Model Ncoeff Nvar Equation 
81 13 4 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

4 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + ℎ ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑖𝑖 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔4

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑘𝑘 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖02  
82 14 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

4 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + ℎ ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑖𝑖 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔4

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑘𝑘 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑒𝑒 ⋅ 𝑓𝑓𝑐𝑐′ 
83 15 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

4 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + ℎ ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑖𝑖 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔4

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑘𝑘 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑒𝑒 ⋅ 𝑓𝑓𝑐𝑐′ + 𝑜𝑜 ⋅ 𝑓𝑓𝑐𝑐′2 
84 14 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

4 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + ℎ ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑖𝑖 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔4

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑘𝑘 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑒𝑒 ⋅ ln(𝑓𝑓𝑐𝑐′) 
85 15 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

4 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + ℎ ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑖𝑖 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔4

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑘𝑘 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑒𝑒 ⋅ 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑜𝑜 ⋅ 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2  
86 16 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

4 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + ℎ ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑖𝑖 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔4

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑘𝑘 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑒𝑒 ⋅ 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑜𝑜 ⋅ 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑝𝑝 ⋅ 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3  
87 14 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

4 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + ℎ ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑖𝑖 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔4

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑘𝑘 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑒𝑒 ⋅ (𝜎𝜎 + 1)𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 
88 15 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

4 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + ℎ ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑖𝑖 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔4

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑘𝑘 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑒𝑒 ⋅ (𝜎𝜎 + 1)𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑜𝑜 ⋅ (𝜎𝜎 + 1)𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖2  
89 14 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

4 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + ℎ ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑖𝑖 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔4

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑘𝑘 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑒𝑒 ⋅ ln(𝜎𝜎 + 1)𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 
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Table C-4. Elemental Composition Model Forms, CONTINUED 

Model Ncoeff Nvar Equation 
90 17 7 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

4 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + ℎ ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑖𝑖 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔4

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑘𝑘 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑒𝑒 ⋅ ln(𝑓𝑓𝑐𝑐′) + 𝑜𝑜 ⋅ 𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑝𝑝 ⋅ (𝜎𝜎 + 1)𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑞𝑞
⋅ (𝜎𝜎 + 1)𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖2  

91 9 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
2 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑖𝑖 ⋅ 𝑋𝑋𝑖𝑖0 

92 10 5 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
2 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑖𝑖 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑗𝑗

⋅ 𝑐𝑐0 
93 11 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑖𝑖 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑗𝑗

⋅ 𝑐𝑐0 + 𝑘𝑘 ⋅ 𝑐𝑐02 
94 12 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑖𝑖 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑗𝑗

⋅ 𝑐𝑐0 + 𝑘𝑘 ⋅ 𝑐𝑐02 + 𝑝𝑝 ⋅ 𝑐𝑐03 
95 10 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑖𝑖 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑗𝑗

⋅ ln(𝑐𝑐0) 
96 11 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑖𝑖 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑗𝑗

⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑘𝑘 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2  
97 12 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑖𝑖 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑗𝑗

⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑘𝑘 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑝𝑝 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3  
98 12 6 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑖𝑖 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑗𝑗

⋅ 𝑐𝑐0 + 𝑘𝑘 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑝𝑝 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2  
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Table C-4. Elemental Composition Model Forms, CONTINUED 

Model Ncoeff Nvar Equation 
99 14 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ 𝑋𝑋𝑖𝑖04  
100 16 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ 𝑋𝑋𝑖𝑖04 + 𝑜𝑜 ⋅ 𝑐𝑐0 + 𝑝𝑝 ⋅ 𝑐𝑐02 
101 17 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ 𝑋𝑋𝑖𝑖04 + 𝑜𝑜 ⋅ 𝑐𝑐0 + 𝑝𝑝 ⋅ 𝑐𝑐02 + 𝑞𝑞 ⋅ 𝑐𝑐03 
102 15 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ 𝑋𝑋𝑖𝑖04 + 𝑜𝑜 ⋅ 𝑓𝑓𝑐𝑐′ 
103 16 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ 𝑋𝑋𝑖𝑖04 + 𝑜𝑜 ⋅ 𝑓𝑓𝑐𝑐′ + 𝑝𝑝 ⋅ 𝑓𝑓𝑐𝑐′2 
104 17 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ 𝑋𝑋𝑖𝑖04 + 𝑜𝑜 ⋅ 𝑓𝑓𝑐𝑐′ + 𝑝𝑝 ⋅ 𝑓𝑓𝑐𝑐′2 + 𝑞𝑞 ⋅ 𝑓𝑓𝑐𝑐′3 
105 15 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ 𝑋𝑋𝑖𝑖04 + 𝑜𝑜 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 
106 16 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ 𝑋𝑋𝑖𝑖04 + 𝑜𝑜 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑝𝑝 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
2  

107 17 5 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ 𝑋𝑋𝑖𝑖04 + 𝑜𝑜 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑝𝑝 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
2 + 𝑞𝑞

⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
3  
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Table C-4. Elemental Composition Model Forms, CONTINUED 

Model Ncoeff Nvar Equation 
108 15 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
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𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ 𝑋𝑋𝑖𝑖04 + 𝑜𝑜 ⋅ 𝑐𝑐0 + 𝑝𝑝 ⋅ 𝑐𝑐02 + 𝑞𝑞 ⋅ 𝑐𝑐03 + 𝑒𝑒 ⋅ 𝑓𝑓𝑐𝑐′ + 𝑠𝑠 ⋅ 𝑓𝑓𝑐𝑐′2

+ 𝑡𝑡 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑢𝑢 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
2 + 𝑒𝑒 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑤𝑤 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑜𝑜 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3 + 𝑦𝑦 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑧𝑧 ⋅

𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝑎𝑎𝑎𝑎 ⋅ �
𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�
2

+ 𝑏𝑏𝑏𝑏 ⋅ �
𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�
3

 

119 16 8 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
2 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + ℎ ⋅ 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3 + 𝑖𝑖 ⋅ 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐4

+ 𝑗𝑗 ⋅ 𝑐𝑐0 + 𝑘𝑘 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑝𝑝 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
2 + 𝑚𝑚 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑒𝑒 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑜𝑜 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3 + 𝑝𝑝 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

120 15 5 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

3 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2

+ 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑒𝑒 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 + 𝑜𝑜 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴3  
Model Refinement 

121 16 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
1/2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

1/3 + 𝑒𝑒 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
1/4 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔

1/2 + ℎ ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔
1/3 + 𝑖𝑖 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔

1/4

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑘𝑘 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚
1/2 + 𝑝𝑝 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚

1/3 + 𝑚𝑚 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚
1/4 + 𝑒𝑒 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑜𝑜 ⋅ 𝑋𝑋𝑖𝑖0

1/2 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖𝑐𝑐
1/4 

122 15 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
1/2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

1/4 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔
1/2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔

1/3 + ℎ ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔
1/4 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑗𝑗

⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚
1/2 + 𝑘𝑘 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚

1/3 + 𝑝𝑝 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚
1/4 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑒𝑒 ⋅ 𝑋𝑋𝑖𝑖0

1/2 + 𝑜𝑜 ⋅ 𝑋𝑋𝑖𝑖𝑐𝑐
1/4 

123 14 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
1/2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

1/4 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔
1/2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔

1/3 + ℎ ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔
1/4 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑗𝑗

⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚
1/2 + 𝑘𝑘 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚

1/3 + 𝑝𝑝 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚
1/4 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑒𝑒 ⋅ 𝑋𝑋𝑖𝑖0

1/2 
 



 

 

280 

Table C-4. Elemental Composition Model Forms, CONTINUED 

Model Ncoeff Nvar Equation 
124 13 4 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

1/2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
1/4 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔

1/2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔
1/3 + ℎ ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔

1/4 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚
1/2 + 𝑗𝑗

⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚
1/3 + 𝑘𝑘 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚

1/4 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖0
1/2 

125 12 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

1
2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

1
4 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔

1
2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔

1
3 + ℎ ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔

1
4 + 𝑖𝑖

⋅ exp(𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚) + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖0
1
2  

126 11 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

1
2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

1
4 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔

1
2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔

1
3 + ℎ ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔

1
4 + 𝑖𝑖

⋅ exp(𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚) + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0
1
2  

127 11 5 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔𝑒𝑒 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚

𝑔𝑔 + ℎ ⋅ 𝑋𝑋𝑖𝑖0𝑖𝑖 + 𝑗𝑗 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘  

128 9 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔𝑒𝑒 + 𝑓𝑓 ⋅ 𝑋𝑋𝑖𝑖0

𝑔𝑔 + ℎ ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖  

129 10 5 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔𝑒𝑒 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚

𝑔𝑔 + ℎ ⋅ 𝑋𝑋𝑖𝑖0 + 𝑖𝑖 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝑗𝑗  

130 8 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔𝑒𝑒 + 𝑓𝑓 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑔𝑔 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ  

131 9 5 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔𝑒𝑒 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑔𝑔 ⋅ 𝑋𝑋𝑖𝑖0 + ℎ ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖  

132 14 5 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
2 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑗𝑗

⋅ 𝑋𝑋𝑖𝑖02 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑝𝑝 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑚𝑚 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 + 𝑒𝑒 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴3  
133 13 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑐𝑐 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + ℎ ⋅ 𝑋𝑋𝑖𝑖0 + 𝑖𝑖 ⋅ 𝑋𝑋𝑖𝑖02

+ 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑘𝑘 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑝𝑝 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 + 𝑚𝑚 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴3  
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Table C-4. Elemental Composition Model Forms, CONTINUED 

Model Ncoeff Nvar Equation 
134 12 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑐𝑐 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + ℎ ⋅ exp(𝑖𝑖 ⋅ 𝑋𝑋𝑖𝑖0)

+ 𝑗𝑗 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑘𝑘 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 + 𝑝𝑝 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴3  
135 11 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑐𝑐 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑔𝑔 ⋅ exp(ℎ ⋅ 𝑋𝑋𝑖𝑖0) + 𝑖𝑖 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
+ 𝑗𝑗 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 + 𝑘𝑘 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴3  

136 10 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
2 + 𝑐𝑐 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + ℎ ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑖𝑖

⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 + 𝑗𝑗 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴3  
137 13 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖03

+ 𝑝𝑝 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑚𝑚 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
2  

138 12 5 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
𝑏𝑏 + 𝑐𝑐 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑖𝑖 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑘𝑘

⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑝𝑝 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
2  

139 11 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑐𝑐 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑒𝑒 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + ℎ ⋅ 𝑋𝑋𝑖𝑖02 + 𝑖𝑖 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑗𝑗 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

+ 𝑘𝑘 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
2  

140 12 5 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑖𝑖 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖03

+ 𝑘𝑘 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑝𝑝 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
2  

141 11 5 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑏𝑏 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑐𝑐 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑒𝑒 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + ℎ ⋅ 𝑋𝑋𝑖𝑖02 + 𝑖𝑖 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑗𝑗

⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑘𝑘 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
2  

142 10 5 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑏𝑏 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑐𝑐 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑑𝑑 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑒𝑒 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑔𝑔 ⋅ 𝑋𝑋𝑖𝑖02 + ℎ ⋅ 𝑋𝑋𝑖𝑖03 + 𝑖𝑖

⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑗𝑗 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
2  
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Table C-4. Elemental Composition Model Forms, CONTINUED 

Model Ncoeff Nvar Equation 
143 16 4 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 +

1
𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

4 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 +
1

𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + ℎ ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔4 + 𝑖𝑖

⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 +
1

1 + 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑘𝑘 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑝𝑝 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚4 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖0 +
1

𝑒𝑒 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑜𝑜 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖04
 

144 15 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 +
1

𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
2 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

3 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
4 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 +

1
𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔4 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚

+
1

1 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚4 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖0 +
1

𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑒𝑒 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑜𝑜 ⋅ 𝑋𝑋𝑖𝑖04
 

145 14 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 +
1

𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
2 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

3 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 +
1

𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔4 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚

+
1

1 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚4 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 +
1

𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑒𝑒 ⋅ 𝑋𝑋𝑖𝑖04
 

146 13 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 +
1

𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑐𝑐 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 +

1
𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔4 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚

+
1

1 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚4 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 +
1

𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖04
 

147 12 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑏𝑏 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 +
1

𝑐𝑐 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔4 + 𝑒𝑒 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 +
1

1 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚4 + 𝑖𝑖

⋅ 𝑋𝑋𝑖𝑖0 +
1

𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖04
 

148 11 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 +
1

𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑐𝑐 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 +

1
𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔4 + 𝑓𝑓 ⋅ exp(𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚) + ℎ ⋅ 𝑋𝑋𝑖𝑖0

+
1

𝑖𝑖 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖03 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖04
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Table C-4. Elemental Composition Model Forms, CONTINUED 

Model Ncoeff Nvar Equation 
149 16 4 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 +

1
𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑒𝑒 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

4 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 +
1

𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + ℎ ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑖𝑖 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔4

+ 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 +
1

1 + 𝑘𝑘 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑝𝑝 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑚𝑚 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚4 + 𝑒𝑒 ⋅ 𝑋𝑋𝑖𝑖0 +
1

𝑜𝑜 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖04
 

150 15 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 +
1

𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

3 + 𝑒𝑒 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
4 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 +

1
𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + ℎ ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔4 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚

+
1

1 + 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑘𝑘 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑝𝑝 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚4 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖0 +
1

𝑒𝑒 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑜𝑜 ⋅ 𝑋𝑋𝑖𝑖04
 

151 14 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 +
1

𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

3 + 𝑒𝑒 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
4 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 +

1
𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + ℎ ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔4

+
1

1 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑘𝑘 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚4 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖0 +
1

𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑒𝑒 ⋅ 𝑋𝑋𝑖𝑖04
 

152 13 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 +
1

𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

3 + 𝑒𝑒 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
4 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 +

1
𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + ℎ ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔4

+
1

1 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑗𝑗 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚4 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖0 +
1

𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑚𝑚 ⋅ 𝑋𝑋𝑖𝑖04
 

153 12 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 +
1

𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
2 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

3 + 𝑒𝑒 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
4 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 +

1
𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + ℎ ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔4

+
1

1 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖0 +
1

𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑝𝑝 ⋅ 𝑋𝑋𝑖𝑖04
 

154 11 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 +
1

𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
3 + 𝑑𝑑 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

4 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 +
1

𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑔𝑔 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔4 +
1

1 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑖𝑖 ⋅ 𝑋𝑋𝑖𝑖0

+
1

𝑗𝑗 ⋅ 𝑋𝑋𝑖𝑖02 + 𝑘𝑘 ⋅ 𝑋𝑋𝑖𝑖04
 

155 12 5 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑖𝑖 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 +

𝑗𝑗
𝑋𝑋𝑖𝑖0

+ 𝑘𝑘

⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑝𝑝 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
2  
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156 11 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 +

𝑖𝑖
𝑋𝑋𝑖𝑖0

+ 𝑗𝑗

⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑘𝑘 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
2  

157 10 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑖𝑖 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑗𝑗

⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
2  

158 9 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔3 + 𝑒𝑒 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + ℎ ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑖𝑖

⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
2  

159 11 5 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
2 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑖𝑖 ⋅ 𝑋𝑋𝑖𝑖0 + 𝑗𝑗

⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑘𝑘 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3  
160 11 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + ℎ ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑖𝑖 ⋅ log10 𝑋𝑋𝑖𝑖0
+ 𝑗𝑗 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑘𝑘 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3  

161 10 5 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
2 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + ℎ ⋅ log10 𝑋𝑋𝑖𝑖0 + 𝑖𝑖 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2

+ 𝑗𝑗 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3  
162 9 5 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑐𝑐 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔2 + 𝑒𝑒 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑔𝑔 ⋅ log10 𝑋𝑋𝑖𝑖0 + ℎ ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑖𝑖

⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3  
163 16 8 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑐𝑐 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑒𝑒 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑔𝑔 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + ℎ ⋅ 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3 + 𝑖𝑖 ⋅ 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐4

+
𝑗𝑗

1 + 𝑐𝑐0
+ 𝑘𝑘 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑝𝑝 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

2 + 𝑚𝑚 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑒𝑒 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑜𝑜 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3 + 𝑝𝑝 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
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164 15 8 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑐𝑐 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑑𝑑 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑒𝑒 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 + 𝑔𝑔 ⋅ 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3 + ℎ ⋅ 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐4

+
𝑖𝑖

1 + 𝑐𝑐0
+ 𝑗𝑗 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑘𝑘 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

2 + 𝑝𝑝 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑚𝑚 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑒𝑒 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3 + 𝑜𝑜 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

165 14 8 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
2 + 𝑐𝑐 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑑𝑑 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑒𝑒 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 +

𝑔𝑔
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+
ℎ

1 + 𝑐𝑐0
+ 𝑖𝑖

⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑗𝑗 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑘𝑘 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑝𝑝 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑚𝑚 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐3 + 𝑒𝑒 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
166 13 8 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑐𝑐 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑑𝑑 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑒𝑒 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 +
𝑔𝑔

𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
+

ℎ
1 + 𝑐𝑐0

+ 𝑖𝑖

⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑗𝑗 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑘𝑘 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑝𝑝 ⋅ 𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 + 𝑚𝑚 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
167 12 8 𝑋𝑋𝑖𝑖

𝑋𝑋𝑖𝑖0
= 𝑎𝑎 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜

2 + 𝑐𝑐 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑑𝑑 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑒𝑒 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 +
𝑔𝑔

𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
+

ℎ
1 + 𝑐𝑐0

+ 𝑖𝑖

⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑗𝑗 ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 +
𝑘𝑘

𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
+ 𝑝𝑝 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

168 11 7 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
2 + 𝑐𝑐 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔 + 𝑑𝑑 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚 + 𝑒𝑒 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚2 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚3 +

𝑔𝑔
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ ℎ ⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑖𝑖

⋅ 𝑀𝑀𝛿𝛿,𝐺𝐺𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 +
𝑗𝑗

𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
+ 𝑘𝑘 ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

169 8 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
𝑐𝑐 + 𝑑𝑑 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔𝑒𝑒 + 𝑓𝑓 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚

𝑔𝑔 + ℎ ⋅ 𝑋𝑋𝑖𝑖0 

170 7 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 ⋅ 𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜
𝑏𝑏 + 𝑐𝑐 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔𝑑𝑑 + 𝑒𝑒 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚

𝑒𝑒 + 𝑔𝑔 ⋅ 𝑋𝑋𝑖𝑖0 

171 6 3 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔𝑐𝑐 + 𝑑𝑑 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚𝑒𝑒 + 𝑓𝑓 ⋅ 𝑋𝑋𝑖𝑖0 

172 7 4 𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖0

= 𝑎𝑎 + 𝑏𝑏 ⋅ ln�𝑇𝑇𝑔𝑔𝑐𝑐𝑔𝑔,𝑚𝑚𝑐𝑐𝑜𝑜� + 𝑐𝑐 ⋅ 𝑡𝑡𝑟𝑟𝑒𝑒𝑔𝑔𝑑𝑑 + 𝑒𝑒 ⋅ 𝑉𝑉𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚
𝑒𝑒 + 𝑔𝑔 ⋅ 𝑋𝑋𝑖𝑖0 
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 Table C-5 contains the 𝑅𝑅2 values from the final training step of both the initial cross-

validation cycle and the model refinement analysis. There are different text colors corresponding 

to which models are used for which part of the analysis:  blue is the best 𝑅𝑅2 value from the initial 

cross-validation cycle, red is the best 𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 value from the initial cross-validation cycle, 

orange is the best overall 𝑅𝑅2 value post model refinement, and green is the model with the best 

utility post model refinement (the best possible 𝑅𝑅2 value with the fewest possible coefficients). 

This table also shows which model form was used for each element in both the char and the tar. 

 

Table C-5. Complete R2 Values for Each Model Form 

Model Char Tar 
C H O N S C H O N S 

1 0.232          
2 0.500 0.743 0.327 0.368 0.297 0.752 0.631 0.764 0.490 0.765 
3 0.470 0.681 0.362 0.234 0.073 0.692 0.549 0.565 0.330 0.607 
4 nwa nw nw nw nw 0.743 0.596 0.733 0.424 0.626 
5 nw nw nw nw nw 0.743 0.596 0.733 0.424 0.626 
6 0.505 0.699 0.329 0.359 0.319 0.775 0.538 0.612 0.473 0.726 
7 nw nw nw nw nw 0.598 0.607 0.308 0.452 0.318 
8 0.541 0.748 0.342 0.378 0.378 0.807 0.626 0.766 0.570 0.737 
9 0.272          
10 0.193          
11 0.340          
12 0.239          
13 0.292          
14 0.229          
15 0.220          
16 0.414          
17 0.286          
18 0.243          
19 0.357          
20 0.340          
21 0.527 0.746 0.323 0.401 0.565 0.824 0.649 0.750 0.582 0.736 
22  0.691    0.693    0.642 
23  0.679    0.712     
24  nw    nw    nw 
25  0.685    0.712    0.642 
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Table C-5. Complete R2 Values for Each Model Form, CONTINUED 

Model Char Tar 
C H O N S C H O N S 

26  0.684    0.633     
27  0.683        0.642 
28  0.740    0.659     
29  0.731    0.698     
30  0.741    0.642     
31  0.753    0.721     
32  0.723         
33      0.633     
34      0.683    0.644 
35      0.670     
36      0.718     
37      0.642     
38      0.640     
39          0.643 
40          0.642 
41          0.654 
42          0.642 
43          0.643 
44   0.322        
45   0.282        
46   0.323        
47   0.282        
48   0.279        
49   0.279        
50   0.279        
51   0.349        
52   0.371        
53   0.316        
54   0.349        
55    0.385   0.317    
56    0.589   0.047    
57    0.589       
58    nw   nw    
59    0.564   0.047    
60    0.130   0.047    
61    0.501       
62    0.597   0.697    
63    0.514   0.676    
64       0.372    
65    0.474       
66       0.443    
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Table C-5. Complete R2 Values for Each Model Form, CONTINUED 

Model Char Tar 
C H O N S C H O N S 

67    0.510       
68    0.468       
69    0.573   0.383    
70       0.488    
71    0.513       
72    0.518   0.420    
73       0.003    
74    0.129       
75    0.450       
76    0.551       
77       0.685    
78    0.520       
79    0.392       
80       0.151    
81     0.051      
82     0.034      
83     0.051      
84     0.034      
85     0.095      
86     0.086      
87     0.034      
88     0.051      
89     0.063      
90     0.052      
91        0.773   
92        0.764   
93        0.774   
94        0.772   
95        nw   
96        0.837   
97        0.842   
98        0.834   
99         0.439  
100         0.434  
101         0.506  
102         0.430  
103         0.435  
104         0.440  
105         0.535  
106         0.540  
107         0.651  
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Table C-5. Complete R2 Values for Each Model Form, CONTINUED 

Model Char Tar 
C H O N S C H O N S 

108         0.540  
109         0.502  
110         0.460  
111         0.444  
112         0.436  
113         0.517  
114         0.582  
115         0.602  
116         0.512  
117         0.442  
118         0.687  
119         0.717  
120   0.438        

Model Refinement 
121 0.551          
122 0.541          
123 0.543          
124 0.544          
125 0.541          
126 0.548          
127  0.800         
128  0.758         
129  0.787         
130  0.757         
131  0.773         
132   0.435        
133   0.437        
134   0.447        
135   0.445        
136   0.411        
137    0.595       
138    0.587       
139    0.588       
140    0.595       
141    0.592       
142    0.585       
143     0.605      
144     0.570      
145     0.560      
146     0.562      
147     0.570      
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Table C-5. Complete R2 Values for Each Model Form, CONTINUED 

Model Char Tar 
C H O N S C H O N S 

148     0.605      
149      0.822     
150      0.823     
151      0.822     
152      0.823     
153      0.824     
154      0.825     
155       0.796    
156       0.799    
157       0.800    
158       0.786    
159        0.843   
160        0.842   
161        0.842   
162        0.841   
163         0.738  
164         0.746  
165         0.729  
166         0.747  
167         0.746  
168         0.747  
169          0.764 
170          0.750 
171          0.760 
172          0.763 

a nw refers to model forms that did not work. This was because of an undefined value, either 
log(0) or 1/0. 
b blank spaces in this table indicate model forms that were not tested for those elements 
c colors indicate the following:  best 𝑅𝑅2, best 𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒, best overall post model refinement, and 
best utility (four colors for most elements, except for char nitrogen model 62 having the best 𝑅𝑅2 
and 𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒, and best overall post model refinement, tar sulfur model 2 having the best 𝑅𝑅2 
value pre- and post-model refinement, and tar carbon and hydrogen and char hydrogen and 
oxygen only having a best overall post model refinement) 
d blank spaces in this table indicate model forms that were not tested for those elements 

C.2.2 Cross-Validation Results 

 The following tables show the complete cross-validation results for the C, H, O, N, and S 

in the tar and the char. The results include the average values of each of the five validation 
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metrics and the average 𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 values. Higher values for the 𝑅𝑅2 values and lower values for 

the remaining validation metrics indicate that the tested model form has a better ability to predict 

“new” data, meaning that the tested model form likely has less overall bias. 

