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Identification of Compliant
Pseudo-Rigid-Body Four-Link
Mechanism Configurations
Resulting in Bistable Behavior
Bistable mechanisms, which have two stable equilibria within their range of motion
important parts of a wide variety of systems, such as closures, valves, switches
clasps. Compliant bistable mechanisms present design challenges because the
nism’s energy storage and motion characteristics are strongly coupled and must be
sidered simultaneously. This paper studies compliant bistable mechanisms which m
modeled as four-link mechanisms with a torsional spring at one joint. Theory is devel
to predict compliant and rigid-body mechanism configurations which guarantee bis
behavior. With this knowledge, designers can largely uncouple the motion and e
storage requirements of a bistable mechanism design problem. Examples demonstr
power of the theory in bistable mechanism design.@DOI: 10.1115/1.1625399#
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Introduction
A bistable mechanism has two stable equilibrium positio

within its range of motion. This behavior is desirable for a varie
of applications. However, bistable mechanism design presen
number of challenges, particularly since the mechanisms’ mo
and energy storage characteristics are strongly coupled. Th
especially true for bistable compliant mechanisms, in which
motion and energy storage generally both take place within
same flexible segments@1#. This paper addresses the need fo
simple bistable mechanism design procedure by exploring the
damental relationships between mechanism motion and bist
behavior.

Several authors have discussed various bistable mecha
characteristics, including the design of particular examples
bistable mechanisms@1–4#. Particular interest has emerged r
cently in bistable micro-mechanisms, where power requireme
may be greatly reduced by using bistable mechanisms, which
quire energy only to switch states, while requiring no energy
maintain state@5#. Bistable microvalves@6–9#, micro-switches
and -relays@10–15#, and even a bistable fiber-optic switch@16#
have been demonstrated. A bistable system which would pro
the spring force for assembling microparts has also been
gested@17#. Work is even progressing in the design of multistab
systems@18#. This paper, rather than presenting examples
bistable mechanisms, develops theory to identify mechanism
figurations that guarantee bistable behavior.

Exploration of the Problem
Each of the bistable mechanism examples referenced a

stores and releases energy during motion. In fact, all bistable
tems require some form of energy storage because stable pos
occur at local minima of potential energy. Mechanical bista
systems typically rely on strain energy storage to gain bista
behavior. Compliant bistable mechanisms represent an ele
way to achieve bistable behavior because the flexible mem
allow both motion and energy storage to be incorporated into

1Formerly affiliated with Brigham Young University.
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element. In addition, compliance offers several other advanta
such as diminished part count, reduced friction, and no back
or wear@19,20#.

However, the design of compliant bistable mechanisms is
straight-forward, requiring the simultaneous analysis of both
motion and energy storage of the mechanism@1#. To avoid this
problem, many of the bistable systems presented above u
simple buckled beam to gain the bistable behavior. While t
approach is simple, it gives the mechanism designer little flexi
ity or control over the bistable snapping force or the location
stable states. This is especially true for microbeams, which o
rely on residual film stress, a highly variable parameter, to ind
buckling @21–23#.

The pseudo-rigid-body model provides an easy way to mo
the complex, nonlinear deflections of many compliant mec
nisms@20#. The model approximates the force-deflection char
teristics of a compliant segment using two or more rigid segme
joined by pin joints, with torsional springs at the joints modelin
the segment’s stiffness, as illustrated in Fig. 1. This type of mo
applies to small-length flexural pivots, initially curved fixed
pinned segments, or straight fixed-pinned segments of the
shown in the figure. The lengths of the pseudo-rigid links, as w
as the stiffnesses of the torsional springs, are found using sim
equations.

The usefulness of the pseudo-rigid-body model in allowing
curate analysis and synthesis of mechanism motion and en
storage characteristics has been abundantly demonstrated@1,24–
28#. For the purpose of the analysis presented here, however,
sufficient to realize that several types of compliant segments m
be represented by links joined by pin joints with torsional sprin
Therefore, the remainder of this paper will use rigid-body mec
nism models with torsional springs at one or more joints to exa
ine compliant mechanism motion and stability. The results of t
work may then be applied to either rigid-body or complia
mechanisms, depending on the desired mechanism perform
and the designer’s wishes.

