
Chapter 2

Electrostatics

2.1 Vectors

The laws of electromagnetics were originally formulated using a system of many partial differential equa-
tions. Today, we use a more compact notation that is much more convenient. But in order to be able to use
the notation, one must first understand it.

The fundamental definition of electric field is in terms of force on a test charge. That force has a magnitude
and direction. We represent the ratio of that force to the strength of the charge mathematically as a vector:

E = Exx̂ + Eyŷ + Ez ẑ (2.1)

wherex̂ is a unit vector of length one in the+x direction and the other two unit vectors are defined simi-
larly. Ex, Ey, andEz are real or complex numbers called the components ofE. We can also express the
components of the vector using other sets of linearly independent unit vectors. The magnitude of the vector
is given by the same character without an accent:

E = ‖E‖ =
√
|Ex|2 + |Ey|2 + |Ez|2 (2.2)

Vector field. A vector field assigns a vector to each point in space, so the components of the vector are
functions of position:

E(x, y, z) = Ex(x, y, z)x̂ + Ey(x, y, z)ŷ + Ez(x, y, z)ẑ (2.3)

The components may also depend on other independent variables such as time or frequency.

Examples

Scalar fields: temperatureT (x, y, z), pressurep(x, y, z), electric potentialV (x, y, z).

Vector fields: wind velocityv(x, y, z), electric field intensityE(x, y, z), magnetic field intensity
H(x, y, z).
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Unit vectors. Unit vectors have length one, so that‖x̂‖ = ‖ŷ‖ = ‖ẑ‖ = 1. We can also come up with a
unit vector in the direction of an arbitrary vectorA using

â =
A

‖A‖ (2.4)

Position vector. The position vector is defined by

r = xx̂ + yŷ + zẑ (2.5)

This is not really a vector, but is merely a compact way to represent the point(x, y, z).

Dot product. Two vectors can be combined to form a scalar:

A ·B = AxBx + AyBy + AzBz (2.6)

= AB cosψ (2.7)

whereψ is the angle between the two vectors. IfA ·B = 0, the vectors are orthogonal. Also,A ·A = ‖A‖2.

Cross product. Two vectors can also be combined to form another vector:

A×B = n̂AB sinψ (2.8)

wheren̂ is a unit vector in the direction given by the right hand rule applied to the vectorsA andB andψ
is the angle between the vectors. If we switch the order ofA andB, the cross product changes sign. For the
rectangular unit vectors,

x̂× x̂ = 0, x̂× ŷ = ẑ, x̂× ẑ = −ŷ
ŷ × x̂ = −ẑ, ŷ × ŷ = 0, ŷ × ẑ = x̂
ẑ × x̂ = ŷ, ẑ × ŷ = −x̂, ẑ × ẑ = 0

(2.9)

These relationships can be used to express the cross product using components as

A×B = (AyBz −AzBy)x̂ + (AzBx −AxBz)ŷ + (AxBy −AyBx)ẑ (2.10)

Another handy rule for computing the cross product is

A×B =

∣∣∣∣∣∣

x̂ ŷ ẑ
Ax Ay Az

Bx By Bz

∣∣∣∣∣∣
(2.11)

where the vertical bars denote the matrix determinant operation. An identity that connects the dot and cross
products is

A · (B × C) = B · (C ×A) = C · (A×B) (2.12)
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Integrals

Vector fields can be integrated over paths and surfaces. Paths and surfaces can be represented using param-
eterizations. A path is defined by three functions such that the point

r(t) = (f(t), g(t), h(t)), a ≤ t ≤ b (2.13)

traces out the path as the parametert ranges froma to b. A surface is parameterized by functions of two
parameters:

r(s, t) = (f(s, t), g(s, t), h(s, t)), a ≤ s ≤ b, c ≤ t ≤ d (2.14)

Path integrals. A path integral of a vector field is written as
∫

P
A · d` (2.15)

whereP represents a path andd` is a vector tangent to the path with a differential length. Using a parame-
terization to change the integration variable from a point in thex, y, z plane to the parameter of the path, a
path integral can be transformed into a standard scalar integral:

∫

P
A · d` =

∫ b

a
[Axx̂ + Ayŷ + Az ẑ](x,y,z)=(f(t),g(t),h(t)) · d [f(t)x̂ + g(t)ŷ + h(t)ẑ]

=
∫ b

a

[
Ax(t)f ′(t) + Ay(t)g′(t) + Az(t)h′(t)

]
dt (2.16)

Example: To integrateA = xx̂+yŷ over a straight line from(0, 0) to (1, 0), we parameterize the path using
(x, y) = (t, 0), 0 ≤ t ≤ 1. The integral is

∫

P
A · d` =

∫ 1

0
(tx̂ + 0ŷ) · x̂ dt

=
∫ 1

0
t dt

=
1
2

Surface integrals. A surface integral is written as
∫

S
A · dS (2.17)

whereS represents a surface anddS is a normal differential area element vector. A surface integral can be
evaluated using a parameterization as with a path integral. In many cases, however, the integration surface
is simple enough that we can write downdS by inspection using

dS = n̂ dS (2.18)

wheren̂ is a unit vector normal to the surface anddS is a differential area element. If a vector field represents
flow, then the surface integral represents the total amount of flow through the surface.
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Example: We want to integrateA = 3(z + 1)ẑ over a square with corners(0, 0, 0), (1, 0, 0) (1, 1, 0), and
(0, 1, 0). Because the surface is confined to thez = 0 plane, the differential area element isdx dy and the
surface normal vector iŝz. The integral is

∫

S
A · dS =

∫ 1

0

∫ 1

0
3ẑ · ẑ dx dy

=
∫ 1

0

∫ 1

0
3 dx dy

= 3
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Derivatives

Because vector fields can change with position, we can measure the amount of change using derivatives of
vector fields, much like a scalar derivative gives the rate of change of a scalar function. Vector derivatives
are derived in terms of the operator

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
(2.19)

With this operator, four main derivatives can be defined:

Gradient. The gradient operation transforms a scalar to a vector:

∇V (x, y, z) = x̂
∂V (x, y, z)

∂x
+ ŷ

∂V (x, y, z)
∂y

+ ẑ
∂V (x, y, z)

∂z
(2.20)

This vector points in the direction of most rapid increase of the functionV (x, y, z).

Example: Iff(x, y) = x2 + y2, then∇f = 2xx̂ + 2yŷ.

Curl. The curl operation transforms a vector to a vector:

∇×A = x̂

(
∂Az

∂y
− ∂Ay

∂z

)
+ ŷ

(
∂Ax

∂z
− ∂Az

∂x

)
+ ẑ

(
∂Ay

∂x
− ∂Ax

∂y

)
(2.21)

This vector gives the amount of rotation of the vector fieldA.

Example:∇× (yx̂− xŷ) = ẑ(−1− 1) = −2ẑ.

Gradient. The gradient operation transforms a vector to a scalar:

∇ ·A =
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z
(2.22)

The value of this scalar is positive at sources of the vector field and negative at sinks.

Example: If∇ · (xx̂ + yŷ) = 1 + 1 = 2.

Laplacian. The Laplacian transforms a scalar to a scalar or a vector to a vector:

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(2.23)

When this operator acts on a vector field, it does not mix components:∇2A = (∇2Ax)x̂ + (∇2Ay)ŷ +
(∇2Az)ẑ.

Some important identities are

∇× (∇V ) = 0 (2.24)

∇ · (∇×A) = 0 (2.25)

∇ · (∇V ) = ∇2V (2.26)

−∇× (∇×A) +∇(∇ ·A) = ∇2A (2.27)
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