 Table C-6 includes the results for carbon in the tar and is an exact copy of Table 6-1 in 

the main elemental analysis chapter. All the model forms performed well. Of note are model 

forms 4, 6, and 20, all having very high 𝑅𝑅2 values as well as the lowest values for each of the 

other statistical values. 

 

Table C-6. Tar Carbon Cross-Validation Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
22 13 0.573 0.044 0.028 0.035 0.067 0.010 
4 5 0.914 0.183 0.034 0.046 0.106 0.017 
5 5 0.914 0.183 0.034 0.046 0.106 0.017 
6 9 0.922 0.102 0.032 0.044 0.105 0.016 
7 5 0.887 0.177 0.044 0.060 0.135 0.028 
8 17 0.886 0.052 0.032 0.043 0.102 0.016 
23 14 0.791 0.057 0.024 0.028 0.051 0.006 
34 16 0.794 0.050 0.023 0.027 0.053 0.006 
25 14 0.843 0.060 0.022 0.027 0.050 0.006 
26 14 0.785 0.056 0.025 0.030 0.057 0.007 
28 14 0.823 0.059 0.022 0.027 0.051 0.006 
29 15 0.814 0.054 0.023 0.027 0.051 0.006 
35 15 0.819 0.055 0.023 0.028 0.052 0.006 
36 14 0.804 0.057 0.022 0.028 0.053 0.006 
30 14 0.826 0.059 0.031 0.039 0.076 0.013 
31 15 0.847 0.056 0.029 0.038 0.079 0.012 
37 15 0.836 0.056 0.031 0.040 0.079 0.013 
38 19 0.791 0.042 0.024 0.030 0.054 0.007 
21 17 0.869 0.051 0.045 0.059 0.131 0.031 
2 9 0.908 0.101 0.034 0.046 0.104 0.017 
3 17 0.586 0.034 0.027 0.034 0.062 0.010 
33 15 0.854 0.057 0.021 0.029 0.056 0.006 

 

 The results for the cross-validation of hydrogen in the tar are included in Table C-7. Most 

of the tested model forms performed poorly, but the best of these were 2, 3, 19, 21, and 22. Each 
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of these model forms had an 𝑅𝑅2 value of above 0.65, combined with better than average values 

for the remaining statistical parameters. 

 

Table C-7. Tar Hydrogen Cross-Validation Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
55 12 0.439 0.037 0.164 0.210 0.388 0.414 
4 5 0.689 0.138 0.090 0.120 0.246 0.125 
5 5 0.728 0.146 0.091 0.117 0.228 0.117 
6 9 0.786 0.087 0.077 0.097 0.189 0.081 
8 17 0.812 0.048 0.087 0.104 0.189 0.087 
56 14 0.429 0.031 0.156 0.190 0.339 0.236 
59 14 0.396 0.028 0.143 0.178 0.320 0.205 
60 15 0.361 0.024 0.193 0.252 0.460 0.492 
62 14 0.528 0.038 0.129 0.150 0.244 0.141 
53 15 0.589 0.039 0.110 0.131 0.223 0.109 
54 14 0.389 0.028 0.149 0.181 0.323 0.223 
66 14 0.582 0.042 0.116 0.147 0.288 0.185 
69 15 0.555 0.037 0.120 0.133 0.206 0.112 
70 15 0.480 0.032 0.132 0.163 0.297 0.173 
72 14 0.333 0.024 0.156 0.181 0.290 0.231 
73 15 0.370 0.025 0.129 0.155 0.262 0.180 
77 15 0.360 0.024 0.193 0.252 0.459 0.491 
80 26 0.492 0.019 0.125 0.149 0.271 0.137 
21 17 0.873 0.051 0.084 0.099 0.172 0.085 
2 9 0.584 0.065 0.128 0.181 0.395 0.259 
3 17 0.782 0.046 0.101 0.119 0.197 0.116 
7 5 0.728 0.146 0.067 0.083 0.142 0.062 

 

 Table C-8 shows the results for oxygen in the tar. While most of the tested model forms 

performed well, 2, 3, 10, and 14 performed the best overall, with 𝑅𝑅2 values over 0.8. 

 

Table C-8. Tar Oxygen Cross-Validation Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
91 9 0.744 0.083 0.114 0.143 0.263 0.144 
4 5 0.755 0.151 0.134 0.157 0.266 0.151 
5 5 0.755 0.151 0.134 0.157 0.266 0.151 
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Table C-8. Tar Oxygen Cross-Validation Results, CONTINUED 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
6 9 0.668 0.074 0.137 0.166 0.284 0.196 
7 5 0.480 0.096 0.100 0.123 0.243 0.106 
8 17 0.798 0.047 0.128 0.146 0.245 0.129 
92 10 0.744 0.074 0.114 0.143 0.262 0.144 
93 11 0.744 0.068 0.114 0.143 0.262 0.144 
94 12 0.744 0.062 0.114 0.143 0.262 0.144 
96 11 0.819 0.074 0.096 0.117 0.229 0.097 
97 12 0.820 0.068 0.099 0.116 0.206 0.100 
98 12 0.817 0.068 0.096 0.117 0.229 0.098 
21 17 0.831 0.049 0.124 0.142 0.222 0.121 
2 9 0.833 0.093 0.117 0.136 0.231 0.112 
3 17 0.734 0.043 0.122 0.147 0.254 0.152 

 

 Table C-9 contains the cross-validation data for nitrogen in the tar. All models did 

relatively well with 𝑅𝑅2 values over 0.65. Tar nitrogen had the most models tested with a total of 

29 models. The best performer in the cross-validation analysis was model 7 with an 𝑅𝑅2 value of 

0.807. 

 

Table C-9. Tar Nitrogen Cross-Validation Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
99 14 0.690 0.049 0.133 0.159 0.257 0.179 
2 9 0.782 0.087 0.134 0.169 0.305 0.202 
4 5 0.754 0.151 0.124 0.147 0.245 0.157 
5 5 0.754 0.151 0.124 0.147 0.245 0.157 
6 9 0.765 0.085 0.123 0.143 0.237 0.134 
7 5 0.807 0.161 0.105 0.121 0.208 0.103 
8 17 0.703 0.041 0.201 0.237 0.432 0.400 
100 16 0.673 0.042 0.136 0.162 0.255 0.187 
101 17 0.690 0.041 0.135 0.158 0.246 0.177 
102 15 0.702 0.047 0.134 0.159 0.253 0.178 
103 16 0.709 0.044 0.132 0.158 0.255 0.178 
104 17 0.670 0.039 0.136 0.160 0.247 0.181 
105 15 0.740 0.049 0.121 0.149 0.258 0.157 
106 16 0.725 0.045 0.122 0.159 0.282 0.178 
107 17 0.763 0.045 0.130 0.155 0.281 0.165 
108 15 0.739 0.049 0.122 0.154 0.259 0.166 
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Table C-9. Tar Nitrogen Cross-Validation Results, CONTINUED 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
109 17 0.758 0.045 0.127 0.148 0.258 0.153 
110 16 0.697 0.044 0.128 0.160 0.265 0.182 
111 17 0.698 0.041 0.130 0.158 0.255 0.175 
112 15 0.715 0.048 0.131 0.158 0.253 0.176 
113 17 0.690 0.041 0.135 0.161 0.255 0.184 
114 15 0.756 0.050 0.119 0.147 0.270 0.152 
115 16 0.771 0.048 0.111 0.139 0.258 0.136 
116 15 0.700 0.047 0.132 0.156 0.251 0.172 
117 17 0.781 0.046 0.118 0.136 0.237 0.132 
118 28 0.663 0.024 0.140 0.173 0.306 0.211 
21 17 0.760 0.045 0.148 0.182 0.348 0.259 
119 16 0.777 0.049 0.093 0.114 0.199 0.088 
3 17 0.671 0.039 0.134 0.158 0.243 0.180 

 

 Table C-10 includes the cross-validation results for sulfur in the tar. Most of these models 

performed well with 𝑅𝑅2 values over 0.6, and some over 0.9. The best of these models were 8 

with an 𝑅𝑅2 of 0.943 and 6 with 0.918. 

 

Table C-10. Tar Sulfur Cross-Validation Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
22 13 0.690 0.053 0.213 0.237 0.348 0.395 
2 9 0.880 0.098 0.083 0.105 0.201 0.086 
4 5 0.796 0.159 0.100 0.126 0.256 0.112 
5 5 0.709 0.142 0.117 0.145 0.293 0.150 
6 9 0.918 0.102 0.074 0.099 0.203 0.069 
7 5 0.642 0.128 0.157 0.190 0.367 0.252 
8 17 0.943 0.055 0.075 0.093 0.162 0.063 
34 16 0.692 0.043 0.213 0.233 0.330 0.381 
25 14 0.684 0.049 0.219 0.240 0.334 0.407 
39 16 0.672 0.042 0.216 0.240 0.354 0.407 
27 14 0.686 0.049 0.216 0.241 0.360 0.409 
40 14 0.684 0.049 0.218 0.241 0.343 0.410 
41 15 0.700 0.047 0.209 0.226 0.316 0.359 
42 15 0.689 0.046 0.217 0.239 0.346 0.404 
43 16 0.698 0.044 0.209 0.229 0.338 0.366 
21 17 0.875 0.051 0.092 0.110 0.184 0.092 
3 17 0.711 0.042 0.220 0.244 0.365 0.420 
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 Table C-11 shows the cross-validation results for carbon in the char. Most of the tested 

models performed poorly with 𝑅𝑅2 values well below 0.5. The best performers were models 8 and 

21, with 𝑅𝑅2 values of 0.662 and 0.6, respectively. 

 

Table C-11. Char Carbon Cross-Validation Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
1 12 0.306 0.026 0.048 0.068 0.156 0.046 
6 9 0.593 0.066 0.048 0.064 0.154 0.041 
8 17 0.662 0.039 0.037 0.049 0.108 0.025 
9 13 0.324 0.025 0.049 0.066 0.152 0.044 
10 14 0.323 0.023 0.050 0.068 0.156 0.047 
11 13 0.390 0.030 0.047 0.065 0.146 0.042 
12 14 0.257 0.018 0.051 0.071 0.164 0.050 
13 14 0.238 0.017 0.050 0.071 0.163 0.051 
14 14 0.303 0.022 0.049 0.068 0.157 0.046 
15 13 0.346 0.027 0.051 0.068 0.159 0.047 
16 14 0.427 0.030 0.046 0.063 0.131 0.040 
17 13 0.271 0.021 0.050 0.069 0.162 0.048 
18 14 0.292 0.021 0.047 0.067 0.156 0.045 
19 14 0.264 0.019 0.050 0.070 0.164 0.049 
20 20 0.344 0.017 0.049 0.066 0.154 0.044 
21 17 0.600 0.035 0.045 0.063 0.142 0.038 
2 9 0.560 0.062 0.049 0.067 0.165 0.043 
3 17 0.489 0.029 0.027 0.036 0.082 0.013 

 

 Table C-12 details the averaged cross-validation results for hydrogen in the char. All the 

models performed reasonably well, with all having 𝑅𝑅2 values over 0.65. The best performers 

were models 8, 21, and 2, with 𝑅𝑅2 values of 0.877, 0.871, and 0.852, respectively. 

 

Table C-12. Char Hydrogen Cross-Validation Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
22 13 0.679 0.052 0.078 0.096 0.209 0.094 
6 9 0.795 0.088 0.065 0.076 0.132 0.060 
8 17 0.877 0.052 0.050 0.058 0.112 0.034 
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Table C-12. Char Hydrogen Cross-Validation Results, CONTINUED 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
23 14 0.669 0.048 0.081 0.098 0.207 0.098 
25 14 0.681 0.049 0.078 0.095 0.207 0.092 
26 15 0.664 0.044 0.079 0.097 0.212 0.096 
27 14 0.661 0.047 0.083 0.099 0.199 0.100 
28 14 0.711 0.051 0.077 0.092 0.177 0.086 
29 15 0.722 0.048 0.078 0.092 0.155 0.085 
30 14 0.710 0.051 0.079 0.091 0.160 0.083 
31 15 0.706 0.047 0.079 0.091 0.154 0.084 
32 16 0.727 0.045 0.075 0.088 0.166 0.078 
21 17 0.871 0.051 0.047 0.055 0.095 0.030 
2 9 0.852 0.050 0.057 0.066 0.105 0.044 
3 17 0.685 0.076 0.080 0.098 0.202 0.100 

 

 Table C-13 includes the averaged cross-validation results for oxygen in the char. The 

char oxygen models were average performers, with 𝑅𝑅2 values mostly around 0.5. Models 53 and 

120 performed the best with 𝑅𝑅2 values of 0.666 and 0.601, respectively. 

 

Table C-13. Char Oxygen Cross-Validation Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
44 12 0.564 0.047 0.144 0.184 0.350 0.281 
6 9 0.563 0.063 0.196 0.224 0.373 0.491 
8 17 0.562 0.033 0.158 0.193 0.360 0.310 
45 13 0.587 0.045 0.136 0.179 0.348 0.265 
46 15 0.585 0.039 0.139 0.179 0.341 0.266 
47 13 0.582 0.045 0.137 0.178 0.351 0.263 
48 14 0.569 0.041 0.141 0.180 0.347 0.268 
49 13 0.592 0.046 0.138 0.180 0.350 0.269 
50 13 0.581 0.045 0.138 0.180 0.349 0.267 
51 15 0.544 0.036 0.159 0.190 0.348 0.294 
52 13 0.584 0.045 0.143 0.183 0.352 0.281 
53 15 0.666 0.044 0.130 0.168 0.327 0.236 
54 21 0.517 0.025 0.164 0.195 0.364 0.310 
21 17 0.493 0.029 0.158 0.197 0.360 0.318 
2 9 0.428 0.048 0.169 0.209 0.368 0.360 
3 17 0.545 0.032 0.152 0.187 0.361 0.290 
120 15 0.601 0.040 0.132 0.174 0.351 0.252 
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 Table C-14 shows the cross-validation results for nitrogen in the char. Most of the models 

performed poorly, with 𝑅𝑅2 values under 0.5, with many below 0.4. The best performers were 

models 8, 62, and 2, with 𝑅𝑅2 values of 0.666, 0.6, and 0.6, respectively. 

 

Table C-14. Char Nitrogen Cross-Validation Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
55 12 0.338 0.028 0.809 0.840 1.033 7.475 
6 9 0.585 0.065 0.094 0.120 0.258 0.138 
8 17 0.666 0.039 0.092 0.117 0.247 0.132 
56 14 0.331 0.024 0.883 0.914 1.114 8.394 
57 15 0.345 0.023 0.667 0.698 0.883 5.771 
59 14 0.351 0.025 0.594 0.622 0.800 4.833 
60 15 0.353 0.024 0.525 0.556 0.735 4.078 
61 13 0.518 0.040 0.101 0.135 0.317 0.203 
62 14 0.600 0.043 0.077 0.097 0.185 0.097 
63 15 0.571 0.038 0.085 0.111 0.228 0.142 
65 13 0.344 0.026 0.736 0.763 0.949 6.523 
67 15 0.571 0.038 0.080 0.099 0.201 0.102 
68 13 0.517 0.040 0.103 0.136 0.291 0.223 
69 15 0.480 0.032 0.103 0.145 0.319 0.233 
71 13 0.483 0.037 0.108 0.133 0.232 0.178 
72 14 0.470 0.034 0.099 0.132 0.293 0.188 
74 14 0.332 0.024 0.815 0.849 1.049 7.646 
75 13 0.344 0.026 0.735 0.765 0.951 6.556 
76 14 0.330 0.024 0.952 0.981 1.179 9.154 
78 13 0.350 0.027 0.662 0.688 0.866 5.588 
79 22 0.519 0.024 0.099 0.130 0.300 0.192 
21 17 0.440 0.026 0.107 0.146 0.341 0.212 
2 9 0.600 0.067 0.095 0.120 0.248 0.138 
3 17 0.322 0.019 0.093 0.122 0.258 0.151 

 

 Table C-15 contains the cross-validation results for sulfur in the char. Most of these 

models performed very poorly, having 𝑅𝑅2 values below 0.3. In addition, most of these had 

incredibly large values for the other validation metrics. The best performers were models 6, 8, 

and 2, with 𝑅𝑅2 values of 0.511, 0.543, and 0.549, respectively. 
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Table C-15. Char Sulfur Cross-Validation Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
81 13 0.274 0.021 5.53×101 6.81×101 1.30×102 7.23×104 

6 9 0.511 0.057 0.256 0.321 0.573 0.895 
8 17 0.543 0.032 0.236 0.277 0.481 0.663 
82 14 0.261 0.019 1.65×102 2.00×102 3.76×102 5.82×105 

83 15 0.197 0.013 1.38×102 1.83×102 3.99×102 5.46×105 

84 14 0.181 0.013 1.49×102 1.98×102 4.21×102 6.14×105 

85 15 0.226 0.015 1.46×102 1.72×102 2.84×102 3.08×105 

86 16 0.105 0.007 1.54×102 1.95×102 3.77×102 7.27×105 

87 14 0.184 0.013 8.35×101 9.51×101 1.54×102 2.63×105 

88 15 0.226 0.015 1.58×104 1.90×104 3.42×104 6.03×109 

89 14 0.247 0.018 1.45×102 1.78×102 3.34×102 5.87×105 

90 17 0.275 0.016 8.90×103 1.11×103 2.01×104 1.54×109 

21 17 0.400 0.024 0.229 0.290 0.535 0.677 
2 9 0.549 0.061 0.250 0.303 0.502 0.798 
3 17 0.310 0.018 0.308 0.360 0.615 1.117 

 

C.2.3 Model Training Using Complete Data Set 

 The last step in the cross-validation procedure is to train the model(s) of interest on all the 

experimental data. This is described as “final” training, which can be a misleading title. The 

word “final” does not indicate that these are the final correlation fits shown in Section 6.3, but 

indicates that this is the training using the entire data set rather than splitting the data set into 

groups and testing on each group. The tar correlations are discussed first, followed by the char 

correlations. All the discussed model forms in this section are included in Table C-4. The model 

forms with the best 𝑅𝑅2 values and the model forms with the best 𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 values are presented 

here, as well as tables of all model form results. The two best models for each element were used 

as a basis for model refinement. 
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C.2.3.1  Tar Carbon 

 The cross-validation process determined that Model 21 had the highest 𝑅𝑅2 value, and 

Model 5 had the highest 𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒. The best results for both cross-validation and final training 

are included in Table C-16. 

 

Table C-16. Best Tar Carbon Final Training Results 

Step Model Ncoeff R2 R2/Ncoeff L1 
Norm 

L2 
Norm 

Infinity 
Norm 

SSE 

Cross-
validation, 
best R2 

21 17 0.869 0.051 0.045 0.059 0.131 0.031 

Final 
training, 
best R2 

21 17 0.824 0.048 0.021 0.031 0.108 0.070 

Cross-
validation, 
best 
R2/Ncoeff 

5 5 0.914 0.183 0.034 0.046 0.106 0.017 

Final 
training, 
best 
R2/Ncoeff 

5 5 0.743 0.149 0.027 0.037 0.117 0.103 

 

 Model 21 fit the complete data set very well, with a very high 𝑅𝑅2 value of 0.824 in the 

final training step, as well as an average value of 0.869 in the cross-validation step. This 

indicates that model 21 has a high certainty of predicting new information accurately. Model 5 

had the highest 𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 value, with an 𝑅𝑅2 value of 0.743 in final training and an average 

value of 0.914 in cross- validation, which means it did an even better job of predicting new 

information. Both model 5 and model 21 were used to refine a final correlation for carbon in the 

tar. This is discussed in more detail in Section 6.3.3. 
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 Figure C-1 shows the parity plots from all tar elemental composition models using the 

parameters found from final training. Plot a shows the carbon in the tar. Note that the carbon in 

the tar generally ranges from 1 to about 1.15, meaning that the carbon content of the tar increases 

by up to 15% above the carbon content in the parent coal (dry, ash-free basis). Most of the data 

for the normalized hydrogen in the tar ranges from 0.8 to about 1.5, whereas the normalized 

oxygen in the tar ranges from 0.1 to 1.1, the normalized nitrogen ranges from 0.3 to 1.7, and the 

normalized sulfur ranges from 0.2 to 1.4. 

 

 
Figure C-1. Final training parity plots of CHONS in the tar. 