The Stability of Compliant Mechanisms. Deflection of
compliant segments or torsional springs within a mechanism
quires the application of forces to the mechanism. A mechanis
at an equilibrium position when no external forces are required
maintain the mechanism’s position. An equilibrium position
stable if the mechanism returns to that position after small dis
bances, but it is unstable if small disturbances cause the me

i-
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nism to change to another position. The potential energy sto
can be related to the stability of the mechanism using
Lagrange-Dirichlet theorem, which states that an equilibrium
sition is stable if it corresponds to a local minimum of potent
energy@29#. This theorem leads to a more formal definition of
bistable mechanism: a bistable mechanism is a mechanism w
contains two locations of local potential energy minima within
range of motion.

Using the pseudo-rigid-body model, the potential energy eq
tion of a compliant mechanism can easily be found. For a segm
modeled using a torsional spring and a pin joint, the poten
energyV stored in the segment is

V5
1

2
KQ2 (1)

where K is the torsional spring constant, andQ is the pseudo-
rigid-body angle, or the angle of deflection of the compliant s
ment. The total potential energy in the mechanism is the sum
the potential energy stored in each compliant segment. Equ
rium positions may be found by locating mechanism positio
where the first derivative of the potential energy is zero. The s
of the second derivative at these points determines the stabili
the equilibrium position, with positive corresponding to a sta
position, and negative corresponding to an unstable position.

Approach to Mechanism Analysis. The model of an arbi-
trary fully compliant four-link mechanism is shown in Fig. 2. Th
model has four links, with link lengthsr 1 , r 2 , r 3 , and r 4 , and
four torsional springs, with spring constantsK1 , K2 , K3 , andK4 .
The angle of each link with respect to the horizontal is given
u2 , u3 , and u4 , with link one being defined as a horizont
ground link. The torsional springs are considered to be un
flected in the fabrication position determined by link anglesu20,
u30, andu40. The bistable mechanism design problem consists
finding mechanism configurations which will always be bistab
To do this, each possible torsional spring location may be ex
ined independently to determine whether a spring placed at
point in the mechanism causes bistable behavior. This is don
choosing its spring constant to be non-zero while all other sp
constants are set equal to zero. The resulting potential en
equation may be differentiated, and its derivative set equal to z
Solutions to this equation determine equilibrium locations. The

Fig. 1 The concept of the pseudo-rigid-body model. Compli-
ant segments are modeled as rigid segments joined by pin
joints, with torsional springs at the joints.

Fig. 2 A four-link mechanism with a torsional spring at each
joint
702 Õ Vol. 125, DECEMBER 2003
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fore, the problem to be solved may be stated:Find the torsional
spring locations in a general pseudo-rigid-body four-link mech
nism which produce two stable positions within the allowable m
tions of the mechanism.

The solution to this problem represents an elegant and ea
applied set of design tools for bistable compliant mechanisms
will be presented as a series of theorems governing bist
mechanism behavior, with the theorem proofs demonstrating
solution method outlined above.

Theorems Governing Bistable Mechanism Behavior
Four-link mechanisms may be classified according to Grash

criterion @30–32# as Grashof or non-Grashof mechanism
Grashof’s criterion is stated mathematically as

s1 l<p1q (2)

wheres, l, p, andq are the lengths of the shortest, longest, and t
intermediate-length links, respectively. Grashof’s criterion, E
~2!, allows classification of four-link mechanisms as Grash
mechanisms~those that satisfy the inequality! and non-Grashof
mechanisms~those that do not satisfy it!. In addition, change-
point mechanisms are a subset of Grashof mechanisms for w
the left and right sides of Eq.~2! are equal. In this paper, change
point mechanisms will be treated differently than all other types
Grashof mechanisms, so that the three mechanism classes tr
here are Grashof~not including change-point!, change-point, and
non-Grashof mechanisms.

Grashof Mechanisms

Theorem 1. A compliant mechanism whose pseudo-rigi
body model behaves like a Grashof four-link mechanism with
torsional spring placed at one joint will be bistable if and only
the torsional spring is located opposite the shortest link and
spring’s undeflected state does not correspond to a mecha
position in which the shortest link and the other link opposite
spring are collinear.

Corollary 1.1. A rigid-link Grashof four-link mechanism with
one torsional spring placed at one joint will be bistable if and o
if the torsional spring is located opposite the shortest link and
spring’s undeflected state does not correspond to a mecha
position in which the shortest link and the other link opposite
spring are collinear.

