
Chapter 1

Antennas

1.1 Calculating Radiated Fields

We have talked a lot about waves: how they propagation, how they behave at interfaces, and how
to guide them. We know need to learn how to generate these waves. The basic principle is: currents
radiate fields.

The question is: how do we determine the fields if we know the currents? Let’s go back to our wave
equation for E, but this time allow for the presence of currents.

∇× (∇× E) = −jωµ∇×H = −jωµ(jωεE + J) = ω2µεE − jωµJ

We can now use:
∇×∇×E = ∇(∇ · E)−∇2E

Normally, we let ∇ · E = 0 since ∇ ·D = 0 in a charge-free region. However, we typically create
radiation by injecting current into a metal structure. Charge can “bunch” up, resulting in an excess
of charge so that ∇ · D 6= 0. This makes the wave equation too difficult to solve. We therefore
resort to an alternate procedure.

I Bunch-up of positive charge

I Bunch-up of negative charge

I Bunch-up of positive charge

I Bunch-up of negative charge

We recall that we used the magnetic vector potential A (units Wb/m) in magnetostatics to simplify
the analysis. The same approach can be used here. We recall that

B = ∇×A

which naturally satisfies ∇ · B = 0 since ∇ · (∇ × A) = 0 for any arbitrary vector A. Let’s go
through this for dynamic fields.

∇× E = −jωB = −jω∇×A
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so
∇× E + jω∇×A = ∇× (E + jωA) = 0

We now define
E + jωA = −∇φ

where φ is the scalar electric potential for dynamics. We make this definition because there is an
identity ∇×∇φ = 0 for any scalar function φ. The minus sign is simply there for consistency with
electrostatic electric potential.

Now, using Ampere’s law:
∇×H = jωεE + J

Since

H =
B

µ
=

1
µ
∇×A

1
µ
∇×∇×A = J + jωεE = J + jωε(−jωA−∇φ)

∇(∇ ·A)−∇2A = µJ + ω2µεA− jωµε∇φ

Now, so far we have only specified ∇× A, which does not uniquely specify A. We need to specify
∇ ·A as well. A good choice is:

∇ ·A = −jωµεφ

We call this the Lorentz gauge. We can take the gradient to obtain ∇(∇ ·A) = −jωµε∇φ. Then,

−∇2A = µJ + ω2µεA = µJ + k2A

or
(∇2 + k2)A = −µJ

This is a differential equation that can be solved. The resulting solution gives the magnetic vector
potential A given a current distribution J . Once we know A, we can obtain H and E. There is
a very elegant way to solve this equation generally, but this approach is a bit too complicated for
this class. The end result of this analysis is that for a current density J(r′):

A(R) =
µ

4π

∫

V
J(R′)

e−jk|R−R
′|

|R−R
′|

dV ′

Remember that R when used as the argument of a function is simply a surrogate for the posi-
tion. For example, in Cartesian coordinates we could write J(R′) = J(x′, y′, z′). We have the
primed variables which are the integration or source coordinates. The unprimed variables represent
observation variables.

If you have had 380, you can see that this result is a convolution, where R is like t and R
′ is like

τ . A(R) = J(R) ∗ g(R) where g(R) plays the role of the impulse response.
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1.2 Hertzian Dipole

1.2.1 General Derivation

Let’s show how to apply this. We start with the simplest case. Suppose we have a very short dipole
of length `. Since the dipole length is short compared to the wavlength, the current is constant
over the length of the antenna. The current density can be written as

J(r′) = J(x′, y′, z′) = Ioẑδ(x′)δ(y′) − `/2 ≤ z′ ≤ `/2.

Plugging this into the equation for the magnetic vector potential yields

A(R) =
µ0

4π

∫ `/2

−`/2
Ioẑ

e−jk|R−R
′|

|R−R
′|

dz′

z

R

R’ r

z

R

R’ r

Notice that for a very short dipole, |R−R
′| ≈ R.

A(R) =
µ0

4π

∫ `/2

−`/2
Ioẑ

e−jkR

R
dz′ =

µ0

4π
Io`ẑ

e−jkR

R

We call this the Hertzian dipole.

