
Chapter 1

Reflection and Refraction

We are now interested in exploring what happens when a plane wave traveling in one medium
encounters an interface (boundary) with another medium. Understanding this phenomenon allows
us to understand things like:

1. How an optical lens works

2. Why we get glare off a pane of glass (and how to design anti-glare windows)

3. How buildings and walls influence cellular-phone signals

4. Why light bends when it enters water

5. Optical fibers

1.1 Normal Incidence

We will begin by looking at a wave normally incident on the interface between lossless media.
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1.1.1 Fields

In general, we must allow for three different waves in the system:
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1. Incident wave

E
i(z) = x̂Ei

oe
−jk1z

H
i(z) =

1
η1

k̂i × E
i = ŷ

Ei
o

η1
e−jk1z (k̂i = ẑ)

k1 = ω
√

µ1ε1 η1 =
√

µ1

ε1

2. Reflected wave

E
r(z) = x̂Er

oe
+jk1z

H
r(z) =

1
η1

k̂r × E
r = −ŷ

Er
o

η1
e+jk1z (k̂r = −ẑ)

3. Transmitted wave

E
t(z) = x̂Et

oe
−jk2z

H
t(z) =

1
η2

k̂t × E
t = ŷ

Et
o

η2
e−jk2z (k̂t = ẑ)

k2 = ω
√

µ2ε2 η2 =
√

µ2

ε2

We assume we know Ei
o. We must determine Er

o and Et
o.

1.1.2 Boundary Conditions

We finally get to use those boundary conditions for something useful. Since there is no surface
current on the boundary between two dielectrics:

n̂ = ẑ : ẑ × (E2 −E1)
∣∣
z=0

= 0

ẑ × (H2 −H1)
∣∣
z=0

= 0

At z = 0 we have:

E1 = E
i(0) + E

r(0) = x̂(Ei
o + Er

o)

H1 = H
i(0) + H

r(0) = ŷ
(Ei

o − Er
o)

η1

E2 = E
t(0) = x̂Et

o

H2 = H
t(0) = ŷ

Et
o

η2

Therefore, application of the boundary conditions gives:

ẑ × [
x̂Et

o − x̂(Ei
o + Er

o)
]

= 0 → Et
o − (Ei

o + Er
o) = 0 (1.1)

ẑ ×
[
ŷ
Et

o

η2
− ŷ

(Ei
o − Er

o)
η1

]
= 0 → Et

o

η2
− (Ei

o − Er
o)

η1
= 0 (1.2)
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Substitution of the result Et
o = (Ei

o + Er
o) into (??) gives

(Ei
o + Er

o)
η2

− (Ei
o −Er

o)
η1

= 0 → Er
o

(
1
η1

+
1
η2

)
= Ei

o

(
1
η1
− 1

η2

)

Er
o =

(
η2 − η1

η2 + η1

)
Ei

o = ΓEi
o

Et
o = Ei

o +
(

η2 − η1

η2 + η1

)
Ei

o =
(

η2 + η1 + η2 − η1

η2 + η1

)
Ei

o

Et
o =

(
2η2

η2 + η1

)
Ei

o = τEi
o

So, for Normal Incidence:

Γ =
η2 − η1

η2 + η1
= reflection coefficient

τ =
2η2

η2 + η1
= transmission coefficient

Notice that we can write: Et
o = Ei

o + ΓEi
o = (1 + Γ)Ei

o as well as Et
o = τEi

o. Therefore, for normal
incidence:

τ = 1 + Γ

We also observe that if region 2 is a perfect conductor, σ2 →∞, εc2 →∞, and η2 = 0. This results
in Γ = −1 which is consistent with the boundary condition that the tangential electric field must
go to zero at the boundary of the conductor (short circuit).

Transmission Line Analogue

The expression for Γ is very similar to what we found in transmission lines, with the intrinsic
impedance replacing the characteristic impedance. In fact, this system behaves very much like a
transmission line system, and we have the same standing wave concept in region 1 that we have on
a transmission line.

