
Chapter 1

Dynamic Fields

We are now ready to look at the behavior of fields that vary in time. To begin, let’s examine a very
interesting law: Faraday’s Law. We will then look more generally at Maxwell’s Equations.

1.1 Faraday’s Law

A time-varying magnetic flux through a loop will cause a current to flow in the loop of wire.
Faraday’s Law describes this effect. To begin, consider a wire loop as shown. A magnetic field
passes through the loop (supplied by an external source) such that the flux density vector B is
normal to the surface defines by the loop. The flux is defined as

φ =
∫ ∫

S
B · ds (1.1)

with units of Weber (Wb). When this flux changes in time, a current will flow in the loop. This
means that a voltage has been created across the loop terminals called the electromotive force (emf).
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Vemf = −dφ

dt
= − d

dt

∫ ∫

S
B · ds (1.2)

Note that if B does not change in time, Vemf = 0.

The negative sign comes from Lenz’s Law, which states that the induced current will oppose the
change in flux. To ensure the correct polarity of Vemf , we use the right hand rule.

Thumb = direction of ds
Fingers = direction of + terminal to − terminal

26



For the above loop, let ds be out of the page. If φ decreases, Vemf is positive. So, Vemf represents
the voltage available to the load circuit.
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There are two distinct ways to get this emf.

• Transformer emf: A time varying magnetic field linking a stationary loop

• Motional emf: A moving loop with a time varying area (relative to the normal component of
B) in a static magnetic field

1.1.1 Transformer Action

This is what we’ve been talking about. The applied B through a loop changes in time. The induced
potential at the loop terminals is called the transformer emf.
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For example, consider the loop shown with

B = Botẑ (1.3)

φ =
∫ 2π

0

∫ b

0
Botrdrdφ = Bot

b2

2
2π = Botπb2 (1.4)

Vemf = −dφ

dt
= −Boπb2 (1.5)

B is increasing in time, so I is induced as shown to oppose the change. Vemf is therefore negative.

Notice also the following. Since Vemf 6= 0 in this system, E 6= 0. If we integrate E around the loop,
we will obtain the voltage Vemf . Using the right hand rule for integration direction gives

Vemf =
∮

C
E · d` = − d

dt

∫ ∫

S
B · ds (1.6)
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This is Faraday’s Law. Note that in statics, we had a minus sign to maintain the proper potential
reference. However, here the electric field is pushing the charge to make one terminal more positive
than the other. Therefore, we do not have the minus sign.
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The ideal transformer uses the transformer emf. The time varying voltage creates a time varying
magnetic field in the core that has a high magnetic permeability. The time varying magnetic flux
induced a current in second winding.

1.1.2 Generator Action

This occurs when the loop is mechanically altered while the flux density remains constant.
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φ(t) =
∫ `

0

∫ vt

0
Bodxdy = Bo`vt (1.7)

Vemf = − d

dt
φ = −Bo`v (1.8)

Electromagnetic Generator

A loop of length ` and width w is rotating with an angular velocity of ω within a constant magnetic
field given by

B = ẑBo (1.9)

Φ =
∫

S
B · ds (1.10)

=
∫

S
ẑBo · n̂ds (1.11)
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n̂ = sinα ẑ + cosα ŷ (1.12)

where

α = ωt + Co (1.13)

Φ =
∫ `

0

∫ w

0
Bocosαdydz (1.14)

= Bo w` cos (ωt + Co) (1.15)

1.2 Relating Maxwell’s Laws in Point and Integral Form

We need to recall once again the vector derivative operations:

Gradient:
∇φ(x, y, z) =

∂φ

∂x
x̂ +

∂φ

∂y
ŷ +

∂φ

∂z
ẑ (1.16)

Divergence:

∇ · F (x, y, z) =
∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z
(1.17)

Curl:

∇× F (x, y, z) = x̂

(
∂Fz

∂y
− ∂Fy

∂z

)
+ ŷ

(
∂Fx

∂z
− ∂Fz

∂x

)
+ ẑ

(
∂Fy

∂x
− ∂Fx

∂y

)
(1.18)

We also have two vector identities:

∇×∇f = 0 (1.19)
∇ · (∇× F ) = 0 (1.20)

We also need to consider the integral relations:

Stokes Theorem: ∫ ∫

S
∇× F · ds =

∮

C
F · d` (1.21)

Divergence Theorem: ∫ ∫ ∫

V
∇ · FdV =

∮

S
F · ds (1.22)

Let’s use these to derive Maxwell’s equations in point form from the equations in integral form:
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Faraday’s Law:
∮

C
E · d` = − d

dt

∫ ∫

S
B · ds (1.23)

∫ ∫

S
∇× E · ds = − d

dt

∫ ∫

S
B · ds (1.24)

∇× E = − ∂

∂t
B (1.25)

Ampere’s Law:
∮

C
H · d` =

d

dt

∫ ∫

S
D · ds +

∫ ∫

S
J · ds (1.26)

∫ ∫

S
∇×H · ds =

d

dt

∫ ∫

S
D · ds +

∫ ∫

S
J · ds (1.27)

∇×H =
∂

∂t
D + J (1.28)

Gauss’ Laws: ∮

S
D · ds =

∫ ∫ ∫

V
ρvdV (1.29)

∫ ∫ ∫

V
∇ ·DdV =

∫ ∫ ∫

V
ρvdV (1.30)

∇ ·D = ρv (1.31)

∮

S
B · ds = 0 (1.32)

∇ ·B = 0 (1.33)

1.3 Displacement Current

Consider Ampere’s Law:
∮

H · d` =
d

dt

∫ ∫
D · ds +

∫ ∫
J · ds =

∫ ∫
∂

∂t
D · ds + Ic (1.34)

where Ic represents the conduction current. Notice that the term

Id =
∫ ∫

∂

∂t
D · ds (1.35)

has units of Amperes. We call this the displacement current.

Consider a parallel plate capacitor as shown. In the wire, E = 0 and so D = 0. Therefore, the
current is

Iw = Ic = conduction current (1.36)

= C
dvs

dt
= −CVoω sinωt (1.37)
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In the capacitor, J = 0 so

Icap = Id =
∫ ∫

∂

∂t
D · ds (1.38)

Since E = (Vo/d) cos ωt ŷ, D = (Voε1/d) cos ωt ŷ.

Icap = −
∫ ∫

Voε1
d

ω sinωt dxdy = − ε1A

d︸︷︷︸
C

Voω sinωt = −CVoω sinωt (1.39)

So: Id = Ic so that the displacement current allows continuity of current.

1.4 Continuity of Charge

Consider a volume V containing a charge density ρv and total charge Q. The only way for Q to
change is by charge entering/leaving the surface S bounding V . If I = the net current flowing
across S out of V

I = −dQ

dt
= − d

dt

∫ ∫ ∫

V
ρvdV (1.40)

But we can also write
I =

∮

S
J · ds = − d

dt

∫ ∫ ∫

V
ρvdV (1.41)

The last term came from Eq. (??). This equation represents the integral form of the continuity of
charge. If we now use the Divergence theorem:

∮

S
J · ds =

∫ ∫ ∫

V
∇ · JdV (1.42)

∇ · J = − ∂

∂t
ρv (1.43)

This is the continuity of charge in point or differential form.

1.5 Maxwell’s Laws in Time-Harmonic Form

To go to sinusoidal steady state, we assume a time variation of cosωt. Recall once again that

v(t) = Re
{

Ṽ ejωt
}

(1.44)
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Now, we haven’t explicitly written it this way yet, but all of the fields are functions of space and
time:

E = E(x, y, z, t) = E(R, t) (1.45)

E(R, t) = Re
{

Ẽ(R)ejωt
}

(1.46)

∂E(R, t)
∂t

= Re
{

Ẽ(R)jωejωt
}

(1.47)

Therefore, Maxwell’s equations in time-harmonic (phasor) form are
∮

Ẽ · d` = −jω

∫ ∫
B̃ · ds (1.48)

∮
H̃ · d` = jω

∫ ∫
D̃ · ds +

∫ ∫
J̃ · ds (1.49)