Typically, we are interested in determining the field a fixed distance away from the origin. So,
instead of using Cartesian coordinates, it’s easier to use spherical coordinates:

ẑ = R̂ cos θ − θ̂ sin θ

A = (R̂ cos θ − θ̂ sin θ)
µ0

4π
Io`

e−jkR

R

Now, using:

H =
1
µ0
∇×A

= φ̂
Io`

4π

[
jk +

1
R

]
sin θ

e−jkR

R

E =
1

jωε0
∇×H

= R̂
2η0Io`

4π

[
1− j

kR

]
cos θ

e−jkR

R2
+ θ̂

η0Io`

4π

[
jk +

1
R
− j

kR2

]
sin θ

e−jkR

R
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The power radiating from the antenna would be the R̂ component of S.

SR = E ×H
∗ · R̂

=
{

θ̂
η0Io`

4π

[
jk +

1
R
− j

kR2

]
sin θ

e−jkR

R

}
×

{
φ̂

Io`

4π

[
jk +

1
R

]
sin θ

e−jkR

R

}∗
· R̂

= η0

∣∣∣∣
Io`

4π

∣∣∣∣
2 sin2 θ

R2

{
k2 +

jk

R
− jk

R
+

1
R2

− 1
R2

− j

kR3

}

= η0

∣∣∣∣
Io`

4πR

∣∣∣∣
2

sin2 θ

{
k2 − j

kR3

}

So, the real power decays as 1/R2 as expected. There is some reactive power stored near the dipole
which decays as 1/R5.

Sav,R =
η0

2

∣∣∣∣
kIo`

4πR

∣∣∣∣
2

sin2 θ = So sin2 θ

We are generally interested in field behaviors far from the dipole. So, we only keep the dominant
terms for large R. This means we neglect any field terms that decay as 1/R2, 1/R3.

Eff = θ̂
η0

4π
Io`jk

e−jkR

R
sin θ

Hff = φ̂
1
4π

Io`jk
e−jkR

R
sin θ

We see that
Hff =

1
η0

k̂ × Eff

just like for plane waves. This confirms what we have been saying that a spherical wave behaves
like a plane wave when the sphere radius is large.

Sav,ff = R̂
η0

2

∣∣∣∣
kIo`

4πR

∣∣∣∣
2

sin2 θ = R̂So sin2 θ

For a fixed radius the power density Sav,ff varies with θ but not with φ. We get the donut pattern
shown below.

x

y

x

zTop View
θ = π/2

Side View
φ = 0 or π

x

y

x

zTop View
θ = π/2

Side View
φ = 0 or π

The power density of the Hertzian dipole decays with distance 1/R2.
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1.3 General Antenna Parameters

1.3.1 Antenna Pattern

The antenna pattern is a functional representation of how the radiated power density (in the far-
field) varies with position. It is defined as:

F (θ, φ) =
Sav,ff · R̂

(Sav,ff · R̂)max

The antenna pattern is often shown in dB and many times in polar coordinates. The main param-
eters that are often extracted from the antenna pattern are the beam width and the maximum side
lobe power.

Let’s examine the antenna pattern a little more. To aid in this, we define the solid angle. In
spherical coordinates:

dA = R2 sin θdθdφ

We define the differential solid angle as

dΩ =
dA

R2
= sin θdθdφ

We have shown before that ∫ 2π

0

∫ π

0
dΩ = 4π

So, full solid angle is 4π (units = steradians)

Now, the power radiated by the antenna is:

Prad =
∫ 2π

0

∫ π

0
Sav(θ, φ) · R̂R2 sin θdθdφ

= R2

∫ 2π

0

∫ π

0
Sav,R(θ, φ)dΩ

= R2Smax

∫ 2π

0

∫ π

0
F (θ, φ)dΩ

Often, we plot the radiation pattern in dB:

FdB = 10 log F

This allows us to clearly see nulls in the pattern. When we plot this, we define:

1. Main Lobe: Angular region where most of the energy is transmitted

2. Side Lobes: Smaller lobes of energy transmission

3. Elevation Plane: Plane for a constant value of φ

4. Azimuth Plane: Plane for θ = 90◦

5. Pattern Beamwidth: Angular extent of main lobe between two angles at which |F (θ, φ)|
is half its peak value (-3 dB)
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1.3.2 Directivity

The directivity characterizes the angular extent of the transmitted beam. A high directivity means
that the power is confined to a smaller angular region. An antenna with a high directivity has good
power confinement but requires more accurate pointing.

