
ECEn 360 Lines and Fields Homework #2

- 1. Text: Problem 4.39
- 2. If the electric field is given by $\vec{E} = xy^2z \ \hat{x} + x^2yz \ \hat{y} + f \ \hat{z}$. What is a valid function for f?
- 3. What is the voltage between the points $P_1=(1,1,1)$ and $P_2=(2,2,2)$ if the electric field is given by $\vec{E} = yz\hat{x} + xz\hat{y} + xy\hat{z}$?
- 4. A coaxial cable is constructed that has a constant electric field between the conductors. What is the relative electrical permittivity, ε_r , as a function of radius?
- 5. Text: Problem 4.52
- 6. Text: Problem 4.54

- 7. A high DC voltage is applied to the slab of material shown in Figure 1. The top and bottom metal layers are assumed to be perfect conductors ($\varepsilon_r=1$, $\sigma=\infty$). Material 1 has the properties $\varepsilon_r=1.6^2$, $\sigma=10^{-8}$ S/m, $E_{ds}=10$ MV/m. Material 2 has the properties $\varepsilon_r=1.5^2$, $\sigma=10^{-12}$ S/m, $E_{ds}=20$ MV/m. The applied DC voltage is increased to the point immediately before dielectric breakdown occurs for either material 1 or material 2.
 - a. What is the circuit model for this problem? This model should include a voltage source, and resistors and capacitors.
 - b. What is the voltage being supplied?
 - c. What is the electric field in material 1?
 - d. What is the current being supplied by the voltage source?