Electromagnetic Wave Electrical Transmission Line
E V

H I
η Zo

Γ Γr

E1 = x̂E
i
o

(
e−jk1z + Γejk1z

)
V = V +

o

(
e−jkz + Γejkz

)

E1 = x̂Ei
o

(
e−jk1z + Γejk1z

)

which leads to the standing wave pattern:

|E1| = |Ei
o|

∣∣∣1 + Γej2k1z
∣∣∣

|E1|max = |Ei
o| (1 + |Γ|)

|E1|min = |Ei
o| (1− |Γ|)
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The standing wave ratio (SWR) is:

S =
|E1|max

|E1|min

=
1 + |Γ|
1− |Γ|

This is exactly the same expression we obtained for transmission lines.

As in transmission lines, the standing wave pattern is periodic with period `.

ej2k1` = ej2π → k1` = π
2π

λ1
` = π

` =
λ1

2
Again we see that the distance between adjacent maxima (or minima) is a half wavelength.

Continuing on with the transmission line analogue, the characteristic impedance of air is given by

ηair =
√

µo

εo
= 377 Ω. (1.3)

The characteristic impedance of a dielectric is

η =
√

µo

εr εo
=

377
n

Ω, (1.4)

where n is the index of refraction of the material. The characteristic impedance of a conductor is

η = (1 + j)

√
πfµ

σ
∼ 0. (1.5)

So a conductor acts as a short circuit.

1.1.3 Power Flow in Region 1

In region 1, we have the fields:

E1 = x̂Ei
o

(
e−jk1z + Γejk1z

)

H1 = ŷ
Ei

o

η1

(
e−jk1z − Γejk1z

)

The time-average Poynting vector is:

Sav,1 =
1
2

Re
{

E1 ×H
∗
1

}
=

1
2

Re
{

Ei
o

(
e−jk1z + Γejk1z

) Ei∗
o

η1

(
ejk1z − Γ∗e−jk1z

)
x̂× ŷ

}

=
1
2

Re
{ |Ei

o|2
η1

[
1− Γ∗e−j2k1z + Γej2k1z − |Γ|2

]}
ẑ

Recall that A−A∗ = (a + jb)− (a− jb) = j2b = 2 Im{A}.

Sav,1 =
1
2

Re
{ |Ei

o|2
η1

[
1− |Γ|2 + 2 Im

{
Γej2k1z

}]}
ẑ

= ẑ
|Ei

o|2
2η1

[
1− |Γ|2]
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Note that

S
i
av = ẑ

|Ei
o|2

2η1

S
r
av = −ẑ

|Ei
o|2

2η1
|Γ|2 = −|Γ|2Si

av

So, Sav,1 is simply the sum of the power densities in the incident and reflected waves.

The average power density in region 2 is:

Sav,2 = ẑ
|E2|2
2η2

= ẑ|τ |2 |E
i
o|2

2η2

For lossless media (which we are working with here), |Γ|2 = Γ2 and |τ |2 = τ2. Therefore:

1− Γ2

η1
=

1−
(

η2−η1

η2+η1

)2

η1
=

(η2 + η1)2 − (η2 − η1)2

η1(η2 − η1)2

=
η2
2 + η2

1 + 2η1η2 − η2
2 − η2

1 + 2η1η2

η1(η2 − η1)2

=
4η2

(η2 − η1)2

=
1
η2

[
2η2

η2 − η1

]2

=
τ2

η2

So:
1− Γ2

η1
=

τ2

η2

This means:

Sav,1 = ẑ
|Ei

o|2
2η1

[1− Γ2] = ẑ
|Ei

o|2
2

τ2

η2
= Sav,2

1.1.4 Lossy Media

We can use our developments above, and simply make the substitutions:

jk1 → γ1

jk2 → γ2

η1 → ηc1

η2 → ηc2

Then, all of the equations will work fine for lossy media.

