
Chapter 1

Electrostatics

1.1 Maxwell’s Equations

Electromagnetic behavior can be described using a set of four fundamental relations known as
Maxwell’s Equations. Note that these equations are observed, not derived. In general, these
equations are given by

∇ ·D = ρv (1.1)

∇× E = −∂B

∂t
(1.2)

∇ ·B = 0 (1.3)

∇×H = J +
∂D

∂t
(1.4)

where

E: Electric field intensity V/m
H: Magnetic field intensity A/m
D: Electric flux density C/m2

B: Magnetic flux density Wb/m2

ρv: Electric charge density C/m3

J : Electric current density A/m2

There is also an integral form of these equations that can be represented as
∮

S
D · ds =

∫

V
ρv dV = Q (1.5)

∮

C
E · d` = − d

dt

∫

A
B · ds (1.6)

∮

S
B · ds = 0 (1.7)

∮

C
H · d` =

∫

A
J · ds +

d

dt

∫

A
D · ds (1.8)
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where S is the closed surface bounding the volume V and C is the closed path bounding the area
A. We will actually show how the integral and differential forms of these equations are related a
little later. For now, just take them on faith.

Suppose that the fields do not change in time (static fields). All of the time derivatives go to zero,
and so Maxwell’s equations become

∇ ·D = ρv (1.9)
∇× E = 0 (1.10)
∇ ·B = 0 (1.11)
∇×H = J (1.12)

Note that for the case of static fields, the electric and magnetic fields are no longer coupled.
Therefore, we can treat them separately. For electric fields, we are dealing with electrostatics. For
magnetic fields, we are dealing with magnetostatics.

1.2 Charge and Current Distributions

We need to remind ourselves about charges. The volume charge density is the amount of charge
per unit volume. It can vary with position in the volume. The total charge is the integral of the
charge density over the volume V , or

Q =
∫

V
ρv dV (1.13)

where Q is the charge in coulombs (C). When dealing with things like conductors, the charge may
be distributed on the surface of a material. We therefore are interested in the surface charge density
ρs with units of C/m2. This is the amount of charge per unit area on the surface. The total charge
Q would be the integral of ρs over the surface. Finally, we can have a line charge density ρ` with
units of C/m which is the amount of charge per unit distance along a line. An example of this
might be a very thin wire. The total charge Q would be the integral of ρ` over the length of the
line segment.

By a similar token, we can discuss current density. J is the volume current density, measured in
units of A/m2. It represents the amount of current flowing through a unit surface area. The total
current flowing through a surface A is therefore

I =
∫

A
J · ds (1.14)

We can also define a surface current density Js with units of A/m. This means the current is
confined to the surface, and so Js is the amount of current per unit length, where the length
represents the “cross-section” of the surface.

If we have a volume charge density ρv moving at a velocity u (note that we are including the vector
direction in the velocity), then J = ρvu.

1.3 Electric Fields and Flux

Let’s also quickly review electric fields and flux. Coulomb’s law states that
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1. an isolated charge q induces an electric field E at every point in space. At an observation
point a distance R from this charge, the electric field is

E = R̂
q

4πεR2
(1.15)

where R̂ is the unit vector pointing from the charge to the observation point. ε is called the
permittivity of the medium.

2. The force on a charge q′ due to an electric field is

F = q′E (1.16)

Now, the permittivity is:

ε = ε0εr

ε0 = 8.854× 10−12 F/m permittivity of vacuum (free space)
εr relative permittivity or dielectric constant of material

The electric flux density due to an electric field is

D = εE (1.17)

The electric field for a charge distribution is given by

E =
1

4πε

∫

v′
ρ′v

R−R
′

|R−R
′|3

dv′ (1.18)

In cartesian coordinates this becomes

ρ v'

R'

R

R
-R

'

P(x,y,z)

x

y

z

R′ = x′x̂ + y′ŷ + z′ẑ (1.19)
R = xx̂ + yŷ + zẑ (1.20)

dv′ = dx′dy′dz′ (1.21)
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E(x, y, z) =
1

4πε

∫

v′
ρ′v(x

′, y′, z′)
(x− x′)x̂ + (y − y′)ŷ + (z − z′)

[(x− x′)2 + (y − y′)2 + (z − z′)2]3/2
dx′ dy′ dz′ (1.22)

Even for a fairly simple charge distribution ρ′v this equation is very complicated.