 

 Table C-17 details the complete “final” training results for carbon in the tar. The best of 

these results are summarized in Table C-16. All of the tested models performed well with 𝑅𝑅2 

values over 0.6 for all except Model 7 with a value of 0.598. 
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Table C-17. Complete Tar Carbon Final Training Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
22 13 0.693 0.053 0.031 0.041 0.156 0.124 
4 5 0.743 0.149 0.027 0.037 0.117 0.103 
5 5 0.743 0.149 0.027 0.037 0.117 0.103 
6 9 0.775 0.086 0.025 0.035 0.106 0.090 
7 5 0.598 0.120 0.037 0.046 0.146 0.161 
8 17 0.807 0.047 0.023 0.032 0.123 0.077 
23 14 0.712 0.051 0.032 0.041 0.140 0.107 
34 16 0.683 0.043 0.032 0.043 0.178 0.122 
25 14 0.712 0.051 0.031 0.041 0.140 0.107 
26 14 0.633 0.045 0.033 0.046 0.159 0.140 
28 14 0.659 0.047 0.034 0.044 0.152 0.128 
29 15 0.698 0.047 0.031 0.042 0.156 0.113 
35 15 0.670 0.045 0.033 0.043 0.154 0.123 
36 14 0.718 0.051 0.031 0.040 0.145 0.105 
30 14 0.642 0.046 0.033 0.044 0.171 0.145 
31 15 0.721 0.048 0.030 0.039 0.138 0.112 
37 15 0.642 0.043 0.033 0.044 0.169 0.146 
38 19 0.640 0.034 0.033 0.044 0.171 0.146 
21 17 0.824 0.048 0.021 0.031 0.108 0.070 
2 9 0.752 0.084 0.027 0.036 0.113 0.099 
3 17 0.692 0.041 0.029 0.041 0.163 0.126 
33 15 0.633 0.042 0.033 0.046 0.159 0.140 

 

 It is difficult to observe trends from tables of data. All of the validation metrics were 

plotted against the number of model coefficients, and are shown in the following figures, starting 

with the L1 norm (Figure C-2), the L2 norm (Figure C-3), the infinity norm (Figure C-4), the SSE 

(Figure C-5), and finally the R2 values (Figure C-6). These figures include plots for all elements 

(CHONS) in the tar. 
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Figure C-2. L1 norm for each model of each element in the tar, plotted against  
number of model coefficients. 

 

 
Figure C-3. L2 norm for each model of each element in the tar, plotted against 
number of model coefficients 
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Figure C-4. Infinity norm for each model of each element in the tar, plotted against  
number of model coefficients. 

 

 
Figure C-5. SSE for each model of each element in the tar, plotted against number  
of model coefficients. 



 

304 

 
Figure C-6. R2 for each model of each element in the tar, plotted against number of  
model coefficients. 

 

C.2.3.2 Tar Hydrogen 

 Model form 62 had the best 𝑅𝑅2 value for the hydrogen in the tar, and Model 7 had the 

best 𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 value. Their statistical values for both cross-validation and final training are 

included in Table C-18. 

 Model 62 performed moderately well with an 𝑅𝑅2 value of 0.697 in final training and an 

average value of 0.528 in cross-validation. Figure C-1 shows the parity relationship for model 62 

using the fitted coefficients found during the final training step. Model 7 had a moderate final 

training 𝑅𝑅2 value of 0.607 and an average of 0.728 in cross-validation, indicating that Model 7 

was better at predicting new data than model 62. This may indicate that Model 62 is overfit. Both 

Model 7 and Model 62 were used to refine a final correlation for hydrogen in the tar, shown in 

Section 6.3.4. Table C-19 includes the complete final training results for tar hydrogen, and 

Figure C-2 to Figure C-6 show the trends associated with these results. 
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Table C-18. Best Tar Hydrogen Final Training Results 

Step Model Ncoeff R2 R2/Ncoeff L1 
Norm 

L2 
Norm 

Infinity 
Norm 

SSE 

Cross-
validation, 
best R2 

62 14 0.528 0.038 0.129 0.150 0.244 0.141 

Final 
training, 
best R2 

62 14 0.697 0.050 0.083 0.107 0.381 0.742 

Cross-
validation, 
best 
R2/Ncoeff 

7 5 0.728 0.146 0.067 0.083 0.142 0.062 

Final 
training, 
best 
R2/Ncoeff 

7 5 0.607 0.121 0.087 0.119 0.434 1.064 

 

Table C-19. Complete Tar Hydrogen Final Training Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
55 12 0.317 0.026 0.118 0.157 0.700 1.851 
4 5 0.596 0.119 0.088 0.121 0.485 1.095 
5 5 0.596 0.119 0.088 0.121 0.484 1.095 
6 9 0.538 0.060 0.096 0.129 0.522 1.252 
8 17 0.626 0.037 0.084 0.116 0.490 1.012 
56 14 0.047 0.003 0.174 0.232 0.841 3.511 
59 14 0.047 0.003 0.174 0.232 0.841 3.511 
60 15 0.047 0.003 0.174 0.232 0.841 3.511 
62 14 0.697 0.050 0.083 0.107 0.381 0.742 
53 15 0.676 0.045 0.089 0.113 0.262 0.835 
54 14 0.372 0.027 0.113 0.155 0.696 1.555 
66 14 0.443 0.032 0.110 0.142 0.590 1.517 
69 15 0.383 0.026 0.125 0.153 0.526 1.517 
70 15 0.488 0.033 0.110 0.142 0.358 1.313 
72 14 0.420 0.030 0.137 0.173 0.434 2.226 
73 15 0.003 0.000 0.169 0.225 0.829 3.737 
77 15 0.685 0.046 0.084 0.109 0.450 0.770 
80 26 0.151 0.006 0.141 0.189 0.620 2.322 
21 17 0.649 0.038 0.083 0.113 0.454 0.954 
2 9 0.631 0.070 0.084 0.115 0.449 1.000 
3 17 0.549 0.032 0.106 0.133 0.545 1.328 
7 5 0.607 0.121 0.087 0.119 0.434 1.064 
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C.2.3.3 Tar Oxygen 

 All the tested models for oxygen in the tar performed well in cross-validation, but the 

model with the highest 𝑅𝑅2 value was Model 97, and Model 5 had the highest 𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒. The 

statistical values calculated during final training and cross-validation for these models are found 

in Table C-20. 

 

Table C-20. Best Tar Oxygen Final Training Results 

Step Model Ncoeff R2 R2/Ncoeff L1 
Norm 

L2 
Norm 

Infinity 
Norm 

SSE 

Cross-
validation, 
best R2 

97 12 0.820 0.068 0.099 0.116 0.206 0.100 

Final 
training, 
best R2 

97 12 0.842 0.070 0.084 0.098 0.224 0.324 

Cross-
validation, 
best 
R2/Ncoeff 

5 5 0.755 0.151 0.134 0.157 0.266 0.151 

Final 
training, 
best 
R2/Ncoeff 

5 5 0.733 0.147 0.103 0.127 0.257 0.546 

 

 Model 97 performed well in final training with an 𝑅𝑅2 value of 0.842 and a cross-

validation average 𝑅𝑅2 value of 0.820, indicating that this model fit the entire data set very well 

and predicted new data well. Model 5 didn’t have quite as high of an 𝑅𝑅2 value for either final 

training (0.733) or during cross-validation (0.755), however, it had an 𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 value more 

than twice as high as model 97. Both these models were used to refine a final correlation detailed 

in Section 6.3.5. Figure C-1 shows the parity plot of the normalized mass fraction of oxygen in 

the tar, as predicted by Model 97 when compared to experimentally measured values. Table C-21 
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includes all the data from the final training step of the initial cross-validation cycle, and Figure 

C-2 to Figure C-6 show the trends associated with these results. 

 

Table C-21. Complete Tar Oxygen Final Training Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
91 9 0.773 0.086 0.097 0.117 0.273 0.465 
4 5 0.733 0.147 0.103 0.127 0.257 0.546 
5 5 0.733 0.147 0.103 0.127 0.257 0.546 
6 9 0.612 0.068 0.121 0.153 0.324 0.795 
7 5 0.308 0.062 0.161 0.204 0.477 1.417 
8 17 0.766 0.045 0.098 0.119 0.262 0.479 
92 10 0.764 0.076 0.100 0.119 0.288 0.483 
93 11 0.774 0.070 0.096 0.117 0.280 0.463 
94 12 0.772 0.064 0.098 0.117 0.282 0.468 
96 11 0.837 0.076 0.085 0.099 0.241 0.335 
97 12 0.842 0.070 0.084 0.098 0.224 0.324 
98 12 0.834 0.070 0.085 0.100 0.246 0.340 
21 17 0.750 0.044 0.101 0.123 0.276 0.513 
2 9 0.764 0.085 0.097 0.119 0.266 0.484 
3 17 0.565 0.033 0.138 0.162 0.338 0.894 

 

C.2.3.4 Tar Nitrogen 

 Tar nitrogen Model 119 had the highest 𝑅𝑅2 value and Model 7 had the highest 𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 

value. Their final training statistical values are in Table C-22. 

 Model 119 performed moderately well with a final training 𝑅𝑅2  value of 0.717 and an 

average cross-validation 𝑅𝑅2  value of 0.777. The model with the highest 𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒  value was 

model 7, which did not have a high 𝑅𝑅2 value (0.452). The higher 𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 value comes from the 

fewer number of coefficients. 
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Table C-22. Best Tar Nitrogen Final Training Results 

Step Model Ncoeff R2 R2/Ncoeff L1 
Norm 

L2 
Norm 

Infinity 
Norm 

SSE 

Cross-
validation, 
best R2 

119 16 0.777 0.049 0.093 0.114 0.199 0.088 

Final 
training, 
best R2 

119 16 0.717 0.045 0.114 0.147 0.409 1.397 

Cross-
validation, 
best 
R2/Ncoeff 

7 5 0.807 0.161 0.105 0.121 0.208 0.103 

Final 
training, 
best 
R2/Ncoeff 

7 5 0.452 0.090 0.161 0.204 0.533 2.706 

 

 Figure C-1 shows the parity plot comparing the predicted value (from model 119) of the 

normalized mass fraction of nitrogen in the tar with the experimentally measured value. Table C-

23 shows all validation metrics for the complete set of model forms tested for nitrogen in the tar. 

Figure C-2 to Figure C-6 show the trends associated with these validation metrics. 

 

Table C-23. Complete Tar Nitrogen Final Training Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
99 14 0.439 0.031 0.155 0.207 0.588 2.780 
2 9 0.490 0.054 0.159 0.197 0.559 2.519 
4 5 0.424 0.085 0.167 0.209 0.558 2.848 
5 5 0.424 0.085 0.167 0.209 0.558 2.848 
6 9 0.473 0.053 0.161 0.200 0.547 2.606 
7 5 0.452 0.090 0.161 0.204 0.533 2.706 
8 17 0.570 0.034 0.144 0.181 0.457 2.132 
100 16 0.434 0.027 0.161 0.207 0.573 2.796 
101 17 0.506 0.030 0.155 0.194 0.495 2.443 
102 15 0.430 0.029 0.157 0.209 0.601 2.834 
103 16 0.435 0.027 0.155 0.208 0.597 2.803 
104 17 0.440 0.026 0.161 0.206 0.566 2.769 
105 15 0.535 0.036 0.146 0.188 0.524 2.302 
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Table C-23. Complete Tar Nitrogen Final Training Results, CONTINUED 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
106 16 0.540 0.034 0.150 0.187 0.488 2.276 
107 17 0.651 0.038 0.128 0.163 0.478 1.727 
108 15 0.540 0.036 0.149 0.187 0.492 2.272 
109 17 0.502 0.030 0.155 0.195 0.546 2.470 
110 16 0.460 0.029 0.154 0.203 0.520 2.671 
111 17 0.444 0.026 0.159 0.206 0.545 2.745 
112 15 0.436 0.029 0.160 0.207 0.573 2.787 
113 17 0.517 0.030 0.153 0.192 0.494 2.388 
114 15 0.582 0.039 0.137 0.179 0.504 2.080 
115 16 0.602 0.038 0.133 0.174 0.479 1.972 
116 15 0.512 0.034 0.154 0.193 0.478 2.411 
117 17 0.442 0.026 0.154 0.206 0.582 2.770 
118 28 0.687 0.025 0.125 0.154 0.440 1.551 
21 17 0.582 0.034 0.146 0.178 0.527 2.070 
119 16 0.717 0.045 0.114 0.147 0.409 1.397 
3 17 0.330 0.019 0.202 0.242 0.598 3.805 

 

C.2.3.5 Tar Sulfur 

 Many of the tested models for sulfur in the tar performed very well. Model 2 had the 

highest 𝑅𝑅2 value and model 4 the highest 𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 value. The statistical values for both these 

models from cross-validation and final training are detailed in Table C-24. 

 For being a relatively small, and many times inaccurate, contribution, the correlations 

predicting the sulfur composition of the tar performed well. Model 2 had the highest 𝑅𝑅2 value of 

0.765 in final training and an average value of 0.880 in cross-validation, indicating a good ability 

to predict new data. Model 4 had the highest 𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 value and did reasonably well in cross- 

validation. Both models were used to refine the final correlation in Section 6.3.7. 

 The parity plot showing the normalized mass fraction of sulfur in the tar predicted by 

model 2 compared to the same values measured experimentally is found in Figure C-1. The 

results for the complete set of tested tar sulfur models are found in Table C-25. Figure C-2 to 

Figure C-6 show the trends of these results. 
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Table C-24. Best Tar Sulfur Final Training Results 

Step Model Ncoeff R2 R2/Ncoeff L1 
Norm 

L2 
Norm 

Infinity 
Norm 

SSE 

Cross-
validation, 
best R2 

2 9 0.880 0.098 0.083 0.105 0.201 0.086 

Final 
training, 
best R2 

2 9 0.765 0.085 0.121 0.151 0.358 0.779 

Cross-
validation, 
best 
R2/Ncoeff 

4 5 0.796 0.159 0.100 0.126 0.256 0.112 

Final 
training, 
best 
R2/Ncoeff 

4 5 0.626 0.125 0.145 0.191 0.595 1.239 

 

Table C-25. Complete Tar Sulfur Final Training Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
22 13 0.642 0.049 0.155 0.187 0.352 1.184 
2 9 0.765 0.085 0.121 0.151 0.358 0.780 
4 5 0.626 0.125 0.145 0.191 0.595 1.239 
5 5 0.626 0.125 0.145 0.191 0.595 1.239 
6 9 0.726 0.081 0.128 0.163 0.352 0.908 
7 5 0.318 0.064 0.210 0.258 0.659 2.257 
8 17 0.737 0.043 0.129 0.160 0.435 0.873 
34 16 0.644 0.040 0.155 0.186 0.346 1.180 
25 14 0.642 0.046 0.154 0.187 0.350 1.186 
39 16 0.643 0.040 0.155 0.186 0.347 1.181 
27 14 0.642 0.046 0.155 0.187 0.353 1.184 
40 14 0.642 0.046 0.155 0.187 0.355 1.184 
41 15 0.654 0.044 0.153 0.184 0.337 1.148 
42 15 0.642 0.043 0.155 0.187 0.355 1.185 
43 16 0.643 0.040 0.155 0.187 0.353 1.184 
21 17 0.736 0.043 0.130 0.160 0.324 0.873 
3 17 0.607 0.036 0.167 0.199 0.416 1.341 
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2.2.3.6 Char Carbon 

 Char carbon models 6 and 8 performed the best in cross-validation and final training, 

with model 8 having the highest 𝑅𝑅2 value and 6 having the highest 𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 value. The 

statistical values for these models are included in Table C-26. 

 

Table C-26. Best Char Carbon Final Training Results 

Step Model Ncoeff R2 R2/Ncoeff L1 
Norm 

L2 
Norm 

Infinity 
Norm 

SSE 

Cross-
validation, 
best R2 

8 17 0.662 0.039 0.037 0.049 0.108 0.025 

Final 
training, 
best R2 

8 17 0.541 0.032 0.034 0.046 0.189 0.208 

Cross-
validation, 
best 
R2/Ncoeff 

6 9 0.593 0.066 0.048 0.064 0.154 0.041 

Final 
training, 
best 
R2/Ncoeff 

6 9 0.505 0.056 0.034 0.048 0.192 0.225 

 

 Even though model 8 performed the best in final training, with an 𝑅𝑅2 value of 0.541, it 

doesn’t fit all the data well. Both model 8 and 6 were used to develop the final char carbon 

correlation found in Section 6.3.8. The parity plot showing the predictive capabilities of model 8 

against the experimental data set is in Figure C-7. 
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Figure C-7. Final training parity plots of CHONS in the char. 

 

 Table C-27 shows the complete set of “final training” validation metrics for carbon in the 

char. The following figures include the same values as Table C-27 but are included to better 

show the trends. Figure C-8 shows the L1 norm, Figure C-9 shows the L2 norm, Figure C-10 

shows the infinity norm, Figure C-11 shows the SSE, and Figure C-12 shows the R2 values. 

These figures include plots for all five elements (CHONS) in the char. 

 

Table C-27. Complete Char Carbon Final Training Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
1 12 0.232 0.019 0.044 0.059 0.245 0.349 
6 9 0.505 0.056 0.034 0.048 0.192 0.225 
8 17 0.541 0.032 0.034 0.046 0.189 0.208 
9 13 0.272 0.021 0.043 0.058 0.214 0.331 
10 14 0.193 0.014 0.046 0.061 0.251 0.369 
11 13 0.340 0.026 0.040 0.055 0.216 0.301 
12 14 0.239 0.017 0.044 0.059 0.227 0.349 
13 14 0.292 0.021 0.043 0.057 0.205 0.324 
14 14 0.229 0.016 0.045 0.060 0.241 0.353 
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Table C-27. Complete Char Carbon Final Training Results, CONTINUED 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
15 13 0.220 0.017 0.045 0.060 0.236 0.354 
16 14 0.414 0.030 0.039 0.052 0.146 0.266 
17 13 0.286 0.022 0.042 0.057 0.227 0.325 
18 14 0.243 0.017 0.044 0.059 0.227 0.346 
19 14 0.357 0.026 0.039 0.054 0.229 0.292 
20 20 0.340 0.017 0.041 0.055 0.207 0.303 
21 17 0.527 0.031 0.034 0.047 0.190 0.215 
2 9 0.500 0.056 0.034 0.048 0.208 0.227 
3 17 0.470 0.028 0.038 0.051 0.188 0.262 

 

 

 

 

 
Figure C-8. L1 norm for each model of each element in the char, plotted against  
number of model coefficients. 
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Figure C-9. L2 norm for each model of each element in the char, plotted against  
number of model coefficients. 

 

 
Figure C-10. Infinity norm for each model of each element in the char, plotted  
against number of model coefficients. 
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Figure C-11. SSE for each model of each element in the char, plotted against  
number of model coefficients. 

 

 
Figure C-12. R2 for each model of each element in the char, plotted against  
number of model coefficients. 
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C.2.3.7 Char Hydrogen 

 The cross-validation and final training analysis indicated that char hydrogen models 2 

and 31 performed the best, with model 31 having the highest 𝑅𝑅2 value and model 2 having the 

highest 𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 value. The results for these models from cross-validation and final training 

are included in Table C-28. 

 

Table C-28. Best Char Hydrogen Final Training Results 

Step Model Ncoeff R2 R2/Ncoeff L1 
Norm 

L2 
Norm 

Infinity 
Norm 

SSE 

Cross-
validation, 
best R2 

31 15 0.706 0.047 0.079 0.091 0.154 0.084 

Final 
training, 
best R2 

31 15 0.753 0.050 0.067 0.080 0.184 0.629 

Cross-
validation, 
best 
R2/Ncoeff 

2 9 0.852 0.050 0.057 0.066 0.105 0.044 

Final 
training, 
best 
R2/Ncoeff 

2 9 0.743 0.083 0.065 0.081 0.281 0.653 

 

 Model 31 performed well with a final training 𝑅𝑅2 value of 0.753 and an average 𝑅𝑅2 value 

of 0.706 in cross-validation. As this was the best fit of the initial cross-validation analysis, figure 

S7 shows the predictive capabilities of model 31. Model 2 also did well with a slightly lower 𝑅𝑅2 

value of 0.743 in final training and an even higher average 𝑅𝑅2 value of 0.852. Both these models 

were used to develop the final char hydrogen correlation in Section 6.3.9. Table C-29 shows the 

final training results of all tested char hydrogen models, and Figure C-8 to Figure C-12 show the 

same results plotted to better show the trends. 
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Table C-29. Complete Char Hydrogen Final Training Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
22 13 0.691 0.053 0.073 0.090 0.268 0.793 
6 9 0.699 0.078 0.073 0.088 0.260 0.766 
8 17 0.748 0.044 0.065 0.081 0.274 0.642 
23 14 0.679 0.048 0.073 0.091 0.265 0.817 
25 14 0.685 0.049 0.073 0.090 0.270 0.800 
26 15 0.684 0.046 0.073 0.090 0.283 0.806 
27 14 0.683 0.049 0.073 0.090 0.270 0.806 
28 14 0.740 0.053 0.068 0.082 0.211 0.660 
29 15 0.731 0.049 0.068 0.083 0.202 0.685 
30 14 0.741 0.053 0.069 0.082 0.211 0.660 
31 15 0.753 0.050 0.067 0.080 0.184 0.629 
32 16 0.723 0.045 0.071 0.085 0.200 0.708 
21 17 0.746 0.044 0.064 0.081 0.272 0.646 
2 9 0.743 0.083 0.065 0.081 0.281 0.653 
3 17 0.681 0.040 0.074 0.095 0.274 0.889 

 

C.2.3.8 Char Oxygen 

 Char oxygen model 6 had the highest 𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 value and model 120 had the highest 𝑅𝑅2 

value. The statistical values for these models are found in Table C-30. 

 

Table C-30. Best Char Oxygen Final Training Results 

Step Model Ncoeff R2 R2/Ncoeff L1 
Norm 

L2 
Norm 

Infinity 
Norm 

SSE 

Cross-
validation, 
best R2 

120 15 0.601 0.040 0.132 0.174 0.351 0.252 

Final 
training, 
best R2 

120 15 0.438 0.029 0.159 0.204 0.641 3.378 

Cross-
validation, 
best 
R2/Ncoeff 

6 9 0.563 0.063 0.196 0.224 0.373 0.491 

Final 
training, 
best 
R2/Ncoeff 

6 9 0.329 0.037 0.173 0.223 0.565 4.034 
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 None of the char oxygen models tested performed well, with model 120 having the 

highest 𝑅𝑅2 value of 0.438. The final training fit of model 120 is shown in Figure C-7. Model 6 

performed only a little worse overall but had the highest 𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 value of 0.037. Both model 6 

and model 120 were used to refine the final correlation shown in Section 6.3.10. Table C-31 

contains the validation metrics for all tested char oxygen models, with the same data shown in 

graphical form in Figure C-8 to Figure C-12. 