Proof. Theorem 1 will be proven by analyzing the potenti
energy equation for a general four-link mechanism with a spr
at one joint. Solutions for potential energy minima will then b
analyzed to determine whether mechanism motion allows e
minimum to be reached. Because of the previously-demonstr
accuracy of the pseudo-rigid-body model, the results ap
equally well for either compliant mechanisms or rigid-bod
mechanisms. Therefore, the same proof applies to both Theore
and Corollary 1.1.

Note that the theorem could be proved by considering the m
tion of a Grashof mechanism to determine which pin joints ma
tain the same relative angle in two distinct mechanism positio
However, the more rigorous proof presented here gives the
signer further information about the nature and location of
stable positions.

Analysis of the Energy Equation.For any four-link mecha-
nism, the energy equation is found by summing the potential
ergy in each spring, giving

V5
1

2
~K1c1

21K2c2
21K3c3

21K4c4
2! (3)

where

c15u22u20
Transactions of the ASME
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c25u22u202~u32u30! (4)
c35u42u402~u32u30!

c45u42u40

Choosingu2 as the independent variable, the first derivative is

dV

du2
505K1c11K2c2S 12

du3

du2
D1K3c3S du4

du2
2

du3

du2
D

1K4c4

du4

du2
(5)

Because this mechanism may be inverted so that any of its link
ground, only one spring position needs to be analyzed, and
results may then be applied to any of the four spring positio
Position 4 is chosen because the equations are somewhat sim
and becauseu2 , the independent variable, does not appear in
expression forc4 given in Eq.~4!. If K4 is exclusively non-zero,
Eq. ~5! becomes

05K4~u42u40!
du4

du2 (6)

The first part of this equation,u42u4050, provides two solutions
corresponding to the two ways that the mechanism can be
sembled. That is, for any given link lengthsr 1 , r 2 , r 3 , and r 4 ,
and the initial angle of the fourth link,u40, two different mecha-
nism positions exist, assuming thatu40 does not correspond to a
extreme value and that the mechanism can be assembled. A
ample is shown in Fig. 3. The exact positions may be found
solving the Freudenstein equations@33#:

r 2 cosu21r 3 cosu35r 11r 4 cosu40 (7)
r 2 sinu21r 3 sinu35r 4 sinu40

The solutions to these equations are

u25u20

u35u30
or

u252uu2u20

u352uu2u30
(8)

where

tanuu5
r 2 sin~u40!

r 11r 4 cos~u40!
(9)

andu20 andu30 are the initial angles of the second and third link
respectively. Note, however, that ifu20 is equal touu , then these
two solutions are identical to each other. This is the case o
extreme value foru40.

The second part of Eq.~6!, the derivative, may be written

du4

du2
5

r 2 sin~u32u2!

r 4 sin~u32u4!
50 (10)

Fig. 3 The two different positions of a four-link mechanism for
a given angle u4
Journal of Mechanical Design
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If sin(u32u4)Þ0, then this equation has two solutions:

u25u3 (11)

u25u31p

Therefore, the derivative term will be zero when links two a
three are collinear, unless the denominator of Eq.~10! is also zero
at this point. However, if the denominator is zero, it implies th
links three and four are also collinear, which indicates that
mechanism is a change-point mechanism. This case will be ex
ined later.

Interpretation of Solutions
The analysis presented above has shown that four solut

exist to the first derivative of the energy equation for a spr
placed at any link of a four-link mechanism. The first two sol
tions, given in Eq.~8!, are stable positions of the mechanism
while the two solutions in Eq.~11! are unstable positions unles
u40 is extreme-valued, as defined above. If this is the case, t
the single solution to Eq.~7! will be stable, and it will be equiva-
lent to one of the two solutions given in Eq.~11!. Therefore, the
potential energy equation will have at most two extrema over
mechanism’s motion—one stable position and one unstable p
tion. This proves that a four-link mechanism with a spring at o
joint will not be bistable if the two links opposite it are collinea
in the initial position.