The directivity is defined as the maximum radiation pattern over its average as given by

D =
Fmax

Fav
=

1
1
4π

∫ 2π
0

∫ π
0 F (θ, φ)dΩ

Note that:
1
4π

∫ 2π

0

∫ π

0
F (θ, φ)dΩ =

Prad

4πR2Smax

So the directivity can also be written as

D =
Smax

Prad/4πR2

Therefore, the directivity D represents the maximum power density over the power density that
would occur if all the power were radiated equally in all directions.

D =
Smax

Sisotropic radiator

1.3.3 Gain

Let Pt be the total power supplied to the antenna from the transmitter. The antenna radiation
efficiency is:

Radiation Efficiency: ξ =
Prad

Pt

Gain: G =
Smax

Pt/4πR2
=

Smax

Prad/ξ4πR2
= ξD

So, the gain accounts for losses in the antenna (or possibly impedance mismatches between the
generator and the antenna), while directivity does not.

1.3.4 Radiation Resistance

To the transmission line feeding the antenna, the antenna is merely an impedance. In fact, antennas
are simply matching devices between the transmission line and free space. We define a radiation
resistance Rrad which relates the radiated power to the antenna driving current as:

Prad =
1
2
I2
oRrad

The ohmic loss in the antenna represented by resistance Rloss is:

Ploss =
1
2
I2
oRloss
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The total power delivered to the antenna is therefore:

Pt = Prad + Ploss =
1
2
I2
o (Rrad + Rloss)

We can therefore express the radiation efficiency as:

ξ =
Prad

Pt
=

Rrad

Rrad + Rloss

Since Rrad = 2Prad/I2
o , for a Hertzian dipole we have:

Rrad = η0
(kI2

o `)2

12π

2
I2
o

= η0
(k`)2

6π

Since η0 = 120π, k = 2π/λ:

Rrad =
120π

6π

(
2π

λ
`

)2

= 80
(

π`

λ

)2

For very short dipoles (` → 0), the radiation resistance is very small, which means it is hard to
radiate real power with a short dipole.

If the Hertzian dipole length is

` =
λ

50
then the radiation resistance is

Rrad = 80
(

pi

50

)2

` = 0.3Ω

Example

A satellite antenna is designed to illuminate the continental US. What is the antenna directivity?

Assume the antenna pattern is 1 inside of some cone and 0 outside.

Assume that the distance between the satellite and the earth is L = 40, 000km and that the
diameter of the continental US is 2r = 2, 500mi or 2r = 4× 106m.

The antenna illuminates a cone with an angle of

tan θ =
r

L
=

2× 106

4× 107

θ = 2.86o

The antenna pattern is

F =
{

1 0 < θ < 2.86o

0 else
(1.1)

D =
1

Fav
(1.2)
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Fav =
1

4πR2

∫ 2π

φ=0

∫ 2.86o

θ=0
R2 sin θdθdφ (1.3)

=
1
4π

(2π) cos θ|2.86o

0 (1.4)

=
1
2

[1− cos (2.86o)] (1.5)

= 6.2× 10−4 (1.6)

D =
1

6.2× 10−4
= 1606 (1.7)

1.4 Hertzian Dipole

Let’s examine the antenna parameters for the Hertzian dipole.

Sav,ff = R̂
η0

2

∣∣∣∣
kIo`

4πR

∣∣∣∣
2

sin2 θ

F (θ, φ) = sin2 θ

The 3 dB beamwidth is:

sin2 θ3dB =
1
2

θ3dB = 45◦

Beamwidth = β = 90◦

x

z o453 =dBθ
half-power point

x

z o453 =dBθ
half-power point

The direction of maximum radiation occurs at θ = 90◦ or perpendicular to the dipole.

Smax =
η0

2

(
kIo`

4πR

)2

Prad = R2Smax

∫ 2π

φ=0

∫ π

θ=0
F (θ, φ) sin θdθdφ

=
η0

2

(
kIo`

4π

)2 ∫ 2π

φ=0

∫ π

θ=0
sin3 θdθdφ

=
η0

2

(
kIo`

4π

)2

2π

∫ π

θ=0
sin3 θdθdφ
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We need to integrate sin3 θ. Here is the basic procedure used. Substitute sin2 θ = 1− cos2 θ to get
∫

sin3 θdθ =
∫ (

1− cos2 θ
)
sin θdθ (1.8)

=
∫

sin θdθ −
∫

cos2 θ sin θdθ (1.9)