1.4 Review of Cylindrical and Spherical Coordinates

1.4.1 Cylindrical Coordinates

x

z

y

φ
r

z

x

z

y

φ
r

z

(r, φ, z)
r =

√
x2 + y2

φ = tan−1(y/x) = angle from +x axis

Swept Variable Differential Length
r dr
φ rdφ
z dz

1.4.2 Spherical Coordinates

(R, θ, φ)
R =

√
x2 + y2 + z2

φ = tan−1(y/x) = angle from +x axis
θ = cos−1(z/R) = angle from +z axis

Swept Variable Differential Length
R dR
θ R dθ
φ R sin θdφ
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1.5 Gauss’s Law

Starting with the point form of one of Maxwell’s equations

∇ ·D = ρv (1.23)

we want to convert it into the integral for. We do this by integrating both sides over a particular
volume to get

∫

v
∇ ·Ddv =

∫

v
ρvdv. (1.24)

The divergence theorem is then used to convert the volume integral on teh left side to a surface
integral as given by

∮

S
D · ds =

∫

v
ρvdV = Q. (1.25)

This equation is Gauss’s Law.

Let’s look at a parallel plate capacitor. We know that we have charge (equal and opposite) on the
two conductors. Gauss’s Law says that the flux equals the charge:

ψe =
∮

S
D · ds =

∫

V
ρvdV = Q (1.26)

z
+V0

0

z
+V0

0
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1.5.1 Applying Gauss’s Law

1. Use symmetry to guess direction of D.

2. Express flux as a vector (use unit vectors) with an unknown constant.

3. Pick surface to use for applying Gauss’s Law.

4. Apply Gauss’s Law.

5. Solve for unknown constant.

1.5.2 Point Charge

RR

1. Flux must extend radially from point charge.

2. Flux density: D = DoR̂.

3. Surface = sphere of radius R.

4. Gauss’s Law:
∮

S
D · ds =

∫

V
ρvdV = Q (1.27)

∮

S
D · ds =

∫ 2π

0

∫ π

0
DoR̂ · R̂R2 sin θdθdφ (1.28)

= 2πDoR
2

∫ π

0
sin θdθ = 4πDoR

2 = Q (1.29)

5.

Do =
Q

4πR2
(1.30)

D =
Q

4πR2
R̂ (1.31)

So, the flux density falls off as 1/4πR2 = 1/surface area of sphere of radius R.

Note that we often use sin θdθdφ, which is a differential solid angle. A full sphere has 4π steradians
of solid angle.
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1.5.3 Line Charge

D = Dor̂ (1.32)∫ L

0

∫ 2π

0
Dor̂ · r̂rdφdz = 2πrLDo = Q (1.33)

Do =
Q

2πrL
(1.34)

D =
Q

2πrL
r̂ =

Q

L

1
2πr

r̂ (1.35)

Note that Q/L = ρ` which is the line charge density. So

D =
ρ`

2πr
r̂ (1.36)

z

r

z

r

1.5.4 Plane Charge

x

z

y

charge

integration
surface

x

z

y

charge

integration
surface

Suppose we have charge uniformly distributed over a plane. We choose the x-y plane for simplicity.
Since the flux will be uniform in x and y, just look over a small area.

D =
{

Doẑ z > 0
−Do ẑ z < 0

(1.37)

Our surface for applying Gauss’s law is the cube with the plane of charge cutting it in half.