While the two stable positions are possible for any configu
tion of link lengths and one torsional spring, except for the e
treme value case previously discussed, the unstable positions
not be reached in some configurations. In other words, a me
nism can always be assembled in either stable position, but it
not be able to toggle between the stable positions after assem
To demonstrate this, consider a mechanism in either unstable
sition, when the two links opposite the spring are collinear. Fo
mechanism to reach the point whereu25u3 , two inequalities
must be satisfied. These are

r 11r 4>r 21r 3 (12)

ur 12r 4u<r 21r 3

Similarly, if u2 and u3 differ by p radians, the following two
conditions must be met:

r 11r 4>ur 22r 3u
(13)

ur 12r 4u<ur 22r 3u

The second condition of Eq.~12! and the first condition of Eq.
~13! can be proven at the same time for any four-link mechan
by showing that the difference of the lengths of any two links
less than or equal to the sum of the lengths of the other two lin
To prove this, consider the inequality which must be satisfied
a mechanism to be assembled. For four given link lengths,
length of the longest link must be less than or equal to the sum
the lengths of the other links. Mathematically, this means

s1p1q>1 (14)

wheres, l, p, andq are as defined in Eq.~2!. Algebra gives the
three inequalities

l 2q<s1p

l 2p<s1q (15)

l 2s<p1q

In addition, because of the definition ofl as the length of the
longest link, the following inequalities result:
DECEMBER 2003, Vol. 125 Õ 703
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p2s, l 1q

q2s, l 1p (16)

up2qu, l 1s

These six inequalities prove that the difference of any two l
lengths is less than or equal to the sum of the other two
lengths for any four-link mechanism, so that the second condi
of Eq. ~12! and the first condition of Eq.~13! are satisfied. How-
ever, for the mechanism to be bistable, it must be able to satis
least one of the other two inequalities in Eq.~12! or ~13!, showing
that it is able to reach one of the two unstable positions to tog
into the other stable position. To determine which mechan
configurations are bistable, every possible configuration of l
lengths will be considered.

A Few Intermediate Results
Before presenting proofs for each mechanism configuratio

ability to reach an unstable position, three useful relations will
stated. The first two state that the sum of the lengths of the lon
link and one intermediate-length link is greater than or equa
the sum of the lengths of the other two links:

l 1p>q1s (17)

and

l 1q>p1s (18)

The third useful relation expresses the fact that the differe
betweenl ands will always be greater than the difference betwe
p andq:

l 2s>uq2pu (19)

Eqs.~17!, ~18!, and~19! will be used extensively in the determ
nation of which mechanism configurations can reach the unst
positions.

The material presented up to this point proves that for a sp
placed at any of its four joints, a four-link mechanism may
assembled in one of two stable positions. However, it will only
able to toggle between the two positions if one of the two unsta
positions can be reached. These unstable positions correspo
the positions where the two links opposite the spring are collin
or, in other words, when they have the same angle or their an
differ by p radians. For the mechanism to reach the posit
where the two opposite links’ angles are identical, the first con
tion of Eq. ~12! must be met:

r a11r a2>r o11r o2 Condition One~C1) (20)

wherer a1 andr a2 are the lengths of the two links adjacent to t
spring, andr o1 and r o2 are the lengths of the two links opposi
the spring. We will call this Condition One~C1! for a four-link
bistable mechanism. Similarly, for the mechanism to reach
position where the two opposite links’ angles differ byp radians,
the second condition of Eq.~13! must be satisfied:

ur a12r a2u<ur o12r o2u Condition Two ~C2) (21)
704 Õ Vol. 125, DECEMBER 2003
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We will call this Condition Two ~C2! for a four-link bistable
mechanism. For a complete analysis of which spring positi
result in a bistable mechanism, each spring position must be
amined to determine if either or both of C1 and C2 are satisfied
both are satisfied, then that spring position results in a bista
mechanism that can reach its two stable positions by rotatio
either direction. If exactly one is satisfied, then that position giv
a bistable mechanism that can reach its two stable positions
toggling through just one of the two unstable states. If neithe
satisfied, then that spring position does not result in a bista
mechanism.

For either a Grashof, a change-point, or a non-Grashof me
nism, the mechanism can form one of two kinematic chains
basic ways that the mechanism can be formed. These are i
trated in Fig. 4. In Fig. 4~a!, the shortest and longest links ar
adjacent, and in Fig. 4~b! they are opposite. Each basic chain w
be considered.