1.2 Oblique (Non-normal) Incidence

We need to first become familiar with the idea of waves traveling in a direction other than ±z. In
order for the phase progression to occur along the k̂ direction, we need to use the component of
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the position vector r that points along the k̂ direction. So, our distance variable is:

ξi = k̂i · r = (x̂ sin θi + ẑ cos θi) · (x̂x + ẑz)
= x sin θi + z cos θi

The plane wave exponential is therefore

e−jk1k̂i·r = e−jk1(x sin θi+z cos θi)

creating the fields:

E
i = ŷEi

oe
−jk1(x sin θi+z cos θi)

H
i =

1
η1

k̂i ×E
i

=
1
η1

(x̂ sin θi + ẑ cos θi)× ŷEi
oe
−jk1(x sin θi+z cos θi)

=
Ei

o

η1
(−x̂ cos θi + ẑ sin θi)e−jk1(x sin θi+z cos θi)

iθ

x

z
iE

k̂

iH

iθ

x

z

r

k̂

iθ

x

z

iH
iθ

iθ

x

z
iE

k̂

iH

iθ

x

z

r

k̂

iθ

x

z

iH
iθ

Note that you can also deduce H
i using trigonometry.

Finally, we must make some definitions:

Plane of Incidence: Plane containing normal to boundary and k̂ vector
Perpendicular Polarization: E perpendicular to the plane of incidence. Also called

Transverse Electric (TE) polarization.
Parallel Polarization: E parallel to the plane of incidence. Also called the

Transverse Magnetic (TM) polarization.
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1.2.1 Perpendicular (TE) Polarization

iθ

x

z
iE

iH

rθ

rH

rE
tθ tH

tE
tk̂

rk̂

iθ

x

z
iE

iH

rθ

rH

rE
tθ tH

tE
tk̂

rk̂

1.2.2 Fields

1. Incident wave

E
i = ŷEi

oe
−jk1(x sin θi+z cos θi)

H
i = (−x̂ cos θi + ẑ sin θi)

Ei
o

η1
e−jk1(x sin θi+z cos θi)

2. Reflected wave

E
r = ŷEr

oe
−jk1(x sin θr−z cos θr)

H
r = (x̂ cos θr + ẑ sin θr)

Er
o

η1
e−jk1(x sin θr−z cos θr)

3. Transmitted wave

E
t = ŷEt

oe
−jk2(x sin θt+z cos θt)

H
t = (−x̂ cos θt + ẑ sin θt)

Et
o

η2
e−jk2(x sin θt+z cos θt)

We now have 4 unknowns: Er
o , Et

o, θr, θt.

60



1.2.3 Boundary Conditions

Tangential E n̂× (Ei + E
r)

∣∣∣
z=0

= n̂× E
t
∣∣∣
z=0

Ei
oe
−jk1x sin θi + Er

oe
−jk1x sin θr = Et

oe
−jk2x sin θt

Tangential H n̂× (H i + H
r)

∣∣∣
z=0

= n̂× H
t
∣∣∣
z=0

−Ei
o

η1
cos θie

−jk1x sin θi +
Er

o

η1
cos θre

−jk1x sin θr = −Et
o

η2
cos θte

−jk2x sin θt

In order for the two equations to be satisfied for all x, the arguments of the exponentials must be
equal. We call this the phase matching condition.

k1 sin θi = k1 sin θr = k2 sin θt

This produces Snell’s Laws:

θi = θr Snell’s Law of Reflection
k1 sin θi = k2 sin θt Snell’s Law of Refraction

We observe that this phase matching condition indicates the direction of propagation of the reflected
and transmitted waves. A nice picture can be drawn of this:

x

k1 k2
rθ tθ

k2 > k1

x

k1 k2
rθ tθ

k2 > k1

k1 sin θi = k1 sin θr = k2 sin θt

tangential component of k̂rk1 equals tangential component of k̂tk2

This implies that the phase is continous across the boundary

We can now proceed with application of the boundary conditions:

Ei
o + Er

o = Et
o

Ei
o

η1
cos θi − Er

o

η1
cos θi =

Et
o

η2
cos θt

cos θi

η1
(Ei

o −Er
o) =

cos θt

η2
(Ei

o + Er
o)