7



∫ Lx

0

∫ Ly

0
Doẑ · ẑdxdy −−

∫ Lx

0

∫ Ly

0
Doẑ · ẑdxdy = Q (1.38)

2DoLxLy = Q (1.39)

Do =
Q

2LxLy
(1.40)

D =
1
2

Q

LxLy
ẑ, z > 0 (1.41)

Note that Q/LxLy = ρs. Note also that the factor of 2 can be explained by the fact that 1/2 of
the flux goes in the +z direction and 1/2 goes in the −z direction.

1.5.5 Sphere of Charge

R

2a ρv C/m3

R

2a ρv C/m3

Rv

3

ρ
2

3

3R

avρ

a R

DR

Rv

3

ρ
2

3

3R

avρ

a R

DR

Consider a sphere of radius a filled with charge at a volume charge density of ρv. The flux will be
D = DoR̂.

For R ≤ a:
∫ 2π

0

∫ π

0
DoR̂ · R̂R2 sin θdθdφ =

∫ 2π

0

∫ π

0

∫ R

0
ρvR

2 sin θdRdθdφ (1.42)

4πR2Do =
ρv

3
R34π (1.43)

Do =
ρvR

3
(1.44)

D =
ρv

3
RR̂ (1.45)

For R ≥ a:
∫ 2π

0

∫ π

0
DoR̂ · R̂R2 sin θdθdφ =

∫ 2π

0

∫ π

0

∫ a

0
ρvR

2 sin θdRdθdφ (1.46)

4πR2Do =
ρv

3
a34π (1.47)

Do =
ρva

3

3R2
(1.48)

D =
ρva

3

3R2
R̂ (1.49)
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1.6 Electric Potential

Suppose that we have a positive charge in an electric field. To move the charge against the electric
field requires that we apply a force:

F ext = −qE (1.50)

The energy expended is:
dW = −qE · d` (1.51)

The differential energy per unit charge is defined as the differential electric potential:

dV =
dW

q
= −E · d` (1.52)

with units of volts = J/C.

To find the potential difference, we integrate dV:

V21 = V2 − V1 =
∫ P2

P1

dV = −
∫ P2

P1

E · d` (1.53)

Let’s carefully consider the sign. If we have E = Eox̂, and we integrate in d` from x1 to x2, where
x2 > x1, then V2 < V1. Therefore, V2 − V1 < 0, meaning we have experienced a voltage drop. The
equation is:

V21 = V2 − V1 = −
∫ x2

x1

Eodx = −Eo(x2 − x1) (1.54)

For static fields, V21 is independent of the path taken. This also implies that
∮

C
E · d` = 0 (1.55)

Note that this is one of Maxwell’s equations for statics. In fact, there is a theorem in vector calculus
known as Stokes’ Theorem which states that

∫

S
(∇× E) · ds =

∮

C
E · d` (1.56)

So, using (??) in Stokes’ Theorem results in

∇× E = 0 (1.57)

which is the differential form of Faraday’s Law for statics.

1.6.1 Example 1

Let
E = xx̂ + yŷ = r cosφx̂ + r sinφŷ = r(x̂ cosφ + ŷ sinφ) = rr̂ (1.58)

We want to find the potenial for the path defined by x = y from (0, 0) to (1, 1).

VBA = VB − VA = −
∫ √

2

0
rdr = − r2

2

∣∣∣∣

√
2

0

= −1 (1.59)
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1.6.2 Example 2

Let E = xx̂ = r cosφx̂. We want to find the potenial for the circle of radius r = 1 about the origin
in the x-y plane. Therefore, d` = φ̂rdφ (don’t forget to plug in r = 1 everywhere).

VBA = −
∫ 2π

0
xx̂ · φ̂dφ

= −
∫ 2π

0
cosφ(− sinφ)dφ

=
1
2

∫ 2π

0
sin 2φdφ = 0

x

y

A

B
x

y

A

B

1.6.3 Example 3

Let E = yx̂ + xŷ = r sinφx̂ + r cosφŷ. We will use the same unit circle as above.