Conclusion of Proof
The material presented to this point applies equally to any fo

link mechanism. This last section of the proof, however, app
only to Grashof mechanisms. We will first consider a mechan
with a spring at position 1. For a Grashof mechanism of the ty
shown in Fig. 4~a! with a spring placed at position 1,

s1 l ,p1q (22)

which violates C1 because the sum of the lengths of the
adjacent links is less than the sum of the lengths of the two
posite links. Similarly, by Eq.~19!, C2 is also violated. For a
Grashof mechanism of the type shown in Fig. 4~b! with a spring at
position 1,

q2s. l 2p (23)

which violates C2. By Eq.~17!, C1 is violated. Hence, a Grasho
mechanism with a spring at position 1 will not be bistable f
either kinematic chain.

By following the same method, each spring position can
analyzed to determine whether it results in bistable behavior.
results for Grashof mechanisms are shown in Table 1. In
table, spring position 1a means position 1 in Fig. 4~a!, position 1b

Fig. 4 The two kinematic chains which form a four-link
mechanism
Table 1 Analysis of the eight spring positions in Fig. 4 for a Grashof mechanism. The inequality proving that the condition is met
or not met is shown, along with the source of the inequality „Grash.ÄGrashof’s law, otherwise, the equation number is given ….

Spring
Position

Condition
One met? Proof

Source of
Proof

Condition
Two met? Proof

Source of
Proof

1a No s1 l ,p1q Grash. No l 2s>uq2pu ~19!
1b No q1s< l 1p ~17! No q2s. l 2p Grash.
2a No p1s< l 1q ~18! No p2s. l 2q Grash.
2b No p1s< l 1q ~18! No p2s. l 2q Grash.
3a Yes p1q. l 1s Grash. Yes uq2pu< l 2s ~19!
3b Yes l 1p>q1s ~17! Yes l 2p,q2s Grash.
4a Yes l 1q>p1s ~18! Yes l 2q,p2s Grash.
4b Yes l 1q>p1s ~18! Yes l 2q,p2s Grash.
Transactions of the ASME



Table 2 Analysis of each spring position in Fig. 4 for a non-Grashof mechanism. The conventions used in Table 1 are repeated
for this table.

Spring
Position

Condition
One met? Proof

Source of
Proof

Condition
Two met? Proof

Source of
Proof

1a Yes s1 l .p1q Grash. No l 2s>uq2pu ~19!
1b No q1s< l 1p ~17! Yes q2s, l 2p Grash.
2a No p1s< l 1q ~18! Yes p2s, l 2q Grash
2b No p1s< l 1q ~18! Yes p2s, l 2q Grash.
3a No p1q, l 1s Grash. Yes uq2pu< l 2s ~19!
3b Yes l 1p>q1s ~17! No l 2p.q2s Grash.
4a Yes l 1q>p1s ~18! No l 2q.p2s Grash.
4b Yes l 1q>p1s ~18! No l 2q.p2s Grash.
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means position 1 in Fig. 4~b!, and so on. The table shows that f
either kinematic chain, the mechanism will be bistable if t
spring is placed at position 3 or position 4. This means tha
Grashof mechanism will be bistable if a spring is placed at eit
of the two joints that are not adjacent to the shortest link.
addition, any Grashof mechanism that satisfies one condition
isfies the other, meaning that the mechanism can toggle thro
either unstable position to reach the second stable position. Th
fore, we have proven Theorem 1 and Corollary 1.1.

Non-Grashof Mechanisms

Theorem 2. A compliant mechanism whose pseudo-rigi
body model behaves like a non-Grashof four-link mechanism w
a torsional spring at any one joint will be bistable if and only if t
spring’s undeflected state does not correspond to a mecha
position in which the two links opposite the spring are colline

Corollary 2.1. A non-Grashof rigid-link four-link mechanism
with a torsional spring at any one joint will be bistable if and on
if the spring’s undeflected state does not correspond to a me
nism position in which the two links opposite the spring a
collinear.

Proof. Once again, the proven accuracy of the pseudo-rig
body model allows us to prove Theorem 2 and Corollary 2.1
multaneously. All of the material presented in the preceding pro
except for the last section, applies equally to Grashof or n
Grashof mechanisms. Therefore, Theorem 2 and Corollary 2.1
be proven by showing that a spring at any position in eit
mechanism configuration shown in Fig. 4 satisfies at least on
the two conditions in Eq.~20! and Eq.~21! ~C1 and C2!. The
material already presented proves that the mechanism will no
bistable if the two links opposite the spring are collinear in t
undeflected position.