Do a u substitution for the cos term as given by

u = cos θ (1.10)
du = − sin θdθ (1.11)

The integral then becomes
∫

sin3 θdθ =
∫

sin θdθ −
∫

u2 sin θ

− sin θ
du (1.12)

= − cos θ +
1
3
u3 (1.13)

= − cos θ +
1
3

cos3 θ (1.14)

Evaluating the integral becomes
∫ π

θ=0
sin3 θdθ =

1
3

[cos(π)− cos(0)]− [cos(π)− cos(0)] (1.15)

=
(

2− 2
3

]
(1.16)

=
4
3

(1.17)

∫ π

0
sin3 θdθ = −1

3
(
2 + sin2 θ

)
cos θ|θ=π

θ=0 (1.18)

=
[
−1

3
(2 + 0) (−1)

]
−

[
−1

3
(2 + 0) (1)

]
(1.19)

=
1
3
(2) +

1
3
(2) (1.20)

=
4
3

(1.21)

The resulting total radiated power is

Prad =
η0

2

(
kIo`

4π

)2

(2π)
(

4
3

)
(1.22)

=
η0 (kIo`)

2

12π
(1.23)
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D =
Fmax

Fav
(1.24)

=
1

1
4π

∫ 2π
φ=0

∫ π
θ=0 sin3 θdθdφ

(1.25)

=
1

1
4π

8π
3

(1.26)

= 1.5 (1.27)

1.5 Dipole Antennas

The Hertzian dipole is great because it is easy to formulate the fields for this antenna. However,
it is impractical because we cannot effectively radiate power with such an antenna (the radiation
resistance is small). The analysis that we used assumes that the current along the dipole is constant.
However, for dipoles of a practical length (say a half wavelength), the current is not constant along
the dipole, and therefore our analysis is incorrect. We therefore desire to examine this more practical
antenna structure.

Before we can do this analysis, however, we need to make some simplifications to our integral for A.
For realistic currents, we generally cannot perform the integration to compute A. However, since
we are typically interested in the far-fields, we can make a far-field approximation to the integral.

Let R̂ be the unit vector in the direction of the observation vector r. For a point r very far from
the source point r′, we can approximate the value

|r − r′| ≈ R− R̂ · r′ (1.28)

So, for the phase term in our Green’s function, we can write

e−jk|r−r′| ≈ e−jkRejkR̂·r′ (1.29)

For the magnitude, we can simplify this expression even further by neglecting the term R̂ · r′ to
write

1
|r − r′| ≈

1
R

(1.30)

We therefore have our far-field approximate form of the magnetic vector potential given as

Aff(r) =
µ

4π

e−jkR

R

∫
J(r′)ejkR̂·r′ (1.31)

Furthermore, when we take the curl of Aff to obtain the magnetic and electric fields, we neglect
any terms that come from this expression that decay faster than 1/R (i.e. terms that behave as
1/R2, 1/R3, etc. This simplification leads to the forms

Bff = ∇×Aff ≈ −jkR̂×Aff

Eff =
1

jωε
∇×Hff ≈ − jk

jωε
R̂×Hff ≈ jωR̂× (R̂×Aff)
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R̂

r
'r

'rr −

'ˆ rRR ⋅−

R̂

r
'r

'rr −

'ˆ rRR ⋅−

We can now do the integration for a half-wavelength dipole. A reasonable approximation for the
current on a dipole is a sinusoid that goes to zero at the ends of the dipole wires, or J(r′) =
ẑIoδ(x′)δ(y′) cos(kz′), −λ/4 ≤ z′ ≤ λ/4. Then

Aff(r) =
µ0

4π

e−jkR

R

∫ λ/4

−λ/4
ẑIo cos(kz′)ejkz′ cos θdz′

= ẑ
µ0

8π

e−jkR

R
Io

∫ λ/4

−λ/4

[
ejkz′(cos θ+1) + ejkz′(cos θ−1)

]
dz′

= (R̂ cos θ − θ̂ sin θ)
µ0

2kπ

e−jkR

R
Io

cos [π/2 cos θ]
sin2 θ

Hff(r) = −jk

µ0
R̂×Aff(r) = φ̂

jIo

2π

e−jkR

R

cos [π/2 cos θ]
sin θ

Eff = jωR̂× (R̂×Aff) = θ̂
jη0Io

2π

e−jkR

R

cos [π/2 cos θ]
sin θ

The time-average Poynting vector is:

Sav,R =
|Eff|2
2η0

=
η0|Io|2
8(πR)2

{
cos [π/2 cos θ]

sin θ

}2

This Poynting vector is maximum at θ = π/2 with the maximum being

Smax =
η0|Io|2
8(πR)2

Therefore, the radiation pattern is:

F (θ) =
{

cos [π/2 cos θ]
sin θ

}2

With this radiation pattern, we can determine:

Radiated Power: Prad = 36.6|Io|2

Directivity: D = 1.64

Radiation Resistance: Rrad = 73Ω
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1.6 Receiving

Antennas are also used for capturing energy from an incident wave and converting it into power.

The power collected by the receiving antenna depends on the power density of the the incident
wave and the effective collecting area of the antenna as given by

Prec = Si Ae, (1.32)

where Si is the power density of the incident wave, Prec is the power collected by the receiver, and
Ae is the effective collecting area of the receiving antenna.

The basic derivation process is:

1. calculate the amount of power collected by a Hertzian dipole

2. relate this to an effective area the collected power

3. generalize to an arbitrary antenna by relating the effective area to the directivity

These following derivation assume that (1) the antenna is impedance matched to the waveguide
and (2) the antenna loss is low Rloss ¿ Rrad.

The first step is to calculate the collected power for a given incident power density. The load is
matched to the antenna ZL = Z∗in. The load current is thus given by

IL =
Voc

Zin + ZL
=

Voc

2Rrad

Prec =
1
2
|IL|2 Rrad (1.33)

=
1
2

|Voc|
(2Rrad)

2 Rrad =
|Voc|2
8Rrad

(1.34)

The power density is related to the incident electric field as given by

Si =
|Ei|2
2ηo

=
|Ei|2
240π

The effective area of the antenna is

Ae =
Prec

Si
=
|Voc|2
8Rrad

240π

|Ei|2
=

∣∣∣∣
Voc

Ei

∣∣∣∣
2 30π

Rrad
(1.35)

For a Hertzian dipole the field is constant across the antenna aperture resulting in

Voc = Ei `

and

Rrad = 80π2

(
`

λ

)2

.
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The effective area can then be calculated to be

Ae =
∣∣∣∣
Ei `

Ei

∣∣∣∣
2 30π

80π2

(
λ

`

)2

(1.36)

=
3λ2

8π
(1.37)

Relating this to the gain of a Hertzian dipole results in

Ae =
λ2G

4π
, (1.38)

which can be applied to any antenna.

Now we want to couple the transmitting and receiveing antennas together to get a complete link.
Start with calculating the the power density produced by the transmitting antenna as given by

Gt =
Power Density

Power density of an isotropic radiator
(1.39)

=
Si

Pt
4πR2

(1.40)

= Si

(
4πR2

Pt

)
(1.41)

Si = Gt

(
Pt

4πR2

)
(1.42)

Now determine the power collected by the receiving antenna as given by

Prec = SiAr. (1.43)

Relate the effective area to the antenna gain to get

Prec = SiGr

(
λ2

4π

)
. (1.44)

Now plug in the equation relating the power density to the transmitting antenna to give

Prec =
(

Gt
Pt

4πR2

)
Gr

(
λ2

4π

)
. (1.45)

Resulting in Friis transmission formula, which is given by

Prec

Pt
= Gt Gr

(
λ

4πR

)2

. (1.46)

Example

A satellite to ground link is established for satellite TV with the following system parameters:
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• Pt = 100W

• L = 40, 000km

• minimum detectable power Prec = 1pW

• the antennas are completely lossless

The effective area of a dish antenna is approximately equal to the area of the dish. In order to
keep the price down the transmitting antenna is chosen to be 4 times larger than the antenna on
the ground At = 4 Ar. What is the diameter of the receiving antenna?

Prec

Pt
= GtGr

(
λ

4πR

)2

(1.47)

10−12

100
= Ar At

(
4π

λ2

)2 (
λ

4πR

)2

(1.48)

10−14 = Ar At

(
1

λR

)2

(1.49)

Since we chose At = 4Ar, we get

10−14 = 4A2
r

(
1

λR

)2

(1.50)

10−14 = 4A2
r

(
1

λR

)2

(1.51)

Ar =

√
10−14

4
4× 107λ (1.52)

= 2 λ (1.53)

If the frequency is C-band (f=4GHz) then the antenna diameter is d = 0.4m.