Solving produces:

Er
o =

η2/ cos θt − η1/ cos θi

η2/ cos θt + η1/ cos θi
Ei

o = Γ⊥Ei
o

Et
o =

2η2/ cos θt

η2/ cos θt + η1/ cos θi
Ei

o = τ⊥Ei
o = (1 + Γ⊥)Ei

o
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1.2.4 Parallel (TM) Polarization

iθ

x

z
iE

iH

rθ
rH

rE

tθ
tH

tE
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rk̂

iθ

x

z
iE
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rH
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tθ
tH

tE
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1.2.5 Fields

1. Incident wave

E
i = (x̂ cos θi − ẑ sin θi)Ei

oe
−jk1(x sin θi+z cos θi)

H
i = ŷ

Ei
o

η1
e−jk1(x sin θi+z cos θi)

2. Reflected wave

E
r = (x̂ cos θr + ẑ sin θr)Er

oe
−jk1(x sin θr−z cos θr)

H
r = −ŷ

Er
o

η1
e−jk1(x sin θr−z cos θr)

3. Transmitted wave

E
t = (x̂ cos θt − ẑ sin θt)Et

oe
−jk2(x sin θt+z cos θt)

H
t = ŷ

Et
o

η2
e−jk2(x sin θt+z cos θt)

1.2.6 Boundary Conditions

Tangential E n̂× (Ei + E
r)

∣∣∣
z=0

= n̂× E
t
∣∣∣
z=0

Ei
o cos θie

−jk1x sin θi + Er
o cos θre

−jk1x sin θr = Et
o cos θte

−jk2x sin θt

Tangential H n̂× (H i + H
r)

∣∣∣
z=0

= n̂× H
t
∣∣∣
z=0

Ei
o

η1
e−jk1x sin θi − Er

o

η1
e−jk1x sin θr =

Et
o

η2
e−jk2x sin θt

Phase matching again produces Snell’s Laws. Then, application of the boundary conditions pro-
duces

Er
o =

η2 cos θt − η1 cos θi

η2 cos θt + η1 cos θi
Ei

o = Γ‖Ei
o

Et
o =

2η2 cos θi

η2 cos θt + η1 cos θi
Ei

o = τ‖Ei
o
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1.3 Total Internal Reflection

Suppose we have the case where k1 > k2 (generally ε1 > ε2). Then, our k-vector diagram looks
like:

x

k1
k2

rθ

k1 > k2

x

k1
k2

rθ

k1 > k2 If θi = θr gets too large, we have the case where k2 sin θt can’t be
large enough to equal k1 sin θi.

When the incidence angle θi is such that

k1 sin θi = k2 (so θt = 90◦)

we call θi = θc the critical angle

In this case, the transmitted wave travels parallel to the interface so that the constant phase planes
are parallel to the y-z plane.

Notice that if θi > θc:

k2 sin θt = k1 sin θi → sin θt =
k1

k2
sin θi > 1

A real angle θt cannot satisfy this equation. In fact, θt becomes a complex number. Rather than
determining θt, we can determine sin θt and cos θt. sin θt is determined by Snell’s Law as above,
which can be rewritten

sin θt =
k1

k2
sin θi =

β

k2

Then

cos θt =
√

1− sin2 θt =

√
1−

(
k1

k2

)2

sin2 θi = ±j

√(
k1

k2

)2

sin2 θi − 1 = ±j
α

k2

We will chose the negative root for reasons to be seen below.

The propagation term in the argument of the exponential for the transmitted wave becomes

k2(x sin θt + z cos θt) = k2

(
x

β

k2
− jz

α

k2

)
= βx− jαz

Therefore, we can write the transmitted field as

E
t = ŷEt

oe
−jk2(x sin θt+z cos θt) = ŷEt

oe
−αze−jβx

The wave decays in z, but phase progression (propagation) occurs in x. Note that at θi = θc,
cos θt = 0 so α = 0 (no decay).