 

Table C-31. Complete Char Oxygen Final Training Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
44 12 0.322 0.027 0.171 0.224 0.731 4.079 
6 9 0.329 0.037 0.173 0.223 0.565 4.034 
8 17 0.342 0.020 0.173 0.221 0.636 3.961 
45 13 0.282 0.022 0.174 0.231 0.692 4.337 
46 15 0.323 0.022 0.171 0.224 0.734 4.072 
47 13 0.282 0.022 0.174 0.233 0.696 4.396 
48 14 0.279 0.020 0.175 0.232 0.682 4.355 
49 13 0.279 0.021 0.175 0.232 0.685 4.357 
50 13 0.279 0.021 0.175 0.232 0.682 4.355 
51 15 0.349 0.023 0.174 0.220 0.709 3.914 
52 13 0.371 0.029 0.169 0.216 0.653 3.782 
53 15 0.316 0.021 0.168 0.226 0.764 4.119 
54 21 0.349 0.017 0.169 0.220 0.713 3.923 
21 17 0.323 0.019 0.174 0.224 0.654 4.073 
2 9 0.327 0.036 0.176 0.224 0.572 4.047 
3 17 0.362 0.021 0.167 0.218 0.683 3.840 
120 15 0.438 0.029 0.159 0.204 0.641 3.378 

 

C.2.3.9 Char Nitrogen 

 The nitrogen in the char was unique among all the other elements because one model had 

both the best 𝑅𝑅2 value and the best 𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 value:  Model 62. This models’ statistical values 

from final training and cross-validation are included in Table C-32. 
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Table C-32. Best Char Nitrogen Final Training Results 

Step Model Ncoeff R2 R2/Ncoeff L1 
Norm 

L2 
Norm 

Infinity 
Norm 

SSE 

Cross-
validation 

62 14 0.600 0.043 0.077 0.097 0.185 0.097 

Final 
training 

62 14 0.597 0.043 0.077 0.105 0.312 1.084 

 

 Model 62 performed the best of all tested char nitrogen models with an 𝑅𝑅2 value of 0.597 

in final training and an average value of 0.600 in cross-validation. Its predictive capabilities are 

shown in Figure C-7. Model 62 was the only model used to refine the final correlation discussed 

in Section 6.3.11. Table C-33 includes all validation metrics for all tested char nitrogen model 

forms. This same data is in Figure C-8 to Figure C-12 to show the trends. 

 

Table C-33. Complete Char Nitrogen Final Training Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
55 12 0.385 0.032 0.098 0.129 0.344 1.654 
6 9 0.359 0.040 0.098 0.132 0.317 1.725 
8 17 0.378 0.022 0.097 0.130 0.343 1.674 
56 14 0.589 0.042 0.076 0.106 0.325 1.106 
57 15 0.589 0.039 0.078 0.106 0.338 1.108 
59 14 0.564 0.040 0.081 0.109 0.324 1.172 
60 15 0.130 0.009 0.148 0.181 0.454 3.245 
61 13 0.501 0.039 0.087 0.117 0.315 1.344 
62 14 0.597 0.043 0.077 0.105 0.312 1.084 
63 15 0.514 0.034 0.091 0.118 0.356 1.386 
65 13 0.474 0.036 0.091 0.120 0.315 1.417 
67 15 0.510 0.034 0.085 0.115 0.355 1.319 
68 13 0.468 0.036 0.091 0.120 0.318 1.431 
69 15 0.573 0.038 0.080 0.108 0.303 1.150 
71 13 0.513 0.039 0.084 0.115 0.353 1.311 
72 14 0.518 0.037 0.082 0.114 0.330 1.296 
74 14 0.129 0.009 0.148 0.181 0.454 3.244 
75 13 0.450 0.035 0.093 0.122 0.333 1.480 
76 14 0.551 0.039 0.080 0.111 0.326 1.210 
78 13 0.520 0.040 0.087 0.114 0.309 1.293 
79 22 0.392 0.018 0.106 0.139 0.419 1.926 
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Table C-33. Complete Char Nitrogen Final Training Results, CONTINUED 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
21 17 0.401 0.024 0.100 0.128 0.338 1.615 
2 9 0.368 0.041 0.098 0.131 0.334 1.701 
3 17 0.234 0.014 0.111 0.144 0.402 2.063 

 

C.2.3.10 Char Sulfur 

 The models that performed the best during the char sulfur cross-validation and final 

training were 6 (best 𝑅𝑅2/𝑁𝑁𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒) and 21 (best 𝑅𝑅2). The statistical values from cross-validation 

and final training are included in Table C-34. 

 

Table C-34. Best Char Sulfur Final Training Results 

Step Model Ncoeff R2 R2/Ncoeff L1 
Norm 

L2 
Norm 

Infinity 
Norm 

SSE 

Cross-
validation, 
best R2 

21 17 0.400 0.024 0.229 0.290 0.535 0.677 

Final 
training, 
best R2 

21 17 0.565 0.033 0.198 0.255 0.728 5.277 

Cross-
validation, 
best 
R2/Ncoeff 

6 9 0.511 0.057 0.256 0.321 0.573 0.895 

Final 
training, 
best 
R2/Ncoeff 

6 9 0.319 0.035 0.243 0.316 1.021 8.110 

 

 None of the tested char sulfur models performed well in either final training or cross- 

validation. This is not surprising as sulfur is a relatively small composition overall, it is hard to 

measure accurately, and many researchers do not distinguish between the types of sulfur 

contributions. The best model tested was model 21 with an 𝑅𝑅2 value of 0.565 for final training 

and an average value of 0.400 in cross-validation. The parity plot comparing the model values 
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predicted by model 21 to the experimental values is found in Figure C-7. Both model 21 and 

model 6 were used to develop the final correlation in Section 6.3.12. Table C-35 contains the 

complete results for “final training” for the tested char sulfur models. Figure C-8 to Figure C-12 

show plots of these data. 

 

Table C-35. Complete Char Sulfur Final Training Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
81 13 0.051 0.004 0.334 0.396 1.172 12.670 
6 9 0.319 0.035 0.243 0.316 1.020 8.108 
8 17 0.378 0.022 0.238 0.302 0.955 7.407 
82 14 0.034 0.002 0.276 0.379 1.381 11.661 
83 15 0.051 0.003 0.335 0.397 1.170 12.768 
84 14 0.034 0.002 0.276 0.379 1.381 11.661 
85 15 0.095 0.006 0.323 0.389 1.026 12.238 
86 16 0.086 0.005 0.322 0.396 0.997 12.688 
87 14 0.034 0.002 0.276 0.379 1.381 11.662 
88 15 0.051 0.003 0.335 0.397 1.172 12.768 
89 14 0.063 0.005 0.271 0.375 1.358 11.392 
90 17 0.052 0.003 0.340 0.402 1.158 13.088 
21 17 0.565 0.033 0.198 0.255 0.728 5.277 
2 9 0.297 0.033 0.242 0.321 1.088 8.366 
3 17 0.073 0.004 0.332 0.402 1.204 13.059 

 

C.3 Model Refinement 

 This section contains the complete results of the model refinement analysis. The best 

models are detailed in Section 6.3. This section details both a cross-validation analysis as well as 

a “final training” analysis over the complete data set. The “final training” results in this case are 

the same values as the final correlations reported in Section 6.3, for the best performers. This 

section starts with the cross-validation results followed by the final training results. The final 

training results include both a tabular presentation and the same data in graphical presentation. 

The figures are to better show the trends in the data. 
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C.3.1 Model Refinement Cross-Validation 

 As with the initial cross-validation procedure described above, better average validation 

metric values (higher for 𝑅𝑅2, lower for the other validation metrics) mean that model is better at 

predicting “new” data and will be better at predicting new data after the final correlations are 

found. Table C-36 shows the cross-validation results for carbon in the tar, Table C-37 contains 

the cross-validation results for hydrogen in the tar, Table C-38 summarizes the cross-validation 

results for oxygen in the tar, Table C-39 includes the cross-validation results for nitrogen in the 

tar, and Table C-40 has the cross-validation results for sulfur in the tar. 

 

Table C-36. Tar Carbon Model Refinement Cross-Validation Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
21 17 0.869 0.051 0.045 0.059 0.131 0.031 
5 5 0.914 0.183 0.034 0.046 0.106 0.017 
149 16 0.886 0.055 0.041 0.051 0.110 0.020 
150 15 0.886 0.059 0.041 0.050 0.109 0.020 
151 14 0.883 0.063 0.041 0.052 0.116 0.021 
152 13 0.885 0.068 0.041 0.050 0.110 0.020 
153 12 0.884 0.074 0.041 0.050 0.110 0.020 
154 11 0.884 0.080 0.041 0.050 0.110 0.020 

 

Table C-37. Tar Hydrogen Model Refinement Cross-Validation Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
62 14 0.528 0.038 0.129 0.150 0.244 0.141 
7 5 0.728 0.146 0.067 0.083 0.142 0.062 
155 12 0.717 0.060 0.088 0.104 0.173 0.074 
156 11 0.489 0.044 0.121 0.146 0.265 0.145 
157 10 0.465 0.047 0.118 0.147 0.281 0.147 
158 9 0.781 0.087 0.076 0.093 0.162 0.054 
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Table C-38. Tar Oxygen Model Refinement Cross-Validation Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
97 12 0.820 0.068 0.099 0.116 0.206 0.100 
5 5 0.755 0.151 0.134 0.157 0.266 0.151 
159 11 0.839 0.076 0.096 0.113 0.201 0.090 
160 11 0.829 0.075 0.100 0.114 0.192 0.091 
161 10 0.832 0.083 0.100 0.113 0.191 0.090 
162 9 0.832 0.092 0.100 0.113 0.191 0.090 

 

Table C-39. Tar Nitrogen Model Refinement Cross-Validation Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
119 16 0.777 0.049 0.093 0.114 0.199 0.088 
7 5 0.807 0.161 0.105 0.121 0.208 0.103 
163 16 0.771 0.048 0.094 0.115 0.201 0.089 
164 15 0.763 0.051 0.092 0.114 0.203 0.089 
165 14 0.782 0.056 0.088 0.109 0.190 0.080 
166 13 0.760 0.058 0.094 0.113 0.197 0.085 
167 12 0.811 0.068 0.088 0.105 0.185 0.072 
168 11 0.812 0.074 0.084 0.104 0.186 0.070 

 

Table C-40. Tar Sulfur Model Refinement Cross-Validation Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
2 9 0.880 0.098 0.083 0.105 0.201 0.086 
4 5 0.796 0.159 0.100 0.126 0.256 0.112 
169 8 0.952 0.119 0.062 0.078 0.154 0.050 
170 7 0.942 0.135 0.074 0.095 0.184 0.068 
171 6 0.953 0.159 0.067 0.082 0.152 0.052 
172 7 0.955 0.136 0.062 0.076 0.147 0.042 

 

 Table C-41 includes the cross-validation results for carbon in the char, Table C-42 has 

the cross-validation results for hydrogen in the char, Table C-43 contains the cross-validation 

results for oxygen in the char, Table C-44 shows the results for cross-validation of nitrogen in 

the char, and Table C-45 detail the cross-validation results for sulfur in the char. 
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Table C-41. Char Carbon Model Refinement Cross-Validation Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
8 17 0.662 0.039 0.037 0.049 0.108 0.025 
6 9 0.593 0.066 0.048 0.064 0.154 0.041 
121 16 0.663 0.041 0.037 0.049 0.108 0.025 
122 15 0.665 0.044 0.036 0.049 0.107 0.025 
123 14 0.666 0.048 0.036 0.049 0.107 0.025 
124 13 0.660 0.051 0.037 0.049 0.108 0.025 
125 12 0.655 0.055 0.037 0.049 0.110 0.025 
126 11 0.671 0.061 0.036 0.049 0.107 0.025 

 

Table C-42. Char Hydrogen Model Refinement Cross-Validation Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
31 15 0.701 0.047 0.079 0.091 0.149 0.085 
2 9 0.839 0.093 0.057 0.067 0.108 0.046 
127 11 0.831 0.076 0.055 0.067 0.134 0.046 
128 9 0.797 0.089 0.072 0.082 0.153 0.066 
129 10 0.825 0.083 0.067 0.077 0.134 0.057 
130 8 0.806 0.101 0.073 0.080 0.144 0.064 
131 9 0.847 0.094 0.059 0.068 0.126 0.047 

 

Table C-43. Char Oxygen Model Refinement Cross-Validation Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
120 15 0.601 0.040 0.132 0.174 0.351 0.252 
6 9 0.429 0.048 0.174 0.214 0.382 0.379 
132 14 0.634 0.045 0.144 0.164 0.299 0.219 
133 13 0.618 0.048 0.147 0.166 0.297 0.222 
134 12 0.628 0.052 0.138 0.174 0.325 0.251 
135 11 0.628 0.057 0.138 0.174 0.325 0.251 
136 10 0.632 0.063 0.150 0.165 0.269 0.221 

 

Table C-44. Char Nitrogen Model Refinement Cross-Validation Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
62 14 0.600 0.043 0.077 0.097 0.185 0.097 
137 13 0.600 0.046 0.077 0.097 0.185 0.097 
138 12 0.601 0.050 0.077 0.097 0.185 0.097 
139 11 0.619 0.056 0.074 0.091 0.174 0.085 
140 12 0.645 0.054 0.067 0.085 0.172 0.077 
141 11 0.648 0.059 0.067 0.085 0.172 0.076 
142 10 0.682 0.068 0.076 0.090 0.156 0.079 
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Table C-45. Char Sulfur Model Refinement Cross-Validation Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
21 17 0.381 0.022 0.295 0.388 0.759 1.361 
6 9 0.511 0.057 0.256 0.321 0.573 0.895 
143 16 0.428 0.027 0.214 0.272 0.512 0.597 
144 15 0.378 0.025 0.227 0.288 0.538 0.670 
145 14 0.421 0.030 0.229 0.288 0.535 0.677 
146 13 0.388 0.030 0.226 0.284 0.526 0.649 
147 12 0.425 0.035 0.224 0.279 0.512 0.642 
148 11 0.417 0.038 0.261 0.322 0.581 0.903 

 

C.3.2 Model Refinement Final Training 

 This section details the results of the “final training” of the models developed in model 

refinement. The best of these models are presented in Section 6.3. Table C-46 shows the results 

of the final training step of carbon in the tar after model refinement. Table C-47 contains the 

final training results of hydrogen in the tar after model refinement. Table C-48 includes final 

training results of oxygen in the tar after model refinement. Table C-49 summarizes final training 

validation metrics for nitrogen in the tar after model refinement. Table C-50 has the final training 

results for sulfur in the tar after model refinement. Figure C-13 to Figure C-17 include the same 

data as these tables to better show the trends observed in the model refinement analysis. 

 Table C-51 shows the results of the final training step of carbon in the char after model 

refinement. Table C-52 contains the final training results of hydrogen in the char after model 

refinement. Table C-53 includes final training results of oxygen in the char after model 

refinement. Table C-54 summarizes final training validation metrics for nitrogen in the char after 

model refinement. Table C-55 has the final training results for sulfur in the char after model 

refinement. Figure C-18 to Figure C-22 include the same data as these tables to better show the 

trends observed in the model refinement analysis. 
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Table C-46. Tar Carbon Model Refinement Final Training Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
21 17 0.824 0.048 0.021 0.031 0.108 0.070 
5 5 0.743 0.149 0.027 0.037 0.117 0.103 
149 16 0.822 0.051 0.022 0.031 0.115 0.071 
150 15 0.823 0.055 0.022 0.031 0.113 0.071 
151 14 0.822 0.059 0.022 0.031 0.114 0.071 
152 13 0.823 0.063 0.022 0.031 0.115 0.071 
153 12 0.824 0.069 0.022 0.031 0.114 0.071 
154 11 0.825 0.075 0.022 0.031 0.115 0.070 

 

Table C-47. Tar Hydrogen Model Refinement Final Training Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
62 14 0.697 0.050 0.083 0.107 0.381 0.742 
7 5 0.607 0.121 0.087 0.119 0.434 1.064 
155 12 0.796 0.066 0.067 0.088 0.295 0.499 
156 11 0.799 0.073 0.066 0.087 0.299 0.491 
157 10 0.800 0.080 0.067 0.087 0.305 0.490 
158 9 0.786 0.087 0.069 0.090 0.312 0.524 

 

Table C-48. Tar Oxygen Model Refinement Final Training Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
97 12 0.842 0.070 0.084 0.098 0.224 0.324 
5 5 0.733 0.147 0.103 0.127 0.257 0.546 
159 11 0.843 0.077 0.082 0.097 0.229 0.322 
160 11 0.842 0.077 0.083 0.098 0.227 0.324 
161 10 0.842 0.084 0.082 0.097 0.235 0.323 
162 9 0.841 0.093 0.082 0.098 0.240 0.325 

 

Table C-49. Tar Nitrogen Model Refinement Final Training Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
119 16 0.717 0.045 0.114 0.147 0.409 1.397 
7 5 0.452 0.090 0.161 0.204 0.533 2.706 
163 16 0.738 0.046 0.108 0.141 0.444 1.294 
164 15 0.746 0.050 0.100 0.139 0.470 1.255 
165 14 0.729 0.052 0.109 0.143 0.411 1.337 
166 13 0.747 0.057 0.105 0.139 0.388 1.250 
167 12 0.746 0.062 0.104 0.139 0.364 1.257 
168 11 0.747 0.068 0.105 0.139 0.436 1.252 
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Table C-50. Tar Sulfur Model Refinement Final Training Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
2 9 0.765 0.085 0.121 0.151 0.358 0.779 
4 5 0.626 0.125 0.145 0.191 0.595 1.239 
169 8 0.764 0.095 0.122 0.152 0.336 0.782 
170 7 0.750 0.107 0.125 0.156 0.342 0.827 
171 6 0.760 0.127 0.123 0.153 0.335 0.793 
172 7 0.763 0.109 0.122 0.152 0.337 0.785 

 

 

 

 

 
Figure C-13. L1 norm for each model of each element in the tar,  
post model refinement. 
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Figure C-14. L2 norm for each model of each element in the tar,  
post model refinement. 

 

 
Figure C-15. Infinity norm for each model of each element in the tar,  
post model refinement. 
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Figure C-16. SSE for each model of each element in the tar,  
post model refinement. 

 

 
Figure C-17. R2 for each model of each element in the tar,  
post model refinement. 
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Table C-51. Char Carbon Model Refinement Final Training Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
8 17 0.541 0.032 0.034 0.046 0.189 0.208 
6 9 0.505 0.056 0.034 0.048 0.192 0.225 
121 16 0.551 0.034 0.033 0.045 0.188 0.204 
122 15 0.541 0.036 0.034 0.046 0.193 0.209 
123 14 0.543 0.039 0.034 0.046 0.192 0.207 
124 13 0.544 0.042 0.034 0.046 0.182 0.207 
125 12 0.541 0.045 0.034 0.046 0.192 0.208 
126 11 0.548 0.050 0.033 0.046 0.190 0.205 

 

Table C-52. Char Hydrogen Model Refinement Final Training Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
31 15 0.753 0.050 0.067 0.080 0.184 0.629 
2 9 0.743 0.083 0.065 0.081 0.281 0.653 
127 11 0.800 0.073 0.058 0.072 0.221 0.509 
128 9 0.758 0.084 0.068 0.079 0.169 0.617 
129 10 0.787 0.079 0.059 0.074 0.237 0.542 
130 8 0.757 0.095 0.068 0.079 0.170 0.618 
131 9 0.773 0.086 0.065 0.076 0.195 0.576 

 

Table C-53. Char Oxygen Model Refinement Final Training Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
120 15 0.438 0.029 0.159 0.204 0.641 3.378 
6 9 0.329 0.037 0.173 0.223 0.565 4.034 
132 14 0.435 0.031 0.159 0.205 0.648 3.402 
133 13 0.437 0.034 0.160 0.204 0.637 3.387 
134 12 0.447 0.037 0.160 0.203 0.565 3.327 
135 11 0.445 0.040 0.160 0.203 0.564 3.339 
136 10 0.411 0.041 0.163 0.209 0.717 3.544 

 

Table C-54. Char Nitrogen Model Refinement Final Training Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
62 14 0.597 0.043 0.077 0.105 0.312 1.084 
137 13 0.595 0.046 0.078 0.105 0.303 1.089 
138 12 0.587 0.049 0.077 0.106 0.322 1.112 
139 11 0.588 0.053 0.079 0.106 0.327 1.110 
140 12 0.595 0.050 0.078 0.105 0.303 1.090 
141 11 0.592 0.054 0.077 0.105 0.319 1.098 
142 10 0.585 0.059 0.077 0.106 0.324 1.117 
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Table C-55. Char Sulfur Model Refinement Final Training Results 

Model Ncoeff R2 R2/Ncoeff L1 Norm L2 Norm Infinity Norm SSE 
21 17 0.565 0.033 0.198 0.255 0.728 5.277 
6 9 0.319 0.035 0.243 0.316 1.021 8.110 
143 16 0.605 0.038 0.180 0.241 0.620 4.703 
144 15 0.570 0.038 0.194 0.251 0.604 5.119 
145 14 0.560 0.040 0.188 0.254 0.666 5.237 
146 13 0.562 0.043 0.200 0.254 0.624 5.229 
147 12 0.570 0.048 0.190 0.251 0.634 5.121 
148 11 0.605 0.055 0.182 0.241 0.601 4.702 

 

 

 

 

 
Figure C-18. L1 norm for each model of each element in the char,  
post model refinement. 
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Figure C-19. L2 norm for each model of each element in the char,  
post model refinement. 

 

 
Figure C-20. Infinity norm for each model of each element in the char,  
post model refinement. 
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Figure C-21. SSE for each model of each element in the char,  
post model refinement. 