For example, if a spring is placed at position 1a, following t
nomenclature used earlier, then Grashof’s law gives the inequ

s1 l .p1q (24)

which proves that the non-Grashof mechanism satisfies C1. H
ever, by Eq.~19!, C2 is not satisfied. If a spring is placed
position 1b, then Eq.~17! proves that C1 is not met. Also
Grashof’s law gives

q2s, l 2p (25)

which proves that C2 is met. Results for all other spring positio
are shown in Table 2. Exactly one of the two conditions is sa
fied for every possible spring position. This means that a sp
placed at any of the four positions will cause a non-Gras
mechanism to be bistable, unless the spring is undeflected w
the two opposite links are collinear. Therefore, Theorem 2
Corollary 2.1 are proven.

A Further Note Regarding Non-Grashof Mechanisms.While
a non-Grashof mechanism with a spring at one joint will alwa
be able to reach one of the two unstable positions, Table 2 pro
that it will not be able to reach the other unstable equilibriu
Journal of Mechanical Design
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position because just one of the two conditions is satisfied
each spring location. The information in the table also allo
determination of which direction a given mechanism will be ab
to move to reach toggle. Notice that springs placed at 1b, 2a,
and 3a result in mechanisms which only meet C2, meaning
the angles of the two links opposite the spring must differ byp
radians. The other spring locations—1a, 3b, 4a, and 4b—resu
mechanisms which require the two opposite links to reach
same angle. A close look at Fig. 4 reveals that each of th
positions which satisfy condition 1 is adjacent to the longest li
while each position which satisfies condition 2 is not adjacen
the longest link. This information is valuable in some design pro
lems because meeting C2 requires the two opposite links to
able to cross each other. In situations where the two links
coplanar, as is often the case with surface micromachined ME
this is usually not possible.

Change-Point Mechanisms

Theorem 3. A compliant mechanism whose pseudo-rigi
body model behaves like a change-point four-link mechan
with a torsional spring placed at any one joint will be bistable
and only if the spring’s undeflected state does not correspond
mechanism position in which the two links opposite the spring
collinear.

Corollary 3.1. A rigid-body change-point four-link mecha
nism with a torsional spring placed at any one joint will b
bistable if and only if the spring’s undeflected state does not c
respond to a mechanism position in which the two links oppo
the spring are collinear.

Proof. Theorem 3 and Corollary 3.1 will again be proven t
gether. For a spring placed at position 4, as shown in Fig. 3,
previously noted that when links 2 and 3 are collinear, the deri
tive term in Eq.~10! may result in both the numerator and d
nominator being zero. This is because the position where all li
are collinear in a change-point mechanism is a singu
position—at this point, the mechanism can move in two differe
ways. If it moves one direction, thenuu42u40u becomes larger; if
it moves the other direction, thenuu42u40u becomes smaller.
Thus, movement in one direction means that the derivative ou4
changes sign; in the other direction, its sign remains the sam
its sign changes, then the singular position represents a rela
maximum in potential energy, while no sign change means
the potential energy continues to increase. This is true regard
of which link is shortest or longest because the change-point
sition may always be reached for a change-point mechanism@31#.
When the mechanism reaches this position, the spring will ten
force the mechanism to move in the direction which will redu
potential energy, resulting in bistable behavior. Thus, for
change-point mechanism, a spring placed at any of the four lo
tions will result in a mechanism with bistable behavior unless
spring is undeflected when the two opposite links are collinear
was previously discussed. Note that because all links are collin
DECEMBER 2003, Vol. 125 Õ 705



Table 3 Analysis of each spring position in Fig. 4 for a change-point mechanism. The conventions used in Table 1 are repeated
for this table.