We call such a wave an evanescent wave. The reflection coefficient for this case is

Γ⊥ =
η2/ cos θt − η1/ cos θi

η2/ cos θt + η1/ cos θi
=

jη2/α− η1/ cos θi

jη2/α + η1/ cos θi
= −A∗

A

|Γ⊥| =
|A∗|
|A| = 1
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The same is true for Γ‖. Therefore, no real power is transferred across the interface. All power is
reflected. We therefore call this total internal reflection.

We can also write:

H
t = (−x̂ cos θt + ẑ sin θt)

Et
o

η2
e−jk2(x sin θt+z cos θt)

= (x̂j
√

sin2 θt − 1 + ẑ sin θt)
Et

o

η2
e−αze−jβx

S
t = E

t ×H
t∗

= Et
oe
−αze−jβx Et∗

o

η2
e−αzejβx

[
ẑj

√
sin2 θt − 1 + x̂ sin θt

]

=
|Et

o|2
η2

e−2αz
[
x̂ sin θt + ẑj

√
sin2 θt − 1

]

This indicates that the power traveling in the ẑ direction is
reactive (stored energy). The real power is:

S
t
av =

1
2
|Et

o|2
η2

e−2αzx̂ sin θt

which flows in the x̂ direction. Note that this power flow
simply represents a power flow related to phase progression
in the x direction. It takes no power from the incident wave
to sustain this.

phase planesphase planes

1.4 Total Transmission (Brewster’s Angle)

Suppose we want Γ = 0 (no reflection)

Γ⊥ =
η2/ cos θt − η1/ cos θi

η2/ cos θt + η1/ cos θi
= 0

η2 cos θi = η1 cos θt

µ2

ε2

[
1− sin2 θi

]
=

µ1

ε1

[
1− sin2 θt

]
=

µ1

ε1

[
1−

(
k1

k2

)2

sin2 θi

]
=

µ1

ε1

[
1− µ1ε1

µ2ε2
sin2 θi

]

We can then solve this to obtain

sin θi =

√
1− (µ1ε2/µ2ε1)
1− (µ1/µ2)2

If µ1 = µ2, sin θi = ∞ which is impossible. So, we can’t have total transmission for the perpendic-
ular polarization in non-magnetic media.

For the parallel polarization:

Γ‖ =
η2 cos θt − η1 cos θi

η2 cos θt + η1 cos θi
= 0

η2 cos θt = η1 cos θi
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The solution for this (following an analogous procedure) is:

sin θi =

√
1− (ε1µ2/ε2µ1)

1− (ε1/ε2)2

Here, if µ1 = µ2:

sin θB =

√
1− ε1/ε2

1− (ε1/ε2)2
=

√
1

1 + ε1/ε2

cos θB =

√
1− 1

1 + ε1/ε2
=

√
ε1/ε2

1 + ε1/ε2

tan θB =
sin θB

cos θB
=

√
ε2
ε1

θB = tan−1

(√
ε2
ε1

)

We call θB Brewster’s Angle.

To explain Brewster’s angle physically, we have to revisit the permittivity. Recall that materials are
made of atoms whose charge will shift slightly under the influence of an electric field (the atoms or
molecules will polarize, with positive and negative charge separating a bit to made a dipole). The
permittivity ε represents the susceptibility of the medium to this alignment. When a time-varying
field hits the medium, these dipoles oscillate. This charge motion represents a current which causes
re-radiation of the electromagnetic field. This explains why a reflected field get’s created.

We will later see that dipoles do not radiate along their polar
axis. The oscillating dipole in material 2 won’t radiate in the
direction of the reflection. Therefore, Er = 0.
It can be shown that

θB + θt = 90◦ iθ

x

iE

rθ

rE

tθ

tE
+-

iθ

x

iE

rθ

rE

tθ

tE
+-

Note that for the perpendicular polarization, the dipole oscillation is normal to the page, so we will
always have radiation in the reflected direction. Therefore, there is no Brewster angle for this case.
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