 

 
Figure C-22. R2 for each model of each element in the char,  
post model refinement. 
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APPENDIX D. ADDITIONAL HEATING VALUE ANALYSIS 

 This appendix chapter details additional analysis for the heating value correlation 

comparison. Most of this appendix chapter comes directly from the supplemental material 

section of Richards et al. (2021). The complete analysis generated too much data to include in 

Chapter 7. The experimental data used in this analysis is found in Table B-4. This appendix 

chapter includes the following information: 

- Description of additional statistical measures of fit 

- All model forms (including “new” model forms explored and all original coefficients of 

the literature models) 

- The complete results 

D.1 Additional Statistical Measures of Fit 

 Chapter 7 details the primary comparison of literature heating value correlations using 

primarily the sum of squared errors (SSE), the mean squared error (MSE) and the Akaike 

Information Criterion (AIC), however, several additional measures of fit were used in the 

complete analysis to get a larger picture of the different facets of error when comparing all the 

correlations to the heating value data set. These statistical measures include:  (1) The 𝑅𝑅2 value 

(Equation 2-7 (2) the maximum relative error (maximum value from Equation 2-13), which helps 

to show the maximum “spread” of the model fit, (3) the average relative error (average of 



 

335 

Equation 2-13), which gives an indication of on average how closely the experimental and 

predicted data points are to each other, (4) the minimum relative error (minimum value from 

Equation 2-13), (5) the L1 norm (Equation 2-14), which gives a measure of the average absolute 

error, (6) the L2 norm (Equation 2-15), which gives the root-mean-squared error (RMSE), and 

(7) the infinity norm (Equation 2-16), which shows the maximum absolute error between the 

experimental and predicted heating values. Minimum relative error is included in this analysis, 

but the value is not as useful as the other measures. A minimum relative error gives an indication 

of the accuracy of the most accurate prediction. The 𝑅𝑅2 value was not as helpful in this analysis, 

which is why it was not presented in Chapter 7. Many researchers use 𝑅𝑅2 values to show the 

goodness-of-fit of a model, however, in many situations, 𝑅𝑅2 can give a false sense of security, 

especially when the slopes of the models are high. In addition, 𝑅𝑅2 is highly dependent on the 

number of points used in the comparison, so a high 𝑅𝑅2 value does not automatically indicate a 

good model fit and a low 𝑅𝑅2 value does not automatically indicate a bad model fit. An example 

to illustrate why the 𝑅𝑅2 value was not considered as a main metric of goodness of fit is detailed 

in Table D-1. The values for each statistic are the “best” of all tested literature models (which are 

discussed at greater length in Chapter 7). Included with each of these “best” models is the AICc 

value (which is also discussed at greater length in Chapter 7). The AICc value gives an indication 

of how likely each model fit is to be the correct fit, with the lowest number being the most likely 

to be correct (including negative values). 

 Using the information in Table D-1, the “best” models indicated by the 𝑅𝑅2 and minimum 

relative error statistics can be immediately rejected, since their AICc values are much higher than 

any of the other “best” models. This is the main reason 𝑅𝑅2 in particular was dismissed as a 

reliable measure of goodness of fit. There is potential that an adjusted 𝑅𝑅2 value could be more  
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Table D-1. Usefulness of Statistical Measures of Fit,  
Using the Char-Only Data Set 

Statistic Value Model (Optimizer) AICc 

R2 0.915 Mott-Spooner 
(fmincon) 

364.65 

SSE 17.92 Mott-Spooner 
(fminunc) 

-31.80 

MSE 0.358 Mott-Spooner 
(fminunc) 

-31.80 

Max RE 0.055 Seylor -35.04 
Avg RE 0.013 Mott-Spooner 

(fminunc) 
-31.80 

Min RE 1.55e-5 Original Dulong 31.42 
L1 Norm 0.417 Mott-Spooner 

(fminunc) 
-31.80 

L2 Norm 0.599 Mott-Spooner 
(fminunc) 

-31.80 

Infinity Norm 1.954 Seylor -35.04 
 

helpful since it has a correction both for the number of fitted model coefficients as well as the 

number of data points in the data base used to fit each model, however, an adjusted 𝑅𝑅2 value was 

not used in this analysis. The AICc value contains an equivalent adjustment as part of its 

calculation, and it also gives an additional estimate of the likelihood of each model to be the 

correct model. 

D.2 Model Forms 

 This analysis used the 10 model forms discussed in Section 2.3.3 and Chapter 7 (with 13 

unique sets of suggested model coefficients cited in 13 original articles). These literature models 

are listed in Table D-2, which includes the original or suggested model coefficients. The sources 

in which these models are presented are detailed in Table 2-3 and are not repeated here. In 

addition to the literature models, this analysis also tested a set of “new” model forms to see if a 

better fit could be obtained. The new model forms are detailed in Table D-3, along with some 
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preliminary coefficients found from fitting an earlier (and much smaller) coal, char, and tar data 

set. The optimization used these “original” values (for both the literature and new models) as an 

initial guess value for the optimizations. 

 

Table D-2. Literature Heating Value Model Forms 

Number Model Units Model Form 
DM-1a Dulong kJ/kg Δ𝐻𝐻𝑐𝑐 = 338.3𝐶𝐶 + 1443 �𝐻𝐻 −

𝑂𝑂
8�

+ 94.2𝑆𝑆 

DM-2 Strache-
Lantb 

kJ/kg Δ𝐻𝐻𝑐𝑐 = 340.6𝐶𝐶 + 1432𝐻𝐻 − 153.2𝑂𝑂 + 104.7𝑆𝑆 

DM-3 Steuer kJ/kg Δ𝐻𝐻𝑐𝑐 = 339.1 �𝐶𝐶 −
3
8
𝑂𝑂� + 238.6 �

3
8
𝑂𝑂�

+ 1444 �𝐻𝐻 −
1

16
𝑂𝑂� + 104.7𝑆𝑆 

DM-4 D’Huartb kJ/kg Δ𝐻𝐻𝑐𝑐 = 339.1𝐶𝐶 + 1433.7𝐻𝐻 + 93.1𝑆𝑆 − 127.3𝑂𝑂 
DM-5 Seylor kJ/kg Δ𝐻𝐻𝑐𝑐 = 519𝐶𝐶 + 1625𝐻𝐻 + 𝑂𝑂2 − 17870 
DM-6 Gumzc kJ/kg Δ𝐻𝐻𝑐𝑐 = 340.3𝐶𝐶 + 1243.2𝐻𝐻 + 62.8𝑁𝑁 + 190.9𝑆𝑆 − 98.4𝑂𝑂 
DM-7 Boieb kJ/kg Δ𝐻𝐻𝑐𝑐 = 351.7𝐶𝐶 + 1162.6𝐻𝐻 + 104.7𝑆𝑆 − 111𝑂𝑂 
DM-8 Dulong-

Berthelot 
kJ/kg 

Δ𝐻𝐻𝑐𝑐 = 341.4𝐶𝐶 + 1444.5𝐻𝐻 −
1000(𝑁𝑁 + 𝑂𝑂 − 1)

8
+ 93𝑆𝑆 

DM-9 IGT kJ/kg Δ𝐻𝐻𝑐𝑐 = 341𝐶𝐶 + 1323𝐻𝐻 + 68.5 − 119.4(𝑂𝑂 + 𝑁𝑁) 
DM-10 Channiwala-

Parikhc 
kJ/kg Δ𝐻𝐻𝑐𝑐 = 349.1𝐶𝐶 + 1178.3𝐻𝐻 + 100.5𝑆𝑆 − 103.4𝑂𝑂 − 15𝑁𝑁 

DM-11 VDI kJ/kg Δ𝐻𝐻𝑐𝑐 = 339𝐶𝐶 + 1214 �𝐻𝐻 −
𝑂𝑂
8�

+ 104𝑆𝑆 + 226𝐻𝐻 

DM-12 Mott-
Spooner 

kJ/kg Δ𝐻𝐻𝑐𝑐 = 336.5𝐶𝐶 + 1420𝐻𝐻 − 145.4𝑂𝑂 + 94.3𝑆𝑆,
𝑓𝑓𝑜𝑜𝑒𝑒 𝑐𝑐𝑜𝑜𝑎𝑎𝑝𝑝𝑠𝑠 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑂𝑂 < 15% 

Δ𝐻𝐻𝑐𝑐 = 336.5𝐶𝐶 + 1420𝐻𝐻 − 153.4𝑂𝑂 + 0.71𝑂𝑂2 + 93.3𝑆𝑆,
𝑓𝑓𝑜𝑜𝑒𝑒 𝑐𝑐𝑜𝑜𝑎𝑎𝑝𝑝𝑠𝑠 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑂𝑂 > 15% 

DM-13 Given, et al kJ/kg Δ𝐻𝐻𝑐𝑐 = 328.4𝐶𝐶 + 1422.0𝐻𝐻 − 138.0𝑂𝑂 + 92.7𝑆𝑆 + 636 
a The model numbers here are not the same as in the main paper. There are additional models 
shown here to give the “original” coefficients for each unique model found in literature. 
b The Strache & Lant, D’Huart, and Boie models were combined in the main article since they 
have the same mathematical form but different fitted coefficients 
c The Gumz and Channiwala & Parikh models were similarly combined in the main article 
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Table D-3. New Heating Value Model Forms 

Number Model Units Model Form 
DM-14 Linear Btu/lb Δ𝐻𝐻𝑐𝑐 = 152.5𝐶𝐶 + 206.5𝐻𝐻 − 16.52𝑂𝑂 + 625.0𝑁𝑁 − 25.69𝑆𝑆

+ 0.307 
DM-15 Second-

Order 
Btu/lb Δ𝐻𝐻𝑐𝑐 = 522.0𝐶𝐶 − 3.739𝐶𝐶2 + 1.202𝐻𝐻 + 1.635𝐻𝐻2

− 320.6𝑂𝑂 + 2.584𝑂𝑂2 + 0.055𝑁𝑁 + 5.843𝑁𝑁2

− 229.0𝑆𝑆 − 0.262𝑆𝑆2 + 40.37 
DM-16 Polynomial Btu/lb Δ𝐻𝐻𝑐𝑐 = 154.5𝐶𝐶 + 41.68𝐻𝐻2 + 0.0019𝑂𝑂3 + 14.16𝑁𝑁4

− 0.262𝑆𝑆5 + 2.790 
DM-17 Power Btu/lb Δ𝐻𝐻𝑐𝑐 = 50.42𝐶𝐶1.261 + 36.88𝐻𝐻1.928 + 61.21𝑂𝑂0.715

+ 2.715𝑁𝑁6.847 + 1.767𝑆𝑆2.812 + 1.222 
DM-18 Exponential Btu/lb Δ𝐻𝐻𝑐𝑐 = 2658 exp(0.017𝐶𝐶) + 2189 exp(0.094𝐻𝐻)

+ 134.0 exp(−32.53𝑂𝑂)
+ 21.23 exp(−57.22𝑁𝑁)
+ 124.1 exp(−42.41𝑆𝑆) + 9.719 

DM-19 Log10 Btu/lb Δ𝐻𝐻𝑐𝑐 = 6626 log10 𝐶𝐶 + 1194 log10 𝐻𝐻 − 2720 log10 𝑂𝑂
+ 954.3 log10 𝑁𝑁 − 858.7 log10 𝑆𝑆 + 3088 

DM-20 Natural Log Btu/lb Δ𝐻𝐻𝑐𝑐 = 3013 ln𝐶𝐶 + 2059 ln𝑁𝑁 
DM-21 2nd-Order 

Root 
Btu/lb Δ𝐻𝐻𝑐𝑐 = −632.4𝐶𝐶 − 6.184𝐶𝐶

1
2 − 656.7𝐻𝐻 + 119.5𝐻𝐻

1
2

− 807.7𝑂𝑂 + 13.63𝑂𝑂
1
2 − 54.58𝑁𝑁 − 6.762𝑁𝑁

1
2

− 826.2𝑆𝑆 + 10.50𝑆𝑆
1
2 + 78747 

DM-22 Inverse Btu/lb 
Δ𝐻𝐻𝑐𝑐 = −

815.5
𝐶𝐶

−
4886
𝐻𝐻

+
9480
𝑂𝑂

−
210.4
𝑁𝑁

+
71.89
𝑆𝑆

+ 13590 
DM-23 Complex #1 Btu/lb Δ𝐻𝐻𝑐𝑐 = 33.82𝐶𝐶 + 1.479𝐶𝐶2 + 216.1𝐻𝐻 + 959.3 ln𝑂𝑂 −

1502
𝑁𝑁

− 557.8 exp(−1.247𝑆𝑆) − 190.4 
DM-24 Complex #2 Btu/lb Δ𝐻𝐻𝑐𝑐 = −181.4𝐶𝐶 + 3.123 × 108𝐶𝐶2 + 869.0𝐻𝐻 − 76.44𝐻𝐻2

+ 1389 ln𝑂𝑂 + 3226𝑁𝑁 − 897.5𝑁𝑁2

+ 251.9𝑆𝑆 − 19.72𝑆𝑆2 − 106.1 
 

 These “new” model forms were tested with the hope that they would give a much better 

fit than the literature model forms. This was not the case, since many did not offer enough 

improvement over the literature models, and some even performed worse for every data set. This 

is shown and discussed in the following section. 
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D.3 Complete Analysis Results 

 This section details the full results of the heating value analysis, including the statistical 

measures of fit in Chapter 7 as well as the additional statistical measures of fit described above. 

The full results of each set of analyses are detailed below. This section details the complete 

analysis, with all statistical measures of fit and the comparisons using the “new” model forms. 

The results are presented by the best of each data set, followed by a summary of the analysis 

using no cross-comparison. In the following sections, the choice of optimizer is listed as either 

fminunc or fmincon, depending on which was used to find the re-fit coefficients. If “original 

coefficients” is listed as the optimizer, this refers to the original coefficients found in Table D-2 

and Table D-3, and are the suggested coefficients in the cited literature for the corresponding 

literature model or the original guess coefficients for the new models. 

 The following tables show the best performing models for all nine data sets in four 

categories:  i) overall best (including literature and new models with original and re-fit 

coefficients), ii) best literature models using both re-fit and original coefficients, iii) best new 

models using both re-fit and original coefficients, and iv) best literature models using original 

coefficients only. These tables show only the best of the statistical measures of fit for all the 

studied cases. The full results for all fits and models are shown in figures below. Note that the 

values for MSE and AICc are shown in the main article for the best literature models (including 

both re-fit and original coefficients). The following sections are in the same order as in Section 

7.3. 

D.3.1 Parent Coal Only 

 Table D-4 shows the best fit statistics using the coal-only data set, including the results 

from Section 7.3.1. 
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Table D-4. Complete Best Model Calculations  
Using the Coal-Only Data Set 

 Statistic Value Model Optimizer AICc 

O
ve

ra
ll 

B
es
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er
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rm
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ce

 R2 0.656 Second-Order fmincon 590.5 
SSE (MJ/kg)2 1752 Second-Order fmincon 590.5 
MSE (MJ/kg)2 4.964 Second-Order fmincon 590.5 
Max RE (%) 43.32 Natural Log Original coeff. 868.2 
Avg RE (%) 5.37 Seylor Original coeff. 648.0 
Min RE (%) 3.78×10-4 Dulong Original coeff. 683.5 
L1 (MJ/kg) 1.538 Seylor Original coeff. 648.0 
L2 (MJ/kg) 2.228 Second-Order fmincon 590.5 
Infinity (MJ/kg) 9.645 Complex #2 fminunc 628.3 
AICc 590.5 Second-Order fmincon 590.5 

B
es
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ew
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R2 0.656 Second-Order fmincon 590.5 
SSE (MJ/kg)2 1752 Second-Order fmincon 590.5 
MSE (MJ/kg)2 4.964 Second-Order fmincon 590.5 
Max RE (%) 43.32 Natural Log Original coeff. 868.2 
Avg RE (%) 5.43 Second-Order fmincon 590.5 
Min RE (%) 4.07×10-4 Polynomial fminunc 597.7 
L1 (MJ/kg) 1.598 Second-Order fmincon 590.5 
L2 (MJ/kg) 2.228 Second-Order fmincon 590.5 
Infinity (MJ/kg) 9.645 Complex #2 fminunc 628.3 
AICc 590.5 Second-Order fmincon 590.5 

B
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ra
tu
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od
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R2 0.644 Mott-Spooner fminunc 594.1 
SSE (MJ/kg)2 1813 Mott-Spooner fmincon 594.1 
MSE (MJ/kg)2 5.137 Mott-Spooner fmincon 594.1 
Max RE (%) 49.02 Seylor fmincon 593.7 
Avg RE (%) 5.37 Seylor Original coeff. 648.0 
Min RE (%) 3.78×10-4 Dulong Original coeff. 583.5 
L1 (MJ/kg) 1.538 Seylor Original coeff. 648.0 
L2 (MJ/kg) 2.266 Mott-Spooner fmincon 594.1 
Infinity (MJ/kg) 9.908 Seylor fmincon 593.7 
AICc 591.6 Strache-Lant fmincon 591.6 
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s R2 0.639 D’Huart Original coeff. 718.1 

SSE (MJ/kg)2 2150 Seylor Original coeff. 648.0 
MSE (MJ/kg)2 6.091 Seylor Original coeff. 648.0 
Max RE (%) 50.15 Seylor Original coeff. 648.0 
Avg RE (%) 5.37 Seylor Original coeff. 648.0 
Min RE (%) 3.78×10-4 Dulong Original coeff. 683.5 
L1 (MJ/kg) 1.538 Seylor Original coeff. 648.0 
L2 (MJ/kg) 2.468 Seylor Original coeff. 648.0 
Infinity (MJ/kg) 10.14 Seylor Original coeff. 648.0 
AICc 648.0 Seylor Original coeff. 648.0 
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 The new models tended to perform slightly better than the re-fit literature models, but not 

enough improvement to make a difference statistically, with the potential exception of the 

second-order model (DM-15). Statistically speaking, the second-order model is very close to 

both the Mott-Spooner and Boie models (the best models suggested in Section 7.3.1). The 

conclusions and recommendations in Section 7.3.1 stand, however, using one of the best new 

models (the second-order model does the best for most statistical measures of fit) will likely give 

a slightly more accurate calculation for coal heating values. Figure D-1 to Figure D-10 show 

each of these statistical measures (in the same order as Table D-4) in the coal-only data set for 

the models using original coefficients and coefficients re-fit using fmincon and fminunc. In all 

these figures, a purple square indicates a better fit, according to each statistical measure, whereas 

a red square indicates a poor fit. 

 

 
Figure D-1. R2 values in the coal-only comparison for each model form. 
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Figure D-2. SSE values in the coal-only comparison for each model form. 

 

 
Figure D-3. MSE values in the coal-only comparison for each model form. 
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Figure D-4. Maximum relative error values in the coal-only  
comparison for each model form. 

 
Figure D-5. Average relative error values in the coal-only  
comparison for each model form. 
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Figure D-6. Minimum relative error values in the coal-only  
comparison for each model form. 

 

 
Figure D-7. L1 norm values in the coal-only comparison for each model form. 
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Figure D-8. L2 norm values in the coal-only comparison for each model form. 

 

 
Figure D-9. Infinity norm values in the coal-only comparison for each model form. 
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Figure D-10. AICc values in the coal-only comparison for each model form. 

 

D.3.2 Coal Char Only 

 Table D-5 shows the complete results for the char-only data set analysis. There is some 

improvement in the “new” models compared to the literature models, however, it was pointed 

out in Section 7.3.1 that a visual inspection proves that the best fits of the literature models are 

very good, almost to the point of complete parity. This means that the improvement shown with 

the “new” models may make the heating value calculations for char more accurate, but it is hard 

to improve on excellent fits in the first place. Figure D-11 to Figure D-20 show plots of all 

statistical results for the char-only comparison. 
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Table D-5. Complete Best Model Calculations Using the Char-Only Data Set 

 Statistic Value Model Optimizer AICc 
O

ve
ra

ll 
B

es
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 R2 0.940 Second-Order fmincon -36.09 

SSE (MJ/kg)2 12.70 Second-Order fmincon -36.09 
MSE (MJ/kg)2 0.254 Second-Order fmincon -36.09 
Max RE (%) 4.76 Second-Order fminunc -28.59 
Avg RE (%) 1.07 Second-Order fmincon -36.09 
Min RE (%) 8.56×10-5 Complex #1 fminunc -23.70 
L1 (MJ/kg) 0.337 Second-Order fmincon -36.09 
L2 (MJ/kg) 0.504 Second-Order fmincon -36.09 
Infinity (MJ/kg) 1.573 2nd-Order Root fmincon -28.51 
AICc -45.98 Complex #1 fmincon -45.98 

B
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R2 0.940 Second-Order fmincon -36.09 
SSE (MJ/kg)2 12.70 Second-Order fmincon -36.09 
MSE (MJ/kg)2 0.254 Second-Order fmincon -36.09 
Max RE (%) 4.76 Second-Order fminunc -28.59 
Avg RE (%) 1.07 Second-Order fmincon -36.09 
Min RE (%) 8.56×10-5 Complex #1 fminunc -23.70 
L1 (MJ/kg) 0.337 Second-Order fmincon -36.09 
L2 (MJ/kg) 0.504 Second-Order fmincon -36.09 
Infinity (MJ/kg) 1.573 2nd-Order Root fmincon -28.51 
AICc -45.98 Complex #1 fmincon -45.98 
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R2 0.915 Mott-Spooner fminunc -31.80 
SSE (MJ/kg)2 17.92 Mott-Spooner fmincon -31.80 
MSE (MJ/kg)2 0.358 Mott-Spooner fmincon -31.80 
Max RE (%) 5.52 Seylor fminunc -35.04 
Avg RE (%) 1.33 Mott-Spooner fminunc -31.80 
Min RE (%) 1.55×10-3 Dulong Original coeff. 31.42 
L1 (MJ/kg) 0.417 Mott-Spooner fminunc -31.80 
L2 (MJ/kg) 0.599 Mott-Spooner fmincon -31.80 
Infinity (MJ/kg) 1.954 Seylor fminunc -35.04 
AICc -35.42 Seylor fmincon -35.42 
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s R2 0.892 D’Huart Original coeff. 29.95 

SSE (MJ/kg)2 54.10 Seylor Original coeff. 15.30 
MSE (MJ/kg)2 1.082 Seylor Original coeff. 15.30 
Max RE (%) 8.13 IGT Original coeff. 16.48 
Avg RE (%) 2.12 Seylor Original coeff. 15.30 
Min RE (%) 1.55×10-3 Dulong Original coeff. 31.42 
L1 (MJ/kg) 0.625 Seylor Original coeff. 15.30 
L2 (MJ/kg) 1.040 Seylor Original coeff. 15.30 
Infinity (MJ/kg) 2.415 IGT Original coeff. 16.48 
AICc 15.30 Seylor Original coeff. 15.30 
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Figure D-11. R2 values in the char-only comparison for each model form. 

 

 
Figure D-12. SSE values in the char-only comparison for each model form. 
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Figure D-13. MSE values in the char-only comparison for each model form. 

 

 
Figure D-14. Maximum relative error values in the char-only  
comparison for each model form. 
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Figure D-15. Average relative error values in the char-only  
comparison for each model form. 

 
Figure D-16. Minimum relative error values in the char-only  
comparison for each model form. 
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Figure D-17. L1 norm values in the char-only comparison for each model form. 

 

 
Figure D-18. L2 norm values in the char-only comparison for each model form. 



 

352 

 
Figure D-19. Infinity norm values in the char-only  
comparison for each model form. 

 

 
Figure D-20. AICc values in the char-only comparison for each model form. 
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D.3.3 Parent Coal and Coal Char Combined 

 Table D-6 shows the best measures of fit using the combined coal-char data set. Like the 

coal- and char-only data sets, the coal-char data set did show some slight improvement using the 

“new” models, but not enough improvement to justify using so many additional fitted 

coefficients. Figure D-21 to Figure D-30 show plots of the complete statistical results for the 

combined coal-char data set analysis. 