VBA = −
∫ 2π

0
[sinφ(x̂ · φ̂) + cosφ(ŷ · φ̂)]dφ

= −
∫ 2π

0
[− sin2 φ + cos2 φ]dφ

= −
∫ 2π

0
cos 2φdφ = 0
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1.6.4 Poisson’s and Laplace’s Equations

We have examined the integral relation between electric field and potential. However, if we know
the potential, how do we obtain the electric field? First, we need to recall from vector calculus that
the differential of any scalar can be written as

dT =
∂T

∂x
dx +

∂T

∂y
dy +

∂T

∂z
dz (1.60)

=
(

∂T

∂x
x̂ +

∂T

∂y
ŷ +

∂T

∂z
ẑ

)
· (dxx̂ + dyŷ + dzẑ) (1.61)

= ∇T · d` (1.62)

Therefore, we can rewrite (??) as

dV = −E · d` = ∇V · d` (1.63)

and can conclude from this that
E = −∇V (1.64)

Now, using Gauss’s Law in differential form leads to

∇ ·D = ∇ · εE = −ε∇ · ∇V = ρv (1.65)

∇ · ∇V = −ρv

ε
(1.66)

∇2V = −ρv

ε
(1.67)

This is known as Poisson’s Equation. If we have a charge-free region (ρv = 0) then

∇2V = 0 (1.68)

which is known as Laplace’s Equation. Now we have mechanisms for finding the field if we know
the potential Note that in Cartesian coordinates

∇2V =
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
(1.69)

We will actually solve these equations in the laboratory.

1.7 Electric Properties of Materials

We classify materials based upon their constitutive parameters

ε electrical permittivity F/m
µ magnetic permeability H/m
σ conductivity S/m

We will focus on µ later in our discussion of magnetostatics. For now, let’s focus on the other two.

Conductors and dielectrics are classified by how well they conduct current. Dielectrics are essentially
insulators, meaning that while they may allow small amounts of current flow through them, this
current is quite small. Conductors on the other hand allow free flow of current. Materials that are
in between are called semiconductors. Semiconductors have the interesting property that we can
dope them properly such that we can control current flow and restrict it to given region.
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1.7.1 Conductors

We are not going into great detail here. But we need to simply recognize that the conductivity re-
lates current flow to the electric field which supplies the force to move the charges. This relationship
is

J = σE (1.70)

which looks a lot like Ohm’s law (in fact, Ohm’s law is a simplification of this). Given this definition,
we see that a perfect dielectric has σ = 0 so that J = 0. A perfect conductor, on the other hand,
has σ →∞, which implies that to have finite current density we must have E = 0 since E = J/σ.

For metals σ ∼ 10−7, so it is common practice to set E = 0. A perfect conductor is an equipotential
medium, meaning that the electric potential is the same everywhere.

1.7.2 Resistance

R =
V

I
=
− ∫

l E · dl∫
S J · ds

=
− ∫

l E · dl∫
S σE · ds

(1.71)

Example: Linear resistor

1. Assume a particular voltage.

2. Calculate the resulting electric field.

3. Calculate the current from teh electric field.

4. Divide voltage by curretn to get resistance.

V = −
∫ x2

x1

E · dl (1.72)

= −
∫ x2

x1

x̂Ex · x̂dl (1.73)

= Exl (1.74)

I =
∫

A
J · ds =

∫

A
σE · ds = σExA (1.75)

R =
V

I
=

Exl

σExA
=

l

σA
(1.76)

How does the resistance apply to integrated circuits? A typical process technology has interconnect
lines that are 0.4µm wide and 0.6µm high. With copper as the metal the resistance is given by

R =
l

(5.8107)(.24µm2)
= 72 Ω/mm (1.77)
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Example: Conductance of a Coaxial Cable

What is the conduction between the conductors of a coaxial cable?