1.7 Antenna Arrays

There are a variety of different benefits of antenna arrays. Here are a few of the most common
advantages:

• Increasing the directivity of a simple antenna

• Concentrating the radiated power where you want it

• Eliminating the radiated power (or received power) where you don’t want it

• Electronically steering the direction of a highly directional antenna
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For our Hertzian dipole antenna:

Eff = θ̂
η0

4π
Io`jk

e−jkR

R
sin θ = θ̂E0

e−jkR

R
sin θ

Suppose we now have several such antennas, each having a different excitation current (magnitude
and phase) arranged in a line. We call this an antenna array. We will generalize our far-field
electric field for a single element so that our analysis can apply to any element type (not just the
Hertzian dipole). The ith element will have electric field

Ei(Ri, θi, φi) = Ai
e−jkRi

Ri
fe(θi, φi)

We have broken down this single element field into a current weight (Ai = aie
jψi), a spherical wave

factor (e−jkRi/Ri), and a vector function that depends only on the observation angles (fe(θi, φi).
The distance Ri is of course the distance from the ith element to the observation point. The angles
have a similar definition, as shown.

x

z

d
0R

1R

2R2θ

0θ

z0

z2

z3

z1

x

z

d
0R

1R

2R2θ

0θ

z0

z2

z3

z1

x

z

d

θ

z0

z2

z3

z1

θcosd

R

x

z

d

θ

z0

z2

z3

z1

θcosd

R

The total field for this array is

E =
N−1∑

i=0

Ai
e−jkRi

Ri
fe(θi, φi)

We now go back to our far-field assumption. From the figure, we can see that the far-field approx-
imation suggests θi = θ and φi = φ for all i. Also, R1 = R − d cos θ for phase and R1 = R for
magnitude. More generally:

Phase: Ri ≈ R− id cos θ

Magnitude: Ri ≈ R

Our total field then becomes:

E = fe(θ, φ)
e−jkR

R︸ ︷︷ ︸
Single Element Radiation

N−1∑

i=0

Aie
jkid cos θ

︸ ︷︷ ︸
fa(θ)
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So, the total electric field can be written as the product of the single element radiation and an
additional factor that takes into account the array. The power density is:

S(R, θ, φ) = Sff(R, θ, φ)Fa(θ)

where

Fa(θ) =

∣∣∣∣∣
N−1∑

i=0

Aie
jkid cos θ

∣∣∣∣∣

2

We call Fa(θ) the array factor for the pattern. It gives the shape of the radiation pattern due
to the combination of the multiple elements independent of the shape of the individual element
patterns. Often, the array factor dominates the behavior of the total radiation pattern.

1.7.1 Two Element Arrays

There are basic antenna array processes.

• Analysis: The individual antenna elements are known and we calculate the pattern that is
produced

• Synthesis: The antenna pattern is known and we try and determine the individual antenna
elements that will produce this pattern

Let’s look at two vertical Hertzian dipoles that are:

• separated by d = λ
2

• have equal amplitudes ao = a1

• are out of phase by π/2
(
φ0 = 1, φ1 = π

2

)

The array factor becomes

Fa =
∣∣∣1 + e−j π

2 ejkid cos θ
∣∣∣
2

(1.54)

=
∣∣∣1 + e−j π

2 ej 2π
λ

λ
2

cos θ
∣∣∣
2

(1.55)

=
∣∣∣1 + e−j π

2 ejπ cos θ
∣∣∣
2

(1.56)

To simplify this we use the following:

∣∣1 + ejx
∣∣ =

∣∣∣2ej x
2

(
e−j x

2 + ej x
2

)∣∣∣
2

(1.57)

= 4 cos2
(x

2

)
(1.58)

So our original equation becomes

Fa = 4 cos2
(π

2
cos θ − π

4

)
(1.59)
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The total antenna pattern is then given by

Sa = 4So cos2
(π

2
cos θ − π

4

)
(1.60)

This pattern has a maximum when

π

2
cos θ − π

4
= 0 (1.61)

or

cos θ =
1
2

(1.62)

θ = ±60o (1.63)

and minimums when
π

2
cos θ − π

4
= −π

2
(1.64)

θ = ±120o (1.65)

  1

  2

  3

  4

30

210

60

240

90

270

120

300

150

330

180 0

Next let’s look at an example of pattern synthesis. In this example we want to use two antennas
to produce no radiation in the north/south directions and maximum radiation in the east/west
direction.