 
Table D-6. Complete Best Model Calculations Using the Coal-Char Data Set 

 Statistic Value Model Optimizer AICc 

O
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ll 
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 R2 0.676 Second-Order fmincon 599.8 
SSE (MJ/kg)2 1679 Second-Order fmincon 599.8 
MSE (MJ/kg)2 4.165 Second-Order fmincon 599.8 
Max RE (%) 43.32 Natural Log Original coeff. 930.9 
Avg RE (%) 4.75 Second-Order fmincon 599.8 
Min RE (%) 3.78×10-4 Dulong Original coeff. 710.5 
L1 (MJ/kg) 1.376 Seylor Original coeff. 664.8 
L2 (MJ/kg) 2.041 Second-Order fmincon 599.8 
Infinity (MJ/kg) 9.391 Complex #2 fminunc 626.7 
AICc 599.8 Second-Order fmincon 599.8 
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R2 0.676 Second-Order fmincon 599.8 
SSE (MJ/kg)2 1679 Second-Order fmincon 599.8 
MSE (MJ/kg)2 4.165 Second-Order fmincon 599.8 
Max RE (%) 43.32 Natural Log Original coeff. 930.9 
Avg RE (%) 4.75 Second-Order fmincon 599.8 
Min RE (%) 4.60×10-4 Exponential fminunc 643.4 
L1 (MJ/kg) 1.407 Second-Order fmincon 599.8 
L2 (MJ/kg) 2.041 Second-Order fmincon 599.8 
Infinity (MJ/kg) 9.391 Complex #2 fminunc 626.7 
AICc 599.8 Second-Order fmincon 599.8 
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re
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R2 0.664 Mott-Spooner fmincon 606.1 
SSE (MJ/kg)2 1741 Mott-Spooner fmincon 606.1 
MSE (MJ/kg)2 4.321 Mott-Spooner fmincon 606.1 
Max RE (%) 49.37 Channiwala-Parikh fminunc 602.2 
Avg RE (%) 4.76 Seylor Original coeff. 664.8 
Min RE (%) 3.78×10-4 Dulong Original coeff. 710.5 
L1 (MJ/kg) 1.376 Seylor Original coeff. 664.8 
L2 (MJ/kg) 2.079 Mott-Spooner fmincon 606.1 
Infinity (MJ/kg) 9.979 Channiwala-Parikh fminunc 602.2 
AICc 600.3 Strache-Lant fmincon 600.3 
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Table D-6. Complete Best Model Calculations Using the Coal-Char  
Data Set, CONTINUED 

 Statistic Value Model Optimizer AICc 

B
es

t L
ite
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tu

re
 M
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s 
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ff
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nt
s R2 0.660 Strache-Lant Original coeff. 745.9 

SSE (MJ/kg)2 2046 Seylor Original coeff. 664.8 
MSE (MJ/kg)2 5.076 Seylor Original coeff. 664.8 
Max RE (%) 50.15 Seylor Original coeff. 664.8 
Avg RE (%) 4.76 Seylor Original coeff. 664.8 
Min RE (%) 3.78×10-4 Dulong Original coeff. 710.5 
L1 (MJ/kg) 1.376 Seylor Original coeff. 664.8 
L2 (MJ/kg) 2.253 Seylor Original coeff. 664.8 
Infinity (MJ/kg) 10.14 Seylor Original coeff. 664.8 
AICc 664.8 Seylor Original coeff. 664.8 

 

 

 

 
Figure D-21. R2 values in the combined coal-char comparison for each model form. 
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Figure D-22. SSE values in the combined coal-char comparison for each model form. 

 

 
Figure D-23. MSE values in the combined coal-char comparison for each model form. 
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Figure D-24. Maximum relative error values in the combined coal-char  
comparison for each model form. 

 
Figure D-25. Average relative error values in the combined coal-char  
comparison for each model form. 
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Figure D-26. Minimum relative error values in the combined coal-char  
comparison for each model form. 

 
Figure D-27. L1 norm values in the combined coal-char  
comparison for each model form. 
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Figure D-28. L2 norm values in the combined coal-char  
comparison for each model form. 

 
Figure D-29. Infinity norm values in the combined coal-char  
comparison for each model form. 
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Figure D-30. AICc values in the combined coal-char comparison for each model form. 

 

D.3.4 Coal Tar Only 

 Table D-7 shows the complete best results using the tar-only data set. This data set 

overall did not perform as well as the other coal-related data sets, and this was discussed at 

length in Section 7.3.1. The results of the tar data set showed the most difference between the 

literature model results and the new model results, which could indicate that tar heating values 

are more accurately calculated using the new model forms. However, there is so much variability 

in the tar heating value data set that these new model forms would not be any better than the 

literature models when comparing to a larger, more accurately measured tar heating value data 

set. Figure D-31 to Figure D-40 show the complete statistical results for the tar-only comparison. 
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Table D-7. Complete Best Model Calculations Using the Tar-Only Data Set 

 Statistic Value Model Optimizer AICc 
O

ve
ra

ll 
B
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 R2 0.601 Second-Order fmincon 43.79 

SSE (MJ/kg)2 54.89 Second-Order fmincon 43.79 
MSE (MJ/kg)2 1.247 Second-Order fmincon 43.79 
Max RE (%) 11.43 Second-Order fmincon 43.794 
Avg RE (%) 1.90 Second-Order fmincon 43.79 
Min RE (%) 3.16×10-7 Mott-Spooner fmincon 54.66 
L1 (MJ/kg) 0.692 Second-Order fmincon 43.79 
L2 (MJ/kg) 1.117 Second-Order fmincon 43.79 
Infinity (MJ/kg) 3.650 Second-Order fmincon 43.79 
AICc 41.91 Strache-Lant fmincon 41.91 
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R2 0.601 Second-Order fmincon 43.79 
SSE (MJ/kg)2 54.89 Second-Order fmincon 43.79 
MSE (MJ/kg)2 1.247 Second-Order fmincon 43.79 
Max RE (%) 11.43 Second-Order fmincon 43.794 
Avg RE (%) 1.90 Second-Order fmincon 43.79 
Min RE (%) 1.26×10-3 Complex #2 Original coeff. 163.3 
L1 (MJ/kg) 0.692 Second-Order fmincon 43.79 
L2 (MJ/kg) 1.117 Second-Order fmincon 43.79 
Infinity (MJ/kg) 3.650 Second-Order fmincon 43.79 
AICc 42.42 Natural Log fmincon 42.42 
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od
el

s 

R2 0.378 Channiwala-Parikh fmincon 43.46 
SSE (MJ/kg)2 85.43 Gumz fmincon 43.46 
MSE (MJ/kg)2 1.942 Gumz fmincon 43.46 
Max RE (%) 16.67 Strache-Lant fminunc 41.91 
Avg RE (%) 2.65 Given fmincon 43.46 
Min RE (%) 3.16×10-7 Mott-Spooner fmincon 54.66 
L1 (MJ/kg) 0.954 Given fmincon 43.46 
L2 (MJ/kg) 1.393 Gumz fmincon 43.46 
Infinity (MJ/kg) 5.323 Strache-Lant fminunc 41.91 
AICc 41.91 Strache-Lant fmincon 41.91 
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s R2 0.256 Dulong-Berthelot Original coeff. 98.09 

SSE (MJ/kg)2 161.0 Channiwala-Parikh Original coeff. 71.34 
MSE (MJ/kg)2 3.658 Channiwala-Parikh Original coeff. 71.34 
Max RE (%) 24.37 Channiwala-Parikh Original coeff. 71.34 
Avg RE (%) 3.25 Channiwala-Parikh Original coeff. 71.34 
Min RE (%) 2.37×10-3 Seylor Original coeff. 83.171 
L1 (MJ/kg) 1.148 Channiwala-Parikh Original coeff. 71.34 
L2 (MJ/kg) 1.913 Channiwala-Parikh Original coeff. 71.34 
Infinity (MJ/kg) 7.780 Channiwala-Parikh Original coeff. 71.34 
AICc 69.990 Boie Original coeff. 69.99 
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Figure D-31. R2 values in the tar-only comparison for each model form. 

 

 
Figure D-32. SSE values in the tar-only comparison for each model form. 
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Figure D-33. MSE values in the tar-only comparison for each model form. 

 

 
Figure D-34. Maximum relative error values in the tar-only  
comparison for each model form. 
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Figure D-35. Average relative error values in the tar-only  
comparison for each model form. 

 
Figure D-36. Minimum relative error values in the tar-only  
comparison for each model form. 
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Figure D-37. L1 norm values in the tar-only comparison for each model form. 

 

 
Figure D-38. L2 norm values in the tar-only comparison for each model form. 
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Figure D-39. Infinity norm values in the tar-only  
comparison for each model form. 

 

 
Figure D-40. AICc values in the tar-only comparison for each model form. 
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D.3.5 Combined Coal (Parent Coal, Char, and Tar) 

 Table D-8 shows the complete best model results for the combined coal, char, and tar 

data set comparison. The coal-char-tar comparison showed similar results to the other coal-based 

fuels comparisons. Like with the others, the new models showed a very slight improvement over 

the literature models, however, the improvement was not enough to justify the additional 

coefficients in the new models. Figure D-41 to Figure D-50 show the complete statistical results 

for the combined coal data set comparison. 

 

Table D-8. Complete Best Model Calculations Using the  
Coal-Char-Tar Data Set 

 Statistic Value Model Optimizer AICc 
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 R2 0.701 Second-Order fmincon 696.9 
SSE (MJ/kg)2 2011 Second-Order fmincon 696.9 
MSE (MJ/kg)2 4.499 Second-Order fmincon 696.9 
Max RE (%) 43.32 Natural Log Original coeff. 1109 
Avg RE (%) 4.84 Seylor Original coeff. 766.6 
Min RE (%) 3.16×10-4 Complex #2 fminunc 728.8 
L1 (MJ/kg) 1.414 Seylor Original coeff. 766.6 
L2 (MJ/kg) 2.121 Second-Order fmincon 696.9 
Infinity (MJ/kg) 9.438 Complex #2 fminunc 728.8 
AICc 688.4 Boie fmincon 688.4 
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R2 0.701 Second-Order fmincon 696.9 
SSE (MJ/kg)2 2011 Second-Order fmincon 696.9 
MSE (MJ/kg)2 4.499 Second-Order fmincon 696.9 
Max RE (%) 43.32 Natural Log Original coeff. 1109 
Avg RE (%) 4.97 Second-Order fmincon 696.9 
Min RE (%) 3.16×10-4 Complex #2 fminunc 728.8 
L1 (MJ/kg) 1.486 Second-Order fmincon 696.9 
L2 (MJ/kg) 2.121 Second-Order fmincon 696.9 
Infinity (MJ/kg) 9.438 Complex #2 fminunc 728.8 
AICc 691.9 Linear fmincon 691.9 
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Table D-8. Complete Best Model Calculations Using the Coal-Char-Tar  
Data Set, CONTINUED 

 Statistic Value Model Optimizer AICc 
B

es
t L

ite
ra

tu
re

 M
od

el
s 

R2 0.699 Mott-Spooner fmincon 691.7 
SSE (MJ/kg)2 2025 Mott-Spooner fmincon 691.7 
MSE (MJ/kg)2 4.531 Mott-Spooner fmincon 691.7 
Max RE (%) 49.73 Seylor fmincon 689.3 
Avg RE (%) 4.84 Seylor Original coeff. 766.6 
Min RE (%) 3.78×10-4 Dulong Original coeff. 816.2 
L1 (MJ/kg) 1.414 Seylor Original coeff. 766.6 
L2 (MJ/kg) 2.129 Mott-Spooner fmincon 691.7 
Infinity (MJ/kg) 10.05 Seylor fmincon 689.3 
AICc 688.4 Boie fmincon 688.4 
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s R2 0.696 D’Huart Original coeff. 857.3 

SSE (MJ/kg)2 2428 Seylor Original coeff. 766.6 
MSE (MJ/kg)2 5.432 Seylor Original coeff. 766.6 
Max RE (%) 50.15 Seylor Original coeff. 766.6 
Avg RE (%) 4.84 Seylor Original coeff. 766.6 
Min RE (%) 3.78×10-4 Dulong Original coeff. 816.2 
L1 (MJ/kg) 1.414 Seylor Original coeff. 766.6 
L2 (MJ/kg) 2.331 Seylor Original coeff. 766.6 
Infinity (MJ/kg) 10.14 Seylor Original coeff. 766.6 
AICc 766.6 Seylor Original coeff. 766.6 

 

 
Figure D-41. R2 values in the combined coal-char-tar comparison for each model form. 
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Figure D-42. SSE values in the combined coal-char-tar  
comparison for each model form. 

 

 
Figure D-43. MSE values in the combined coal-char-tar  
comparison for each model form. 
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Figure D-44. Maximum relative error values in the combined coal-char-tar  
comparison for each model form. 

 
Figure D-45. Average relative error values in the combined coal-char-tar  
comparison for each model form. 
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Figure D-46. Minimum relative error values in the combined coal-char-tar  
comparison for each model form. 

 
Figure D-47. L1 norm values in the combined coal-char-tar comparison  
for each model form. 
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Figure D-48. L2 norm values in the combined coal-char-tar comparison  
for each model form. 

 
Figure D-49. Infinity norm values in the combined coal-char-tar  
comparison for each model form. 
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Figure D-50. AICc values in the combined coal-char-tar comparison  
for each model form. 

 

D.3.6 Fossil Fuels Data Set 

 Table D-9 shows the best model results using the fossil fuel data set. Like most of the 

coal-based fuels comparisons, the fossil fuels comparison showed very little improvement using 

the new models over the literature models. This is not surprising since the combined data sets of 

coal, char, and tar are the bulk of the fossil fuels data set (447 samples out of 552). With a larger 

set of non-coal fossil fuels, the comparison might diverge even more from the coal-based fuels 

comparisons. Figure D-51 to Figure D-60 show the complete statistical results for the fossil fuels 

data set comparison. 
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Table D-9. Complete Best Model Calculations Using the Fossil Fuels Data Set 

 Statistic Value Model Optimizer AICc 
O

ve
ra

ll 
B

es
t P

er
fo
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ce
 R2 0.897 Complex #2 fmincon 801.2 

SSE (MJ/kg)2 2263 Complex #2 fmincon 801.2 
MSE (MJ/kg)2 4.099 Complex #2 fmincon 801.2 
Max RE (%) 50.36 Polynomial fmincon 1075 
Avg RE (%) 4.63 2nd-Order Root fmincon 805.3 
Min RE (%) 1.91×10-4 Power fminunc 14991 
L1 (MJ/kg) 1.380 2nd-Order Root fmincon 805.3 
L2 (MJ/kg) 2.025 Complex #2 fmincon 801.2 
Infinity (MJ/kg) 10.27 Complex #2 fminunc 813.6 
AICc 799.7 Given fmincon 799.7 
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R2 0.897 Complex #2 fmincon 801.2 
SSE (MJ/kg)2 2263 Complex #2 fmincon 801.2 
MSE (MJ/kg)2 4.099 Complex #2 fmincon 801.2 
Max RE (%) 50.36 Polynomial fmincon 1075 
Avg RE (%) 4.63 2nd-Order Root fmincon 805.3 
Min RE (%) 1.91×10-4 Power fminunc 14991 
L1 (MJ/kg) 1.380 2nd-Order Root fmincon 805.3 
L2 (MJ/kg) 2.025 Complex #2 fmincon 801.2 
Infinity (MJ/kg) 10.27 Complex #2 fminunc 813.6 
AICc 801.1 Linear fmincon 801.1 
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R2 0.895 Given fmincon 799.7 
SSE (MJ/kg)2 2299 Given fmincon 799.7 
MSE (MJ/kg)2 4.165 Given fmincon 799.7 
Max RE (%) 52.72 Gumz fminunc 800.4 
Avg RE (%) 4.78 Given fminunc 799.7 
Min RE (%) 3.78×10-4 Dulong Original coeff. 1057 
L1 (MJ/kg) 1.427 Given fminunc 799.7 
L2 (MJ/kg) 2.041 Given fmincon 799.7 
Infinity (MJ/kg) 10.29 Strache-Lant fminunc 815.2 
AICc 799.7 Given fmincon 799.7 
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s R2 0.894 Dulong Original coeff. 1057 

SSE (MJ/kg)2 3096 Gumz Original coeff. 964.0 
MSE (MJ/kg)2 5.609 Gumz Original coeff. 964.0 
Max RE (%) 56.80 Strache-Lant Original coeff. 1141 
Avg RE (%) 5.24 Gumz Original coeff. 964.0 
Min RE (%) 3.78×10-4 Dulong Original coeff. 1057 
L1 (MJ/kg) 1.500 Gumz Original coeff. 964.0 
L2 (MJ/kg) 2.368 Gumz Original coeff. 964.0 
Infinity (MJ/kg) 11.48 Strache-Lant Original coeff. 1141 
AICc 964.0 Gumz Original coeff. 964.0 
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Figure D-51. R2 values in the fossil fuels comparison for each model form. 

 

 
Figure D-52. SSE values in the fossil fuels comparison for each model form. 
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Figure D-53. MSE values in the fossil fuels comparison for each model form. 

 

 
Figure D-54. Maximum relative error values in the fossil fuels  
comparison for each model form. 
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Figure D-55. Average relative error values in the fossil fuels  
comparison for each model form. 

 
Figure D-56. Minimum relative error values in the fossil fuels  
comparison for each model form. 
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Figure D-57. L1 norm values in the fossil fuels comparison for each model form. 

 

 
Figure D-58. L2 norm values in the fossil fuels comparison for each model form. 
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Figure D-59. Infinity norm values in the fossil fuels comparison  
for each model form. 

 

 
Figure D-60. AICc values in the fossil fuels comparison for each model form. 
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D.3.7 Biomass Data Set 

 Table D-10 gives the best results using the biomass data set. The biomass comparison 

found a greater difference using the new models compared to the literature models, however, just 

like the tar-only analysis, the biomass data set had a larger variability than the fossil fuels and 

other coal-based fuels. This is especially true of the three outlier samples discussed Section 7.3.3. 

A larger, more concise data set of biomass samples could bring the results of the literature and 

new models closer. Figure D-61 to Figure D-70 show the complete statistical results for the 

biomass data set comparison. 

 

Table D-10. Complete Best Model Calculations Using the Biomass Data Set 

 Statistic Value Model Optimizer AICc 

O
ve

ra
ll 

B
es
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 R2 0.760 2nd-Order Root fmincon 152.1 
SSE (MJ/kg)2 353.5 2nd-Order Root fmincon 152.1 
MSE (MJ/kg)2 3.801 2nd-Order Root fmincon 152.1 
Max RE (%) 106.2 Dulong Original coeff. 194.9 
Avg RE (%) 7.41 2nd-Order Root fmincon 152.1 
Min RE (%) 8.74×10-3 Seylor fmincon 159.6 
L1 (MJ/kg) 1.123 Mott-Spooner fminunc 157.3 
L2 (MJ/kg) 1.950 2nd-Order Root fmincon 152.1 
Infinity (MJ/kg) 9.231 2nd-Order Root fmincon 152.1 
AICc 152.1 2nd-Order Root fmincon 152.1 
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R2 0.760 2nd-Order Root fmincon 152.1 
SSE (MJ/kg)2 353.5 2nd-Order Root fmincon 152.1 
MSE (MJ/kg)2 3.801 2nd-Order Root fmincon 152.1 
Max RE (%) 108.2 2nd-Order Root fmincon 152.1 
Avg RE (%) 7.41 2nd-Order Root fmincon 152.1 
Min RE (%) 1.60×10-2 Polynomial fmincon 159.2 
L1 (MJ/kg) 1.146 Exponential fmincon 161.4 
L2 (MJ/kg) 1.950 2nd-Order Root fmincon 152.1 
Infinity (MJ/kg) 9.231 2nd-Order Root fmincon 152.1 
AICc 152.1 2nd-Order Root fmincon 152.1 
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Table D-10. Complete Best Model Calculations Using the Biomass  
Data Set, CONTINUED 

 Statistic Value Model Optimizer AICc 
B

es
t L

ite
ra

tu
re

 M
od

el
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R2 0.717 Mott-Spooner fminunc 157.3 
SSE (MJ/kg)2 417.2 Mott-Spooner fmincon 157.3 
MSE (MJ/kg)2 4.486 Mott-Spooner fmincon 157.3 
Max RE (%) 106.2 Dulong Original coeff. 194.9 
Avg RE (%) 7.59 Mott-Spooner fminunc 157.3 
Min RE (%) 8.74×10-3 Seylor fmincon 159.6 
L1 (MJ/kg) 1.123 Mott-Spooner fminunc 157.3 
L2 (MJ/kg) 2.118 Mott-Spooner fmincon 157.3 
Infinity (MJ/kg) 9.790 Dulong Original coeff. 194.9 
AICc 153.0 Gumz fmincon 153.0 
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s R2 0.666 Boie Original coeff. 177.3 

SSE (MJ/kg)2 522.8 Seylor Original coeff. 171.3 
MSE (MJ/kg)2 5.621 Seylor Original coeff. 171.3 
Max RE (%) 106.2 Dulong Original coeff. 194.9 
Avg RE (%) 8.60 Seylor Original coeff. 171.3 
Min RE (%) 1.05×10-2 VDI Original coeff. 174.6 
L1 (MJ/kg) 1.320 Seylor Original coeff. 171.3 
L2 (MJ/kg) 2.371 Seylor Original coeff. 171.3 
Infinity (MJ/kg) 9.790 Dulong Original coeff. 194.9 
AICc 171.3 Seylor Original coeff. 171.3 

 

 
Figure D-61. R2 values in the biomass comparison for each model form. 
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Figure D-62. SSE values in the biomass comparison for each model form. 

 

 
Figure D-63. MSE values in the biomass comparison for each model form. 
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Figure D-64. Maximum relative error values in the biomass  
comparison for each model form. 

 
Figure D-65. Average relative error values in the biomass  
comparison for each model form. 
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Figure D-66. Minimum relative error values in the biomass  
comparison for each model form. 

 
Figure D-67. L1 norm values in the biomass comparison for each model form. 
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Figure D-68. L2 norm values in the biomass comparison for each model form. 

 

 
Figure D-69. Infinity norm values in the biomass comparison  
for each model form. 
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Figure D-70. AICc values in the biomass comparison for each model form. 