This time assume a current flowing between the two conductors I and then calculate the voltage
from this assumed current.

Jv = r̂
I

A
= r̂

I

2πrl
(1.78)

Since Jv = σE

Ev = r̂
I

2πσrl
(1.79)

Calculate the voltage from the electric field

Vab = −
∫ a

b
E · dl = −

∫ a

b

I

2πσl

r̂ · r̂dr

r
(1.80)

Vab =
I

2πσl
ln

(
b

a

)
(1.81)

G′ =
G

l
=

1
Rl

=
I

Vabl
=

2πσ

ln(b/a)
(1.82)

1.7.3 Dielectrics

Let’s examine dielectrics a little bit more. We will assume we are dealing with perfect dielectrics
with σ = 0 and therefore J = 0. If we look at the microscopic level, we consider an atom or
molecule with a positively charged nucleus and negatively charged electron cloud. The cloud center
is coincident with the nucleus center, leading to a neutral charge configuration. If an external
electric field Eext is applied to the material, the center of the electron cloud will be displaced from
its equilibrium value. While we still have charge neutrality, we can consider that there will be an
electric field emanating from the positively charged nucleus and ending at the negatively charged
cloud center. This process of creating electric dipoles within the material by applying an electric
field is called polarizing the material.

The induced electric field created by our new dipole is referred to as a polarization field, and it is
weaker and in the opposite direction to Eext. We actually express this using the flux density

D = ε0E + P (1.83)

where P is referred to as the Polarization of the material. This quantity is proportional to the
applied field strength, since the separation of the charges is more pronounced for stronger external
fields. We can therefore write

P = ε0χeE (1.84)
D = ε0E + ε0χeE = ε0(1 + χe)E = εE (1.85)
ε = ε0 (1 + χe)︸ ︷︷ ︸

εr

(1.86)
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1.8 Capacitance

Capacitance is capacity to store charge.

C =
Q

V
(1.87)

with units of Farads = C/V. V is the potential difference between the conductor with charge +Q
and the conductor with charge −Q.

Steps:

1. Assume a charge on the conductors

2. Find D from Gauss’s Law

3. Find E = D/ε.

4. Find V from E

5. Find C from C = Q/V

1.8.1 Parallel Plate Capacitor

We assume that the charge will evenly distribute itself over the conducting plates.
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∮
D · ds = Q (1.88)

∫ Ly

0

∫ Lx

0
Dodxdy = Q (1.89)

Do =
Q

LxLy
=

Q

A
(1.90)

D = −Q

A
ẑ (1.91)

E = − Q

Aε
ẑ (1.92)

V = −
∫ d

0
− Q

Aε
ẑ · ẑdz =

Qd

Aε
(1.93)

C =
Q

V
=

εA

d
(1.94)

+Q

-Q E
y

z

d

Area = LxLy

+Q

-Q E
y

z

d

Area = LxLy

1.8.2 Spherical Shell Capacitor

x

y

a

b

+Q

-Q

ε

x

y

a

b

+Q

-Q

ε
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The charge will evenly distribute itself over the conducting spherical shells.
∮

D · ds = Q (1.95)
∫ 2π

0

∫ π

0
DoR

2 sin θ dθdφ = Q (1.96)

4πR2Do = Q (1.97)

Do =
Q

4πR2
(1.98)

D =
Q

4πR2
R̂ (1.99)

E =
Q

4πεR2
R̂ (1.100)

Vab = Va − Vb = −
∫ a

b

Q

4πεR2
R̂ · R̂dR (1.101)

=
Q

4πεR

∣∣∣∣
a

b

=
Q

4πε

(
1
a
− 1

b

)
(1.102)

C =
Q

Vab
=

4πε
1
a − 1

b

(1.103)

Question: Why does larger ε increase the capacitance?
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