∮

S
D̃ · ds =

∫ ∫ ∫
ρ̃vdV (1.50)

∮

S
B̃ · ds = 0 (1.51)

∇× Ẽ = −jωB̃ (1.52)

∇× H̃ = jωD̃ + J̃ (1.53)

∇ · D̃ = ρ̃v (1.54)

∇ · B̃ = 0 (1.55)
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1.6 Boundary Conditions

Our goal is to understand how boundaries in materials impact electric and magnetic fields. Break
the electric field and magnetic field into components that are either tangential or normal to the
boundary as given by

E1 = E1t t̂ + E1n n̂ (1.56)
E2 = E2t t̂ + E2n n̂ (1.57)
H1 = H1t t̂ + H1n n̂ (1.58)
H2 = H2t t̂ + H2n n̂. (1.59)

The goal is to find the relationship between the various components.

We will begin with electric fields. Consider a material boundary as shown with a contour that
crosses the boundary. Faraday’s law is

∮

C
E · d` = − d

dt

∫ ∫

S
B · ds (1.60)
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To apply this to the contour, let the contour shrink to zero area so that the right hand side of
Faraday’s law goes to zero. If we let w → 0, the left hand side becomes

∫ 0

−h/2
En1n̂ · n̂d` +

∫ 0

−h/2
En1n̂ · (−n̂)d` +

∫ h/2

0
En2n̂ · n̂d` +

∫ h/2

0
En2n̂ · (−n̂)d` = 0 (1.61)

In other words, 0 = 0. This isn’t very useful.

n̂

t̂

h
n̂

t̂

h

If we instead let h → 0, we get
∫ w

0
E1tt̂ · (−t̂)d` +

∫ w

0
E2tt̂ · t̂d` = 0 (1.62)

∫ w

0
(E2t − E1t)d` = 0 (1.63)

E2t − E1t = 0 (1.64)
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So, the tangential component of the electric field is continuous across the boundary. Note that
we can also write

n̂× (E2 − E1) = 0 (1.65)

since n̂× E is the tangential electric field.

n̂

t̂

w
1tE

2tE
n̂

t̂

w
1tE

2tE

If we apply the same technique to Ampere’s law, we get the same result WITH ONE TWIST.
∮

C
H · d` =

d

dt

∫ ∫

S
B · ds +

∫ ∫

S
J · ds (1.66)

Suppose that J represents a surface current that flows in the ŝ = n̂ × t̂ direction. Note that ŝ is
tangent to the surface but points normal to the surface of our integration contour.

∫ w

0
H1tt̂ · (−t̂)d` +

∫ w

0
H2tt̂ · t̂d` =

∫ w

0
Jsd` (1.67)

∫ w

0
(H2t −H1t)d` =

∫ w

0
Jsd` (1.68)

H2t −H1t = Js (1.69)

This works out to
n̂× (H2 −H1) = Js (1.70)

So, tangential H can be discontinous across the interface if a surface current exists.

Let’s try Gauss’ law. We use a “pillbox” for the integration.
∮

S
D · ds =

∫ ∫ ∫

V
ρvdV (1.71)

n̂

t̂1nD

2nD
h n̂

t̂1nD

2nD
h

If h → 0, the right hand side will go to zero unless there is a surface charge density. Then,
∫ ∫

A
Dn2n̂ · n̂ds +

∫ ∫

A
Dn1n̂ · (−n̂)ds =

∫ ∫

A
ρsds (1.72)

Dn2 −Dn1 = ρs (1.73)
n̂ · (D2 −D1) = ρs (1.74)

34



So normal D is discontinous by the surface charge density. For magnetic fields:

Bn2 −Bn1 = 0 (1.75)
n̂ · (B2 −B1) = 0 (1.76)

Normal B is continous. Let’s summarize:

Field Two Dielectrics Dielectric Conductor
Tangential E Continuous Continous: n̂×E = 0
Tangential H Continuous Discontinous: n̂×H1 = 0, n̂×H2 = Js

Normal D Continuous Discontinous: n̂ ·D1 = 0, n̂ ·D2 = ρs

Normal B Continuous Continous: n̂ ·B = 0
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