 

D.3.8 Other Fuels Data Set 

 Table D-11 gives the best results using the “other” fuels data set. The other fuels data set 

was a bit of a catch-all subset which included the bulk of the non-traditional fuels. The extra 

variability in the chemical and structural composition of these non-traditional fuels compared to 

the fossil and biomass fuels leads to different model forms giving the best calculations for 

heating values. Like most of the other comparisons, however, there is not enough improvement 

using the new model forms over the literature model forms. Figure D-71 to Figure D-80 show 

the complete statistical results for the other fuels data set comparison. 
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Table D-11. Complete Best Model Calculations Using the Other Fuels Data Set 

 Statistic Value Model Optimizer AICc 
O

ve
ra

ll 
B

es
t P

er
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 R2 0.861 2nd-Order Root fmincon 240.1 

SSE (MJ/kg)2 949.3 2nd-Order Root fmincon 240.1 
MSE (MJ/kg)2 10.55 2nd-Order Root fmincon 240.1 
Max RE (%) 221.6 2nd-Order Root fmincon 240.1 
Avg RE (%) 12.26 Second-Order fmincon 247.3 
Min RE (%) 3.39×10-3 Linear fminunc 240.1 
L1 (MJ/kg) 2.287 Second-Order fminunc 248.5 
L2 (MJ/kg) 3.248 2nd-Order Root fmincon 240.1 
Infinity (MJ/kg) 13.81 2nd-Order Root fminunc 245.9 
AICc 239.0 Channiwala-Parikh fmincon 239.0 
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R2 0.861 2nd-Order Root fmincon 240.1 
SSE (MJ/kg)2 949.3 2nd-Order Root fmincon 240.1 
MSE (MJ/kg)2 10.55 2nd-Order Root fmincon 240.1 
Max RE (%) 221.6 2nd-Order Root fmincon 240.1 
Avg RE (%) 12.26 Second-Order fmincon 247.3 
Min RE (%) 3.39×10-3 Linear fminunc 240.1 
L1 (MJ/kg) 2.287 Second-Order fminunc 248.5 
L2 (MJ/kg) 3.248 2nd-Order Root fmincon 240.1 
Infinity (MJ/kg) 13.81 2nd-Order Root fminunc 245.9 
AICc 240.1 2nd-Order Root fmincon 240.1 
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R2 0.838 Channiwala-Parikh fminunc 239.0 
SSE (MJ/kg)2 1108 Channiwala-Parikh fmincon 239.0 
MSE (MJ/kg)2 12.31 Channiwala-Parikh fmincon 239.0 
Max RE (%) 241.0 Dulong fmincon 252.2 
Avg RE (%) 12.61 Gumz fmincon 239.0 
Min RE (%) 1.83×10-2 Boie Original coeff. 291.0 
L1 (MJ/kg) 2.289 Gumz fmincon 239.0 
L2 (MJ/kg) 3.509 Channiwala-Parikh fmincon 239.0 
Infinity (MJ/kg) 14.27 Seylor fmincon 261.9 
AICc 239.0 Channiwala-Parikh fmincon 239.0 
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s R2 0.806 Strache-Lant Original coeff. 312.4 

SSE (MJ/kg)2 2027 Boie Original coeff. 291.0 
MSE (MJ/kg)2 22.52 Boie Original coeff. 291.0 
Max RE (%) 305.7 Dulong Original coeff. 294.9 
Avg RE (%) 17.16 Boie Original coeff. 291.0 
Min RE (%) 1.83×10-2 Boie Original coeff. 291.0 
L1 (MJ/kg) 2.933 Boie Original coeff. 291.0 
L2 (MJ/kg) 4.746 Boie Original coeff. 291.0 
Infinity (MJ/kg) 19.04 Gumz Original coeff. 297.3 
AICc 291.0 Boie Original coeff. 291.0 
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Figure D-71. R2 values in the other fuels comparison for each model form. 

 

 
Figure D-72. SSE values in the other fuels comparison for each model form. 
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Figure D-73. MSE values in the other fuels comparison for each model form. 

 

 
Figure D-74. Maximum relative error values in the other fuels  
comparison for each model form. 
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Figure D-75. Average relative error values in the other fuels  
comparison for each model form. 

 
Figure D-76. Minimum relative error values in the other fuels  
comparison for each model form. 
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Figure D-77. L1 norm values in the other fuels comparison for each model form. 

 

 
Figure D-78. L2 norm values in the other fuels comparison for each model form. 
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Figure D-79. Infinity norm values in the other fuels comparison  
for each model form. 

 
Figure D-80. AICc values in the other fuels comparison for each model form. 
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D.3.9 Full Data Set 

 Table D-12 shows the complete best results of the comparison using the full data set. 

Again, the full data set comparison showed some very slight improvement when using the new 

models over the literature models, but not enough to justify the extra fitted coefficients. For most 

of the data sets, there is little potential for great improvement using the new models instead of 

the literature models. This conclusion might change with a more extensive set of fuel samples. 

Figure D-81 to Figure D-90 show the complete statistical results of the full data set comparison. 

 

Table D-12. Complete Best Model Calculations Using the Full Data Set 

 Statistic Value Model Optimizer AICc 

O
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 R2 0.896 2nd-Order Root fmincon 1300 
SSE (MJ/kg)2 4313 2nd-Order Root fmincon 1300 
MSE (MJ/kg)2 6.134 2nd-Order Root fmincon 1300 
Max RE (%) 305.7 Dulong Original coeff. 1557 
Avg RE (%) 6.59 2nd-Order Root fmincon 1300 
Min RE (%) 1.59×10-4 Seylor fminunc 1347 
L1 (MJ/kg) 1.605 Second-Order fmincon 1309 
L2 (MJ/kg) 2.477 2nd-Order Root fmincon 1300 
Infinity (MJ/kg) 15.79 Polynomial fmincon 1486 
AICc 1300 2nd-Order Root fmincon 1300 
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R2 0.896 2nd-Order Root fmincon 1300 
SSE (MJ/kg)2 4313 2nd-Order Root fmincon 1300 
MSE (MJ/kg)2 6.134 2nd-Order Root fmincon 1300 
Max RE (%) 311.4 2nd-Order Root fmincon 1300 
Avg RE (%) 6.59 2nd-Order Root fmincon 1300 
Min RE (%) 1.92×10-4 Power fminunc 1892 
L1 (MJ/kg) 1.605 Second-Order fmincon 1309 
L2 (MJ/kg) 2.477 2nd-Order Root fmincon 1300 
Infinity (MJ/kg) 15.79 Polynomial fmincon 1486 
AICc 1300 2nd-Order Root fmincon 1300 
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Table D-12. Complete Best Model Calculations Using the Full Data Set, CONTINUED 
 Statistic Value Model Optimizer AICc 

B
es

t L
ite

ra
tu

re
 M
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s 
R2 0.893 Given fmincon 1304 
SSE (MJ/kg)2 4418 Given fmincon 1304 
MSE (MJ/kg)2 6.285 Given fmincon 1304 
Max RE (%) 305.7 Dulong Original coeff. 1557 
Avg RE (%) 6.71 Given fminunc 1304 
Min RE (%) 1.59×10-4 Seylor fminunc 1347 
L1 (MJ/kg) 1.622 Given fminunc 1304 
L2 (MJ/kg) 2.507 Given fmincon 1304 
Infinity (MJ/kg) 17.52 Seylor fmincon 1347 
AICc 1304 Given fmincon 1304 
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s R2 0.892 Dulong Original coeff. 1557 

SSE (MJ/kg)2 5626 Boie Original coeff. 1472 
MSE (MJ/kg)2 8.003 Boie Original coeff. 1472 
Max RE (%) 305.7 Dulong Original coeff. 1557 
Avg RE (%) 7.24 Boie Original coeff. 1472 
Min RE (%) 3.78×10-4 Dulong Original coeff. 1557 
L1 (MJ/kg) 1.681 Gumz Original coeff. 1485 
L2 (MJ/kg) 2.829 Boie Original coeff. 1472 
Infinity (MJ/kg) 19.04 Gumz Original coeff. 1485 
AICc 1472 Boie Original coeff. 1472 

 

 
Figure D-81. R2 values in the full data set comparison for each model form. 
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Figure D-82. SSE values in the full data set comparison for each model form. 

 

 
Figure D-83. MSE values in the full data set comparison for each model form. 
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Figure D-84. Maximum relative error values in the full data set  
comparison for each model form. 

 
Figure D-85. Average relative error values in the full data set  
comparison for each model form. 
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Figure D-86. Minimum relative error values in the full data set  
comparison for each model form. 

 
Figure D-87. L1 norm values in the full data set comparison for each model form. 
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Figure D-88. L2 norm values in the full data set comparison for each model form. 

 

 
Figure D-89. Infinity norm values in the full data set comparison  
for each model form. 
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Figure D-90. AICc values in the full data set comparison for each model form. 

 

D.4 Summary 

 In summary, the models presented in Section 7.3 are the best offered by this extensive 

analysis. The new models can generally increase the accuracy of heating value calculations; 

however, this analysis shows that this slight increase is not enough to justify using two or more 

times as many fitted coefficients as the literature models. 
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APPENDIX E. ADDITIONAL MIXTURE FRACTION ANALYSIS 

 This appendix chapter details additional mixture fraction analysis information not 

included in Chapter 8. The information here includes all information from the one-, two-, and 

three-mixture fraction results, using both experimentally determined heating values and heating 

values based on the correlations in Chapter 7. Chapter 8 shows the root-mean-square error 

(RMSE, see Equation 2-15) for some of the comparisons between the NASA-CEA and Cantera 

program results. This appendix chapter discusses these results along with several other statistical 

measures, including the L1 norm (see Equation 2-14), the infinity norm (see Equation 2-16), and 

the average and maximum relative error values (see Equation 2-13). 

E.1 One-Mixture Fraction Results 

 The one-mixture fraction analysis included three main comparisons: (1) NASA-CEA to 

Cantera, (2) comparison of different fuels, and (3) experimental to correlated fuel heating values. 

Chapter 8 discusses the main results of the first two comparisons but leaves out the third. The 

third comparison attempted to link the work discussed in Chapter 7 with the practical 

applications in Chapter 8. This appendix section will be divided into the same order, starting 

with the complete NASA-CEA to Cantera comparison, followed by the complete comparison of 

different fuels, and finally the complete comparison of experimental to correlated heating values. 
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E.1.1 Complete NASA-CEA to Cantera Comparison 

 Chapter 8 discusses the key results in the NASA-CEA to Cantera comparison. This 

section details the complete analysis, including the five statistical measures of fit between the 

NASA-CEA results and the Cantera results:  L1 norm, L2 norm or RMSE, infinity norm, average 

relative error, and maximum relative error. This section also includes a few additional fuel 

results using a correlated heating value instead of an experimentally observed heating value. The 

complete list of fuel cases is found in Table E-1. Note that while there is some overlap from 

Table 8-3, the fuel cases in Table E-1 are different, since there are a few new cases. 

Table E-1. Complete One-Mixture Fraction Fuel Cases 

Case No. Fuel Coal Rank ∆Hf 
E1-1 Graphite   
E1-2 Benzene   
E1-3 Methane   
E1-4 Ethane   
E1-5 Ethylene   
E1-6 Pitt 8 coal HVA Exp. 
E1-7 Pitt 8 char HVA char Exp. 
E1-8 Pitt 8 tar HVA tar Exp. 
E1-9 Lower Kittanning coal LVB Exp. 
E1-10 Millmerran coal sub Exp. 
E1-11 Liddell coal bit Exp. 
E1-12 Mammoth coal an Exp. 
E1-13 Beulah coal ligA Exp. 
E1-14 Pitt 8 coal HVA Corr. 
E1-15 Pitt 8 char HVA char Corr. 
E1-16 Pitt 8 tar HVA tar Corr. 
E1-17 Lower Kittanning coal LVB Corr. 
E1-18 Millmerran coal sub Corr. 
E1-19 Liddell coal bit Corr. 
E1-20 Mammoth coal an Corr. 
E1-21 Beulah coal ligA Corr. 
E1-22 Buck Mountain coal an Exp. 
E1-23 #8 Leader coal an Exp. 
E1-24 #8 coal semi-an Exp. 
E1-25 Gunnison coal semi-an Exp. 
E1-26 L. Spadra coal semi-an Exp. 
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 Chapter 8 uses the root-mean-square error along with a couple of simplified figures of 

H2O and graphite mole fractions to illustrate the key similarities and differences between the 

NASA-CEA and Cantera results. While this is a good way of distilling the key results of this 

comparison, all 26 fuel cases in Table E-1 were equilibrated using both NASA-CEA and Cantera 

programs, using the procedure discussed in Chapter 8. This comparison is easily displayed in 

plots called “dashboards.” These dashboards compare the six variables of interest (equilibrium 

temperature and mole fractions of O2, CO2, CO, H2O, and graphite) vs equivalence ratio and fuel 

mixture fraction for both NASA-CEA and Cantera, as well as the residuals and relative errors 

between NASA-CEA and Cantera at each equivalence ratio. The dashboards are in Figure E-1 to 

Figure E-26, shown in order as listed in Table E-1. Discussion of these dashboard comparisons 

are found after all 26 figures. Note, NASA-CEA is abbreviated as “NASA” in these figures to 

save space in the figure legends. 

 
Figure E-1. Case E1-1 (graphite) NASA-CEA to Cantera comparison. 



 

402 

 
Figure E-2. Case E1-2 (benzene) NASA-CEA to Cantera comparison. 

 

 
Figure E-3. Case E1-3 (methane) NASA-CEA to Cantera comparison. 
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Figure E-4. Case E1-4 (ethane) NASA-CEA to Cantera comparison. 

 

 
Figure E-5. Case E1-5 (ethylene) NASA-CEA to Cantera comparison. 
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Figure E-6. Case E1-6 (Pitt 8 coal, exp.) NASA-CEA to Cantera comparison. 

 

 
Figure E-7. Case E1-7 (Pitt 8 char, exp.) NASA-CEA to Cantera comparison. 
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Figure E-8. Case E1-8 (Pitt 8 tar, exp.) NASA-CEA to Cantera comparison. 

 

 
Figure E-9. Case E1-9 (Lower Kittanning coal, exp.) NASA-CEA to Cantera comparison. 
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Figure E-10. Case E1-10 (Millmerran coal, exp.) NASA-CEA to Cantera comparison. 

 

 
Figure E-11. Case E1-11 (Liddell coal, exp.) NASA-CEA to Cantera comparison. 
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Figure E-12. Case E1-12 (Mammoth coal, exp.) NASA-CEA to Cantera comparison. 

 

 
Figure E-13. Case E1-13 (Beulah coal, exp.) NASA-CEA to Cantera comparison. 
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Figure E-14. Case E1-14 (Pitt 8 coal, corr.) NASA-CEA to Cantera comparison. 

 

 
Figure E-15. Case E1-15 (Pitt 8 char, corr.) NASA-CEA to Cantera comparison. 
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Figure E-16. Case E1-16 (Pitt 8 tar, corr.) NASA-CEA to Cantera comparison. 

 

 
Figure E-17. Case E1-17 (Lower Kittanning coal, corr.) NASA-CEA to Cantera comparison. 
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Figure E-18. Case E1-18 (Millmerran coal, corr.) NASA-CEA to Cantera comparison. 

 

 
Figure E-19. Case E1-19 (Liddell coal, corr.) NASA-CEA to Cantera comparison. 
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Figure E-20. Case E1-20 (Mammoth coal, corr.) NASA-CEA to Cantera comparison. 

 

 
Figure E-21. Case E1-21 (Beulah coal, corr.) NASA-CEA to Cantera comparison. 
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Figure E-22. Case E1-22 (Buck Mountain coal) NASA-CEA to Cantera comparison. 

 

 
Figure E-23. Case E1-23 (#8 Leader coal) NASA-CEA to Cantera comparison. 



 

413 

 
Figure E-24. Case E1-24 (#8 coal) NASA-CEA to Cantera comparison. 

 

 
Figure E-25. Case E1-25 (Gunnison coal) NASA-CEA to Cantera comparison. 
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Figure E-26. Case E1-26 (L. Spadra coal) NASA-CEA to Cantera comparison. 

 

 This comparison generated a lot of data. Most of the fuel comparisons are very close 

between NASA-CEA and Cantera, however, there are a few that did not do well, mostly a few of 

the higher rank coals, including the Mammoth anthracite (experimental heating value, see Figure 

E-12), the Buck mountain anthracite (Figure E-22), and the #8 semi-anthracite (Figure E-24). 

Interestingly enough, the Mammoth anthracite with correlated heating value had a much better 

agreement between NASA-CEA and Cantera, despite the only difference being the heat of 

formation between the experimental and correlated equilibrium inputs. In addition, Chapter 8 

discusses that the main disparities between NASA-CEA and Cantera only occur at the highest 

equivalence ratios, where the mixture is the most fuel rich. The dashboard comparison figures 

further enforce this conclusion. Chapter 8 summarizes the NASA-CEA to Cantera comparison 

using Figure 8-1, which shows the RMSE of most one-mixture fraction cases for all six variables 
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of interest. Figure E-27 shows similar results for all five statistical measures (L1, L2, and infinity 

norms, and average and maximum relative error values) for all fuel cases in Table E-1. 

 

 
Figure E-27. Complete Statistical Results for NASA-CEA to Cantera Comparison. 

 

 While relative error can be a valuable tool in determining a good comparison from a poor 

comparison, it is not as effective in this case for most of the equilibrium mole fractions. This is 

because many of the values are very small and dividing by a very small number to get a relative 

error can often make the relative error appear artificially large. That is why there appears to be 

much more noise in the relative error plots (d and e), but especially in the maximum relative 

error. The L1, L2, and infinity norms are much less prone to numerical instabilities because they 

only rely on the difference between NASA-CEA and Cantera. The statistical plots show that the 

fuel cases already discussed earlier find poor agreement between NASA-CEA and Cantera, but 

the plots also identify one other fuel case that gives poor agreement between NASA-CEA and 
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Cantera—the Pitt 8 tar with a correlated heating value (case E1-16, see Figure E-16 for the 

dashboard comparison between NASA-CEA and Cantera). In looking at the comparison for case 

E1-16, there is some divergence between the NASA-CEA and Cantera values at high 

equivalence ratio, with greatest deviations in equilibrium temperature and graphite mole fraction, 

and almost imperceptible deviations in CO2, CO, and H2O mole fractions. As stated in Chapter 8, 

the deviations at high equivalence ratios are not concerning for most industrial coal combustion 

applications since most applications do not operate in such fuel-rich conditions. However, this 

may become an issue with specialized combustion applications such as gasification. 

E.1.2 Complete Comparison of Different Fuels 

 Chapter 8 shows several plots of the NASA-CEA results for all fuels, not including the 

correlated heating value cases. Most of these plots were based on equivalence ratio, however, 

similar plots vs. fuel mixture fraction can be made. Like Chapter 8 shows with the temperature 

plots (Figure 8-3), the comparison with respect to equivalence ratio does not differ much when 

plotted against fuel mixture fraction. The following figures show these differences for each of 

the variables of interest as predicted by NASA-CEA. 

 
Figure E-28. Full fuel comparison of equilibrium temperature. a) vs. equivalence ratio and b) vs. 
fuel mixture fraction. 
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Figure E-29. Full fuel comparison of O2 mole fraction. a) vs. equivalence ratio and b) vs. fuel 
mixture fraction. 

 
Figure E-30. Full fuel comparison of CO2 mole fraction. a) vs. equivalence ratio  
and b) vs. fuel mixture fraction. 

 
Figure E-31. Full fuel comparison of CO mole fraction. a) vs. equivalence ratio and  
b) vs. fuel mixture fraction. 
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Figure E-32. Full fuel comparison of H2O mole fraction. a) vs. equivalence ratio  
and b) vs. fuel mixture fraction. 

 
Figure E-33. Full fuel comparison of graphite mole fraction. a) vs. equivalence ratio  
and b) vs. fuel mixture fraction. 

 

 Most of the discussion of the results of the comparison of all fuels is included in Chapter 

8, however, the equilibrium oxygen mole fraction was not included there because of the 

overwhelming similarity over all fuels. In addition, only the plot of equilibrium temperature with 

respect to fuel mixture fraction was shown in Chapter 8. This was because the only difference 

between the plots of equivalence ratio and fuel mixture fraction is the horizontal shift of the 

different fuels. The peak values remain the same with respect to equivalence ratio and fuel 
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mixture fraction, but the curves with respect to fuel mixture fraction are shifted to the left and 

right when compared to the equivalence ratio curves. 

 The peak (or maximum) value of many of the variables at equilibrium depend on 

different fuel-specific properties. The peak values for temperature and mole fractions of CO2 and 

H2O were plotted against several of the fuel- and equilibrium-specific properties. Figure E-34 

shows the peak temperature with respect to the fuel heating value, both in terms of NASA-CEA 

to Cantera as well as separated by fuel type. Peak CO2 mole fractions are compared to fuel 

heating value (Figure E-35), fuel oxygen content (Figure E-36), and peak equilibrium 

temperature (Figure E-37). Figure E-38 shows the peak H2O mole fraction compared to the 

hydrogen content of the fuel. 

 

 

 
Figure E-34. Peak equilibrium temperature vs fuel heating value:   
a) NASA-CEA to Cantera and b) by fuel type. 
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Figure E-35. Peak CO2 mole fraction compared to fuel heating value. 

 
Figure E-36. Peak CO2 mole fraction compared to fuel oxygen content. 
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Figure E-37. Peak CO2 mole fraction compared to peak equilibrium temperature. 

 
Figure E-38. Peak H2O mole fraction compared to fuel hydrogen content. 
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 Fuels with higher heating values tend to have a higher peak equilibrium temperature, 

which makes sense from a thermodynamic standpoint. If a fuel has a high energy of combustion, 

that also means the equilibrium temperature of an adiabatic system will also be higher than a 

similar system using a fuel with a lower heating value. This relationship is not linear, but it 

appears to increase sharply at the lowest heating rates, then it appears to taper off at higher 

heating rates. This divide is also observed when separated by fuel type, with the lowest and 

highest rank coals (lignites and anthracites) having the lowest heating values, followed by the 

mid-rank coals (subbituminous and bituminous coals), with most of the simple fuels having the 

highest heating values of the data set. 

 The CO2 mole fraction is slightly less correlated, but the peak CO2 mole fraction appears 

to decrease with increasing fuel heating value. This makes some sense with coals, since heating 

value correlates weakly with carbon content for some coals. The simpler hydrocarbon fuels tend 

to have higher heating values and lower carbon content than coals. There appears to be very 

slight correlation of peak CO2 mole fraction with fuel oxygen for the coals, decreasing slightly 

with increasing oxygen content. This makes some sense with respect to elemental composition. 