Spring
Position

Condition
One met? Proof

Source of
Proof

Condition
Two met? Proof

Source of
Proof

1a Yes s1 l 5p1q Grash. No l 2s>uq2pu ~19!
1b No q1s< l 1p ~17! Yes q2s5 l 2p Grash.
2a No p1s< l 1q ~18! Yes p2s5 l 2q Grash.
2b No p1s< l 1q ~18! Yes p2s5 l 2q Grash.
3a Yes p1q5 l 1s Grash. Yes uq2pu< l 2s ~19!
3b Yes l 1p>q1s ~17! Yes l 2p5q2s Grash.
4a Yes l 1q>p1s ~18! Yes l 2q5p2s Grash.
4b Yes l 1q>p1s ~18! Yes l 2q5p2s Grash.
n

3
i

w

b

n

t

t
m

e
u

-

o

r in
can

ired
may
table
om-
and
ion
ha-
nd

pli-
ism
ner
sign
ther
ples

bly
ok
et.
wn
cha-
u-
e

ed to
ble

the
ing
ism,
re,
be
en-

e

at the change-point position, a mechanism which has the cha
point position as its initial state will not be bistable2.

A Further Note Regarding Change-Point Mechanisms
While the argument above proves Theorem 3 and Corollary

more information about change-point mechanisms may be ga
by pursuing the same analysis procedure used above for Gra
or non-Grashof mechanisms. Table 3 shows the results of ex
ining each spring position from Fig. 4. Note that a spring at a
position will cause bistable behavior when the mechanism mo
through the change-point position. However, the mechanism
only be able to reach toggle in either direction if the spring
placed opposite the shortest link~spring positions 3 and 4 in the
table!. Therefore, a change-point mechanism behaves like a
brid between a Grashof and a non-Grashof mechanism. A sp
located at any of the four joints will cause bistable behavior,
the mechanism will be able to move in either direction towa
toggle only if the spring is located opposite the shortest link.
addition, for a spring located adjacent to the shortest link,
mechanism can only reach the unstable position in which the
posite links are at the same angle if the spring is also adjace
the longest link. If the spring is not also adjacent to the long
link, then the mechanism will only be able to reach the unsta
position in which the opposite links’ angles differ byp radians.

Summary of Results. The results of each theorem and i
proof are summarized in Table 4 for mechanisms which meet
condition that the links opposite the spring are not collinear in
initial position. An example of a four-link bistable mechanis
with a spring at position 4 is shown in Fig. 5~a!. For a compliant
equivalent, the spring would be replaced by a small-length fl
ural pivot or a straight or curved fixed-pinned segment. Fig
5~b! shows a bistable compliant mechanism made by replacing
spring and pin joint in Fig. 5~a! with a straight fixed-pinned seg
ment.

While the results presented apply specifically to mechanis
with just one spring, they can be generalized to aid in design
mechanisms with multiple springs. Because each spring st
energy independently of the others, springs at various location

2The special case of a deltoid change-point mechanism (s5p and l 5q) will
possess infinitely many stable positions if the spring is placed between either th
short links or the two long links and the two opposite links are collinear.

Table 4 The spring locations which cause bistable behavior in
four-link mechanisms.

Mechanism Class
Location of Springs for Bistable

Mechanism

Grashof Four-Link Mechanism Either location opposite the
shortest link

Change-Point Four-Link
Mechanism

Any location

Non-Grashof Four-Link
Mechanism

Any location
706 Õ Vol. 125, DECEMBER 2003
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the mechanism will each work for or against bistable behavio
a way that is given by the proofs presented above. Designers
use this knowledge to develop designs with various des
bistable characteristics. For example, a bistable mechanism
be desired which stores considerable energy in the second s
position, ready to be released upon switching. This can be acc
plished by using one spring which causes bistable behavior,
one or more that work against stability in the second posit
corresponding to that spring. The additional springs in the mec
nism would allow significant storage of energy in the seco
stable position.

Application to Bistable Mechanism Design
The theory presented in the preceding sections greatly sim

fies bistable mechanism design. Knowledge of the mechan
configurations which lead to bistable behavior allows a desig
to focus on the other constraints of a bistable mechanism de
problem, adding springs to guarantee bistable behavior after o
considerations, such as mechanism path, are met. Two exam
are presented to demonstrate the idea.

Example: A Fully-Compliant Bistable Switch. A fully-
compliant bistable light switch would allow reduced assem
cost and complexity. However, the switch should retain the lo
and feel of a conventional light switch for the consumer mark
The problem can be most easily solved by using well-kno
mechanism synthesis techniques to design a rigid-body me
nism with a coupler point which moves approximately in a circ
lar arc to mimic the motion of a conventional light switch. Th
bistable mechanism theory presented above can then be us
choose a joint for spring placement that will guarantee bista
behavior.

