Overpressure Protection

Safety by Design
Overpressure protection is used to protect people and facilities by preventing components & equipment (e.g. tubing, pipes, reactors, etc) from being overpressurized.

The lack of overpressure protection can result in serious or fatal accidents.

Ruptured liquid nitrogen tank. (Pressure relief device had been removed)

http://ucih.ucdavis.edu/docs/chemistry_301a.pdf
MAWP Ratings

MAWP stands for *Maximum Allowable Working Pressure* (aka Working Pressure)

Components and equipment you will use need to have a MAWP rating adequate for the pressure to which it will be subjected

MAWP ratings are determined & provided by manufacturers - contact the manufacturer of your product if you need the MAWP rating
Overpressure Protection

Some causes of overpressurization:

- High pressure gas traveling from a cylinder (or other source) into downstream components or equipment
- A thermal runaway reaction
- Warming a liquid that is normally a gas at NTP too quickly in a container

Note: high pressure gas regulators can fail allowing cylinder pressure into the downstream system
Some More Causes

Additional causes of overpressurization include, but aren’t limited to:

- Operator error
 (e.g. not working within operational parameters)
- Utility failure
- Fire
High pressure air from tanks pressurized to roughly 1200 psig passed through a regulated valve into downstream PVC piping.

The air pressure exceeded the working pressure rating of the PVC pipe resulting in its rupture. Shards of PVC pipe were blown toward pathways and the building.

This shard was about a foot long, sharp, & embedded in grass roughly 100 feet away

(See next slide for images related to this incident)
Images
Images
Luckily no one was in the trajectory of the pipe shards
Example Incident 2
Synthron LLC Jan 31, 2006
Thermal Runaway Reaction

http://www.csb.gov/assets/1/19/synthron_final_report1.pdf
Thermal Runaway Reaction

Synthron LLC
January 31, 2006

1 Fatality
14 Others Injured (2 seriously)

http://www.csb.gov/assets/1/19/synthron_final_report1.pdf
Thermal Runaway Reactions

Exothermic reactions need to be controlled by cooling them.

If cooling fails then a runaway reaction can occur.

Increased heat increases the rate of the reaction which leads to gas build-up & overpressurization.

The containment can catastrophically fail when a runaway reaction occurs.

A reactor at Synthron catastrophically failed when a thermal runaway reaction occurred.
Synthron LLC had a pressure relief valve in place, but it didn’t provide adequate protection because Synthron strayed outside operating parameters.

You must stay within operating parameters for pressure relief devices to work properly (e.g. temp, pressure, quantity of reactants...)

http://www.csb.gov/assets/1/19/synthron_final_report1.pdf
Warming Liquid

A student at Berkeley was seriously injured when a glass container ruptured, throwing shards of glass in all directions.

The container ruptured as a liquid (normally a gas at NTP) was warmed.

The best solution for this problem is to make sure containers are rated to withstand the pressures to which they may be subjected.

The discoloration on the safety glasses is blood.

A similar incident occurred at BYU a few years ago.

A researcher collected liquid oxygen in a beaker as it condensed from his process.

The beaker was placed on a cart and as the researcher was wheeling the cart through a corridor the oxygen rapidly expanded & overpressurized the beaker.

The researcher almost lost an eye.

Methods of Protection

Solutions that can be used to protect against overpressurization:

Avoidance Strategies
- Design the system to withstand the maximum pressure that could develop
- Use redundant cooling systems
- Develop and use safe operating procedures and train operators properly

Pressure Relief Devices
- Spring loaded pressure relief valves
- Rupture discs
- Buckling pin relief valves
- Rupture pin relief valves
 ...& other options

Pressure relief devices must be utilized unless the entire system is designed to withstand the maximum pressure that could develop.
-Pressure Relief Devices-
Relief Device Selection

Steps for selecting pressure relief devices:

- Select the type of relief device you would like to use based upon their characteristics (see following slides)
- Create a schematic of your setup, identifying the maximum safe operating pressure for each component of your system
- Contact a manufacturer of the relief device you wish to use and have them help you with proper selection
Spring loaded pressure relief valves open at a specified set pressure and reseat after blow-down (2 to 20% below set-pressure)

Outlet gases need to be channeled to an appropriate location

(diagram from Clarkson University)

These valves can release gas (simmer) at 95% capacity. And they require annual inspection and bench top testing.
Rupture Discs

Rupture discs contain a one time use membrane that ruptures near a specified set pressure.

Rupture discs fatigue over time and need to be replaced in accordance with manufacturer recommendations.

Outlet gases need to be channeled to an appropriate location.

A rupture disc’s stress at the burst point is much greater than the yield stress. Disc’s need to be replaced once they are used.
Buckling & Rupture Pin Valves

Buckling pins buckle at a precise set pressure allowing the valve to isolate upstream gas & pressure.

Rupture pins buckle at a precise set pressure allowing the valve to relieve the pressure. The vented gases need to be channeled to an appropriate location.

Expensive but there are no size or pressure limitations for the design of the valve. Plus the pins can be replaced while the valves are in service. And, they open/close within milliseconds.
-Summary-
Protect Against Overpressure

1. Identify any overpressure hazards before you begin your work
2. Develop effective operating procedures and training
3. Carefully manage any changes to existing processes
4. Use overpressure protection when equipment could be pressurized above its Maximum Allowable Working Pressure (MAWP) rating

Overpressure protection can be achieved by using:

⇒ Avoidance Strategies
(such as designing the system to withstand the maximum pressure that could develop)
⇒ Pressure Relief Devices
Testing & Maintenance

After installing overpressure protection, don’t forget to test and maintain it according to manufacturer recommendations.

Install ➔ Test ➔ Maintain

Pressure relief devices can fail if not properly installed and maintained.