If a fuel has more oxygen, its carbon content would tend to decrease. When compared to peak 

equilibrium temperature, the peak CO2 mole fraction appears to decrease with increasing 

temperature, slowly at lower temperatures and more quickly at higher temperatures. This might 

be due to the equilibrium relationship between CO2 and CO, which can be highly temperature 

dependent. 

 As expected, the peak H2O mole fraction is highly dependent on the fuel hydrogen. When 

plotted against the hydrogen mass fraction in the fuel, the relationship is roughly linear and 

would be exactly linear if plotted against the hydrogen mole fraction in the fuel. There is only 
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one source of hydrogen in the equilibrium system, and that is the fuel used. The oxidizer stream 

(air) has no additional hydrogen to add to the H2O mole fraction. The fuels used in this analysis 

were all on a dry basis, however, many industrial applications do not always have perfectly dry 

fuels. For wet systems (from not quite completely dry to some specialized slurry-type 

applications), the peak H2O mole fraction would be much higher and much more dependent on 

the dryness (or wetness) of the system. 

E.1.3 Complete Comparison of Experimental to Correlated Heating Values 

 In an effort to apply the correlations developed and presented in Chapter 7, several of the 

coal-based fuels with experimentally observed heating values were compared to fuels with the 

same elemental composition and heating values calculated using several of the correlations found 

in Chapter 7. The experimental heating values were used in cases E1-6 to E1-13 and the 

correlated heating values in E1-14 to E1-21. Some of the variability between the experimental 

and correlated heating values can be observed in the respective dashboard figures (see Figure E-6 

to Figure E-21), however, the same statistical measures of fit discussed earlier (L1, L2, and 

infinity norms, and average and maximum relative error) can be used here to give a good overall 

picture of the disparities between the experimental and correlated heating values. Figure E-39 

shows the five statistical values for equilibrium temperature and mole fractions of O2, CO2, CO, 

H2O, and graphite. This plot compares the equilibrium states as calculated by NASA-CEA, 

although a similar comparison could be made using the Cantera-calculated equilibrium states. 

 The disparity between experimental and correlated heating values is higher than that 

between NASA-CEA and Cantera. While many of the cases led to a temperature difference of 

around 5 to 50 K between the experimental and correlated heating value equilibrium states, some 

differed by up to almost 1000 K (Mammoth anthracite). The greatest disparity is in the highest- 
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Figure E-39. Comparison of fuels using experimental vs. correlated heating values. 

 

and lowest-rank coals, many of which would not be used regularly in common industrial 

applications; however, this comparison indicates that there is potentially a bit of improvement to 

be made in the heating value correlations, particularly in the highest- and lowest-rank coals. 

E.2 Two-Mixture Fraction Results 

 Like the one-mixture fraction comparison, too much data was generated in the two-

mixture fraction comparison to be included in Chapter 8. This appendix section is divided into 

two main categories: (1) the complete set of contour plots for all of the two-mixture fraction fuel 

cases listed in Table 8-4 and (2) a comparison of several coals using experimental and correlated 

heating values. Table E-2 details all two-mixture fraction fuel cases, with four additional cases 

not found in Table 8-4. Also included here are a few details about the pyrolysis conditions at 
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which the char and tar/volatiles were formed, including high or low temperature and measured 

total volatiles yield. 

 

Table E-2. Complete Two-Mixture Fraction Fuel Cases 

Case No. Char Volatiles ∆Hf Pyrolysis Yield 
E2-1 Graphite Benzene Exp. - 
E2-2 Graphite Methane Exp. - 
E2-3 Graphite Ethane Exp. - 
E2-4 Graphite Ethylene Exp. - 
E2-5 Pitt 8 char (low 

temperature) 
Pitt 8 TAR Exp. 0.1491 

E2-6 Pitt 8 char (high 
temperature) 

Pitt 8 TAR Exp. 0.4102 

E2-7 Pitt 8 char (low 
temperature) 

Pitt 8 
VOLATILES 

Exp. 0.1491 

E2-8 Pitt 8 char (high 
temperature) 

Pitt 8 
VOLATILES 

Exp. 0.4102 

E2-9 Millmerran char 
(high temperature) 

Millmerran 
TAR 

Exp. 0.545 

E2-10 Millmerran char 
(high temperature) 

Millmerran 
VOLATILES 

Exp. 0.545 

E2-11 Millmerran char 
(low temperature) 

Millmerran 
TAR 

Exp. 0.313 

E2-12 Millmerran char 
(low temperature) 

Millmerran 
VOLATILES 

Exp. 0.313 

E2-13 Pitt 8 char (low 
temperature) 

Pitt 8 
VOLATILES 

Corr. 0.1491 

E2-14 Pitt 8 char (high 
temperature) 

Pitt 8 
VOLATILES 

Corr. 0.4102 

E2-15 Millmerran char 
(high temperature) 

Millmerran 
VOLATILES 

Corr. 0.545 

E2-16 Millmerran char 
(low temperature) 

Millmerran 
VOLATILES 

Corr. 0.313 

 

E.2.1 Contour Plots of Six Equilibrium Variables 

 Section 8.3.2 shows only a couple of cases in contour plots for each variable to show 

general trends that occur in all fuel cases. This section of Appendix E shows contour plots for 
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cases E2-1 through E2-12, which are the cases that use simplified hydrocarbon surrogates of char 

and volatiles as well as coal-based fuels with experimental heating values. The following contour 

plots are shown in the same order as all the variables of interest, starting with equilibrium 

temperature followed by the mole fractions of O2, CO2, CO, H2O, and graphite. In each contour 

plot figure, rows correspond to the different fuel cases in Table E-2 and columns correspond to 

different “mixing” conditions of the fuels, from no volatiles to 100 percent volatiles in the fuel 

mixture. All contour plots are kept at the same range for each variable, shown with the colorbar 

at the top right of each contour plot. Discussion will follow each set of contour plots for each of 

the variables of interest. Figure E-40 shows the contour plots for equilibrium temperature. 

 

 

 
Figure E-40. Complete contour plots of equilibrium temperature. 
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Figure E-40. Complete contour plots of equilibrium temperature, CONTINUED. 
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 Looking up and down each column compares similar mixing conditions for each fuel 

case. The general shapes are similar for each fuel case, however, there are slight differences, 

especially with higher volatiles mixtures (a volatiles mix of 75 percent and higher). The 

difference is more pronounced between the coal-based fuels (bottom eight rows) and the simpler 

hydrocarbon surrogate gases (top four rows) but is less pronounced among just the coal-based 

fuels. The simpler fuels also tend to have higher temperatures than the coal-based fuels, 

particularly around stoichiometric conditions (equivalence ratios of around one). Figure E-47 

shows the peak temperature ranges for all 12 cases. 

 Oxygen is only briefly described in Section 8.3.2 due to very few deviations among fuel 

cases, like the one-mixture fraction comparison. Figure E-41 shows the contour plots of the O2 

mole fractions at equilibrium. 

 

 
Figure E-41. Complete contour plots of equilibrium O2 mole fraction. 
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Figure E-41. Complete contour plots of equilibrium O2 mole fraction, CONTINUED. 
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 The equilibrium O2 mole fraction does not change much with the fuel type used. This 

makes sense since most (or all for simple hydrocarbon surrogates) equilibrium oxygen comes 

from the air, and the amount of O2 at equilibrium is highly dependent on equivalence ratio. Like 

the one-mixture fraction comparison, O2 is only prevalent at lower equivalence ratios (from very 

fuel-lean to just fuel-rich of stoichiometric conditions). Most common industrial coal combustion 

applications will operate in the vicinity of stoichiometric conditions, either slightly fuel-lean or 

slightly fuel-rich. 

 The equilibrium CO2 mole fraction is highly dependent on the carbon content of the 

parent fuel but is slightly attenuated at high equivalence ratios by the CO mole ratio. The CO2 

mole fraction contour plots are found in Figure E-42 and the CO mole fraction contour plots are 

in Figure E-43. 

 

 
Figure E-42. Complete contour plots of equilibrium CO2 mole fraction. 
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Figure E-42. Complete contour plots of equilibrium CO2 mole fraction, CONTINUED. 
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Figure E-43. Complete contour plots of equilibrium CO mole fraction. 
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Figure E-43. Complete contour plots of equilibrium CO mole fraction, CONTINUED. 

 

 The contour plots of the CO2 mole fractions exhibit a similar shape to the equilibrium 

temperature plots. This trend was also observed in the one-mixture fraction comparison. The 

peak CO2 mole fractions are a bit more variable than the temperature plots, generally being 

highly dependent on the fraction of carbon in the original fuel. The simple hydrocarbon 

surrogates tend to exhibit the highest and lowest peaks depending on the fuel mixing condition. 

Graphite is entirely carbon, leading to the largest peak CO2 mole fractions while the simple 

volatile surrogates are lower in carbon, leading to the smallest peak CO2 mole fractions. The 

peak ranges are shown in Figure E-51. Equilibrium CO mole fractions follow an inverse trend to 

the equilibrium O2 mole fractions—where O2 is highest, CO is lowest and vice-versa. This 

means that CO only becomes prevalent in extreme fuel-rich conditions. Peak CO mole fraction 

ranges are shown in Figure E-53. 
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 Equilibrium H2O mole fractions are highly dependent on what fuel is used, since the only 

source of hydrogen in the equilibrium mixture comes from the fuel. Figure E-44 shows the 

contour plots of equilibrium H2O mole fraction. 

 The char-only mixing conditions of the simple hydrocarbon fuel cases (first four rows) 

are graphite, which is only carbon. This is why the contour plots in the first column of the first 

four rows appear blank because no H2O is formed at equilibrium. Because the equilibrium H2O 

mole fraction is highly dependent on fuel hydrogen, the simple hydrocarbon volatiles surrogates 

produce much higher H2O mole fractions since they have a higher amount of fuel hydrogen. The 

H2O mole fraction contours exhibit a similar shape as both the temperature and CO2 mole 

fraction contours, in a similar fashion to the one-mixture fraction comparison. There is a large 

variability in the peak H2O mole fraction ranges, as shown in Figure E-55. 

 

 
Figure E-44. Complete contour plots of equilibrium H2O mole fraction. 
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Figure E-44. Complete contour plots of equilibrium H2O mole fraction, CONTINUED. 

 

 The final variable of interest is the equilibrium mole fraction of graphite. The contour 

plots for equilibrium graphite mole fraction are shown in Figure E-45. 
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Figure E-45. Complete contour plots of equilibrium graphite mole fraction. 
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Figure E-45. Complete contour plots of equilibrium graphite mole fraction, CONTINUED. 

 

 Both NASA-CEA and Cantera programs generally convert unreacted fuel to graphite. 

Like the CO mole fraction, graphite only becomes significant in extreme fuel-rich conditions. In 

addition, many of the fuel cases form very small amounts of graphite, even at high equivalence 

ratios. Some of the plots in Figure E-45 appear blank because those fuel cases did not form any 

graphite at equilibrium. 

E.2.2 Experimental vs. Correlated Heating Values 

 The final four fuel cases in Table E-2 are coal-based fuels with correlated heating values. 

The equilibrium states of these four cases were compared to the equivalent fuel cases with 

experimentally observed heating values. In order to discover where the correlated heating value 

cases diverge from the experimental heating value cases, contour plots of the absolute value of 

the residuals between the two equilibrium states were made. In addition, the peak variable ranges 
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were added to those of the first 12 fuel cases. The equilibrium temperature plots are shown first, 

with the contour plots of the residuals in Figure E-46 and the complete peak temperature ranges 

in Figure E-47. The new peak temperature ranges are shown in green to differentiate from the 

other fuel cases. 

 

 
Figure E-46. Contour plots of experimental to correlated heating value—temperature. 

 

 The residuals show that most of the variability in the equilibrium temperature generally 

occurs in the highest equivalence ratios. This is not worrisome for most industrial coal 

combustion applications since they do not operate in such extreme fuel-rich conditions. The 

correlated heating value cases correspond to the following experimental heating value cases:  E2-

13 to E2-7, E2-14 to E2-8, E2-15 to E2-10 and E2-16 to E2-12. Looking at the peak temperature 

ranges, there is some overlap for the Pitt 8 coals (E2-13 and E2-14), but the ranges are vastly 

different, being much smaller for the correlated heating value cases. The ranges are much closer 
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for the Millmerran coals with the correlated heating value ranges mostly overlapping with the 

experimental. 

 
Figure E-47. Complete peak equilibrium temperature ranges. 

 

 The results for the O2 mole fraction comparison are shown next. Figure E-48 shows the 

residual contour plots between experimental and correlated heating value cases and Figure E-49 

shows the peak O2 mole fraction ranges with the addition of the correlated heating value cases. 

 Overall, there is very little variability in the equilibrium O2 mole fractions between 

experimental and correlated heating value cases, however, the most significant deviation is in 

mixtures of close to stoichiometric conditions. Unlike the peak temperature ranges, the peak O2 

mole fraction ranges are virtually identical between experimental and correlated heating value 

cases. 
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Figure E-48. Contour plots of experimental to correlated heating value—O2 mole fractions. 

 

 
Figure E-49. Complete peak O2 mole fraction ranges. 
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 The next equilibrium variables are the mole fractions of CO2 and CO. These two 

compounds are usually in equilibrium with each other, with CO being more prevalent in fuel-rich 

conditions. The contour plots of the residuals of CO2 mole fractions between experimental and 

correlated heating value cases are found in Figure E-50 with the updated peak CO2 mole fraction 

ranges in Figure E-51. Similarly, the contour plots of CO mole fractions are shown in Figure E-

52 and the updated peak CO mole fraction ranges are in Figure E-53. 

 For equilibrium CO2 mole fraction, the experimental heating value cases are a bit 

different than the correlated heating value cases in terms of where the most deviation occurs. 

According to Figure E-50, there are two main areas of significant deviation in most comparisons: 

at or near stoichiometric conditions and in extreme fuel-rich conditions. These two areas of 

deviation are also observed in the equilibrium CO mole fraction comparisons in Figure E-52, 

although to a lesser extend at or near stoichiometric conditions. This makes sense since CO2 and 

 

 
Figure E-50. Contour plots of experimental to correlated heating value—CO2 mole fractions. 
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Figure E-51. Complete peak CO2 mole fraction ranges. 

 

 
Figure E-52. Contour plots of experimental to correlated heating value—CO mole fractions 
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Figure E-53. Complete peak CO mole fraction ranges. 

 

CO are generally in equilibrium with each other, depending highly on both temperature and 

oxygen availability in the system. Interestingly, there is very little difference in the peak CO2 and 

CO mole fraction ranges between experimental and correlated heating value cases. 

 The equilibrium H2O mole fraction generally follows similar trends to both temperature 

and CO2 mole fractions. The contour plots of the residuals between experimental and correlated 

heating value cases are found in Figure E-54 and the peak H2O mole fraction ranges are shown 

in Figure E-55. 

 Like the CO2 and CO mole fraction comparisons, there is some slight deviation between 

experimental and correlated heating value cases in H2O mole fraction at or near stoichiometric 

conditions, however, most of the deviation occurs in fuel-rich conditions. In the Pitt 8 cases (top 

two rows), the greatest deviation actually occurs not at the highest equivalence ratios, but at  
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Figure E-54. Contour plots of experimental to correlated heating value—H2O mole fraction. 

 

 
Figure E-55. Complete peak H2O mole fraction ranges. 
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equivalence ratios of around 2 to 2.5 with less deviation at higher equivalence ratios. It is unclear 

why this occurs in the Pitt 8 cases but not in the Millmerran cases. Like the O2 mole fraction 

ranges, the H2O mole fraction ranges do not appear to vary between experimental and correlated 

heating value cases. This is understandable because the only source of hydrogen is the parent 

fuel, which the composition does not change between heating value cases. 

 Graphite is the final equilibrium variable observed in this analysis. Like the CO mole 

fraction, graphite usually only occurs in extreme fuel-rich conditions. The contour plots showing 

the residual graphite mole fractions between experimental and correlated heating value cases are 

found in Figure E-56 and the updated graphite mole fraction ranges are in Figure E-57. 

 

 
Figure E-56. Contour plots of experimental to correlated heating value—graphite. 
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Figure E-57. Complete peak graphite mole fraction ranges. 

 

 Because graphite only occurs in extremely fuel-rich conditions, the maximum deviation 

between experimental and correlated heating value cases also occurs in extremely fuel-rich 

conditions. Also, like the O2 and H2O mole fraction comparisons, the peak graphite mole fraction 

ranges are very similar between the experimental and correlated heating value cases. The major 

difference is some slight increase of the peak ranges in most of the correlated heating value cases 

and a slight decrease in the low temperature Pitt 8 case. 

 In conclusion, using a correlated heating value with experimentally determined elemental 

compositions can be different in many respects to cases using experimentally determined heating 

values and elemental compositions. This is especially true for equilibrium temperature, which is 

much more dependent on the thermodynamic properties of the fuel (i.e., energies of formation) 

than on the elemental composition. The mole fractions of O2, CO2, CO, H2O, and graphite are 
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much less dependent on the thermodynamic properties and more dependent on elemental 

composition of the fuel. It is preferable to use experimentally determined thermodynamic 

properties if available, however, correlated values can be used to varying degrees of accuracy 

when experimentally determined properties are not available. 

E.3 Three-Mixture Fraction Results 

 The three-mixture fraction approach generated a lot of data for each fuel case. Only the 

case for the experimentally determined elemental composition and thermodynamic properties is 

presented in Section 8.3.3, however, a few more cases were considered for the three-mixture 

fraction approach. The complete list of three-mixture fraction fuel cases is shown in Table E-3. 

Only the low-temperature pyrolysis products (char, tar, and light gases) of the Pitt 8 coal were 

used in this comparison, along with the simplified hydrocarbon surrogate gases. This was 

because Proscia et al. (1994) were the only source to report enough information to calculate light 

gas properties. Benzene was also used as the only tar surrogate in the simple cases. 

 
Table E-3. Complete Three-Mixture Fraction Fuel Cases 

Case No. Char Tar Light Gas ∆Hf Char Yield Tar Yield 
E3-1 Graphite Benzene Methane - - - 
E3-2 Graphite Benzene Ethane - - - 
E3-3 Graphite Benzene Ethylene - - - 
E3-4 Pitt 8 char Pitt 8 tar Pitt 8 light gas Exp. 0.8509 0.1226 
E3-5 Pitt 8 char Pitt 8 tar Pitt 8 light gas Corr. 0.8509 0.1226 

 

 Too much data was generated to show in contour or other complete plots; even side-by-

side, the different cases have too many data points to observe anything other than the general 

shapes of the curves (see Figure 8-17 to Figure 8-18). While not always ideal to get a complete 

picture, a statistical comparison was performed for all three-mixture fraction fuel cases that 



 

448 

considered the experimentally determined Pitt 8 case as the “true” value that all other cases were 

compared to. Using this kind of comparison shows how the other cases differ from “reality.” 

Such a comparison was performed using both the full and the “viable” data, which are explained 

in more detail in Section 8.3.3. The full data include all mixing conditions from the extremes of 

all char, tar, or light gas in the fuel mixture to everything else in between, while the viable data 

eliminates any mixing conditions that would not be observed in real combustion applications 

(e.g., only char present in the fuel stream). Figure E-58 shows the five key statistical parameters 

for the full data comparisons and Figure E-59 shows the same parameters for the viable data 

comparisons. 

 While the deviation in temperature between the “true” case and the other fuel cases is 

consistently poor, the mole fractions of O2, CO2, CO, H2O, and graphite are generally around an 

order of magnitude better when comparing equilibrium states using experimentally determined  

 

 
Figure E-58. Comparison of full data of three-mixture fraction fuel cases. 
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Figure E-59. Comparison of viable data of three-mixture fraction fuel cases. 

 

elemental compositions and correlated heating values than when using simplified hydrocarbon 

surrogates. In addition, though it is a little more difficult to observe on a log-scale plot, there is 

some slight improvement made when using certain simplified hydrocarbon surrogates over 

others. This indicates that if smarter choices are made in choosing simplified surrogates for coal 

combustion applications, the results might be closer to physical reality. That being said, it is still 

preferable to use experimentally determined fuel properties if available since that results in large-

scale simulations that are much closer to what would be observed in real-world applications. 

 There is some improvement when using the viable data rather than the full data, which 

means that some of the worst deviations between the “true” and surrogate cases occur in 

conditions that would not be observed in industrial coal combustion applications outside of very 

few specialized research applications. When using three fuel mixture fractions, it is advantageous 
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to choose mixing conditions wisely in order to minimize both computational complexity and 

time as well as to minimize the error between the simulation results and real-world observations. 

 Section 8.3.3 details most of the one-two-three-mixture fraction comparison, however, 

like the one- and two-mixture fraction comparisons, the results for equilibrium O2 and graphite 

mole fractions are not discussed in detail because of the similarity in these products when using 

different fuels. The full results of the O2 and graphite mole fractions from the one-two-three-

mixture fraction comparison using the Pittsburgh #8 coal are discussed here and shown in Figure 

E-60. 

 

 

Figure E-60. (a) Equilibrium O2 and (b) graphite mole fraction calculations by Cantera for the 
Pitt 8 coal using one, two, and three mixture fractions. 

 

 The plots for these two equilibrium products were not included in the main dissertation 

chapter because there is not enough information to be gained. All three mixture fraction analyses 

displayed here were performed using the same parent fuel—Pittsburgh #8 coal and its pyrolysis 

products—which means that the equilibrium calculations using each level of mixture fraction 

would be very similar. The conclusions reached using equilibrium O2 and graphite mole fractions 
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would be very different if comparing between fuel types, like the conclusions reached in the one-

mixture fraction comparison. 

E.4 Summary and Conclusions 

 This appendix chapter is intended to supplement and not replace the results and 

conclusions detailed in Chapter 8, with many of the results and conclusions here supporting 

those in Chapter 8. However, there are some additional results and conclusions that were not 

discussed in Chapter 8, mainly being those related to linking the mixture fraction and heating 

value correlation analyses. This chapter also provides the complete analysis results that were 

only summarized in Chapter 8. 

 The main conclusions of this appendix (for the one-, two-, and three-mixture fraction 

comparisons) deal with comparing experimental to correlated thermodynamic properties (heating 

values and by extension enthalpies of formation) of coal-based fuels with experimentally 

determined elemental compositions. In all three mixture fraction comparisons, the correlated 

heating value cases have potential to act as replacements for most experimental heating value 

cases, however, the experimental heating values are still preferred if available. In addition, some 

of the highest- and lowest-rank coal-based fuels were not accurately represented using correlated 

heating values, particularly in calculating equilibrium temperatures. This indicates that the 

heating value correlations discussed in Chapter 7 likely need to be improved with additional low- 

and high-rank coals (lignites/brown coals and anthracites). 
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