The four-link mechanism design shown in Fig. 6 satisfies
motion requirements of the problem. The table next to the draw
gives mechanism dimensions. As it is a non-Grashof mechan
adding a spring at any joint will guarantee bistable behavior. He
the spring is placed at position 4. The spring stiffness can
chosen to give the switch a similar force response to a conv
tional light switch.

two

Fig. 5 A bistable four-link mechanism showing the two stable
positions and one unstable position „a…, and a compliant
equivalent „b…
Transactions of the ASME
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The mechanism can be made fully compliant by putting
small-length flexural pivot@34# in place of the spring. The othe
joints can be made compliant without introducing significant sti
ness by using living hinges, which are short, very thin hing
whose behavior closely approximates that of a rigid-body revol
joint. The material should be highly ductile to allow these hing
to pivot without fracture. Polypropylene is commonly used
meet this condition. The completed fully-compliant switch layo
in both positions is shown in Fig. 7. It has been fabricated a
tested to verify proper function@35#.

Example: A Bistable Micro-Device. Applications such as
micro-switching would benefit from a bistable micro-mechanis
Because of fabrication constraints in three-layer surface micro
chining, pin joints are most easily constructed when they are fi
to the substrate. The requirements can be met using a four-
mechanism with two fixed pin joints. The resulting mechanis
has springs placed at positions 2 and 3. A model for this mec
nism is shown in Fig. 8. Because of the usefulness of this gen
mechanism model, it has been more rigorously defined and c
sified @5#. General design observations are made here.

Because of the two torsional springs in the pseudo-rigid-bo
model, Theorems 1 through 3 do not guarantee bistable beha
However, by choosing one spring to be stiff compared to
other, the mechanism’s behavior may be approximated b
mechanism with only one spring. Note that the other, wea

Fig. 6 A rigid-body four-link mechanism that meets the design
requirements

Fig. 7 Layout for a fully-compliant bistable switch as-
fabricated „a… and closed „b…

Fig. 8 A model of the four-link mechanism class chosen for
the bistable micro-mechanism
Journal of Mechanical Design
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spring will change the location of the second stable position,
well as the energy~and force! required to reach the unstable po
sition. In fact, such behavior may be desired, as in a bista
switch which requires only a small force to move it out of i
second energy well. Simple calculations@1# may be used to verify
bistable behavior and calculate the new stable position and fo
required to reach it.

Figure 9 shows mechanism designs which meet the design
teria. Figure 9~a! is a Grashof mechanism with the shortest link
ground, and~b!, ~c!, and~d! are non-Grashof mechanisms with th
longest link as coupler, ground, and side link, respectively. Fig
9~b! is chosen for further development. Figure 10~a! shows how
this mechanism design could be implemented as a compl
mechanism using the pseudo-rigid-body model. Because b
springs are adjacent to the longest link, each requires the two l
opposite it to be at the same angle in its unstable position. Thu
each spring were considered separately, each one would req
motion in opposite directions to result in bistable behavior. Ho
ever, the spring on the shorter link has a much higher spr
stiffness, causing its potential energy curve to dominate in
mechanism’s total potential energy curve. For this reason,
mechanism is stable in the two positions shown in Fig. 10~b!.
Note that in the second position, the short compliant link is nea
undeflected. This example micro-mechanism has been fabric
and tested in a separate study@5#.

Fig. 9 Four possible mechanism configurations for bistable
micro-mechanisms. „a… is Grashof, and „b…, „c…, and „d… are non-
Grashof.

Fig. 10 An example of a bistable compliant micro-mechanism
whose pseudo-rigid-body model is a non-Grashof four-link
mechanism. „a… shows the mechanism and its pseudo-rigid-
body model, and „b… shows the two stable positions.
DECEMBER 2003, Vol. 125 Õ 707
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Conclusion
Four-link mechanisms have been studied to determine com

ant mechanism configurations that result in bistable behavior.
analysis has shown that Grashof mechanisms will be bistable
torsional spring is placed at either joint opposite the shortest l
provided that the two links opposite the spring are not collinea
the initial position. Similarly, change-point and non-Grash
mechanisms will be bistable if a spring is placed at any jo
subject to the same condition. This knowledge simplifies bista
mechanism design in many cases by allowing a designer to
sider motion and stability requirements of a design problem se
rately. The two example designs have demonstrated the a
design flexibility possible using the theory presented.
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