Again we start with the array factor as given by

Fa(θ) =
∣∣∣1 + a1e

jψ1ej 2πd
λ

cos θ
∣∣∣
2

(1.66)

We want Fa = 0 when θ = ±90o (North/South direction). Since cos 90o = 0 the array factor
becomes

Fa(θ = 90o) =
∣∣∣1 + a1e

jψ1

∣∣∣
2

= 0.
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This requires a1 = ao = 1 and ejψ1 = −1 or ψ1 = π.

In order to have a maximum at θ = 0 (cos(0) = 1) the array factor becomes

Fa(θ = 90o) =
∣∣∣1 + a1e

jψ1ej2πdλ
∣∣∣
2

= 1,

resulting in

ejπej2πdλ = 1 (1.67)

d =
λ

2
(1.68)

The resulting array factor is

Fa =
∣∣∣1− ejπ cos θ

∣∣∣
2

(1.69)

=
∣∣∣
(
2j ej π

2

)(
e−j π

2
cos θ − ej π

2
cos θ

)∣∣∣
2

(1.70)

= 4 sin2
(π

2
cos θ

)
(1.71)
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And if the phase is ψ1 = 0 then the array pattern becomes

Fa = 4 cos2
(π

2
cos θ

)
(1.72)
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1.7.2 Uniform Phase Multi-Element Arrays

Let’s examine the special case:
Ai = ejiψ

We call this a uniformly excited array with a linearly progressive phase.

Fa(θ) =

∣∣∣∣∣
N−1∑

i=0

eji(ψ+kd cos θ)

∣∣∣∣∣

2

=

∣∣∣∣∣
N−1∑

i=0

[
ej(ψ+kd cos θ)

]i
∣∣∣∣∣

2

This is a geometric series:
N−1∑

i=0

γi − 1− γN

1− γ
for |a| ≤ 1

Fa(θ) =

∣∣∣∣∣
1− ejN(ψ+kd cos θ)

1− ej(ψ+kd cos θ)

∣∣∣∣∣
2

=

∣∣∣∣∣
ejN(ψ+kd cos θ)/2

ej(ψ+kd cos θ)/2

e−jN(ψ+kd cos θ)/2 − ejN(ψ+kd cos θ)/2

e−j(ψ+kd cos θ)/2 − ej(ψ+kd cos θ)/2

∣∣∣∣∣
2

=
∣∣∣∣
−j2 sin [N(ψ + kd cos θ)/2]
−j2 sin [(ψ + kd cos θ)/2]

∣∣∣∣
2

=
sin2 [N(ψ + kd cos θ)/2]
sin2 [(ψ + kd cos θ)/2]
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Let u = (ψ + kd cos θ)/2, then

Fa(u) =
sin2(Nu)

sin2 u

1. At u = ±mπ:

lim
u→±mπ

sinNu

sinu
= lim

u→±mπ
N

cosNu

cosu
= N

cos(±Nmπ)
cos(±mπ)

= N(−1)(N−1)m

So:
Fa(±mπ) = N2

[
(−1)(N−1)m

]2
= N2

2. Zeros of Fa(u) occur at u = mπ/N except for m = 0, ±N , ±2N , etc. (since these points are
equivalent to the peaks determined above).

3. Because cos θ = (2u− ψ)/kd and −1 ≤ cos θ ≤ 1, we have:

−1 ≤ 2u−ψ
kd ≤ 1

−kd ≤ 2u− ψ ≤ kd

ψ − kd

2
≤ u ≤ ψ + kd

2

We can use this information to sketch the array factor quite easily. First, we sketch Fa(u). As an
example, consider N = 7, ψ = −π/2, and d = λ/2 (kd = π). We know that

−π/2− π

2
≤ u ≤ −π/2 + π

2
→ −3π

4
≤ u ≤ π

4

We call this range of u the Visible Window. Again look at the definition

u =
ψ

2
+

kd

2
cos θ

This implies that to map u to θ, we draw a circle centered at ψ/2 with radius kd/2 as shown. We
call this technique the visible window technique for plotting array factors. The plot on the right is
the array factor in dB.
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