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Bistable mechanisms, which have two stable equilibria within their range of motion, are
important parts of a wide variety of systems, such as closures, valves, switches, and
clasps. Compliant bistable mechanisms present design challenges because the mecha-
nism’s energy storage and motion characteristics are strongly coupled and must be con-
sidered simultaneously. This paper studies compliant bistable mechanisms which may be
modeled as four-link mechanisms with a torsional spring at one joint. Theory is developed
to predict compliant and rigid-body mechanism configurations which guarantee bistable
behavior. With this knowledge, designers can largely uncouple the motion and energy
storage requirements of a bistable mechanism design problem. Examples demonstrate the
power of the theory in bistable mechanism desidg»Ol: 10.1115/1.1625399

Introduction element. In addition, compliance offers several other advantages,
%uch as diminished part count, reduced friction, and no backlash
n

r wear[19,20.

However, the design of compliant bistable mechanisms is not
Haight-forward, requiring the simultaneous analysis of both the
gtion and energy storage of the mechan{gth To avoid this
oblem, many of the bistable systems presented above use a

motion and energy storage generally both take place within tﬁlample buckled beam to gain the bistable behavior. While this
same flexible segmenfd]. This paper addresses the need for gpproach is simple, it gives the mechanism designer little flexibil-

: : . : ; / or control over the bistable snapping force or the location of
simple bistable mechanism design procedure by exploring the fd%, ble states. This is especially true for microbeams, which often

damental relationships between mechanism motion and bistaB ; . 4 . .

behavior. rely on residual film stress, a highly variable parameter, to induce
Several authors have discussed various bistable mechan Kling [21_23: . .

characteristics, including the design of particular examples of he pseudo-rigid-body model provides an easy way to model

bistable mechanismEL—4]. Particular interest has emerged re!® complex, nonlinear deflections of many compliant mecha-

cently in bistable micro-mechanisms, where power requireme/t$Ms[20l. The model approximates the force-deflection charac-

may be greatly reduced by using bistable mechanisms, which feristics of a compliant segment using two or more rigid segments

quire energy only to switch states, while requiring no energy {gined by pin joints, with torsional springs at the joints modeling

maintain statel5]. Bistable microvalveg6—9], micro-switches the s_egment’s stiffness, as |IIustrate_d in Fl_g._;. This type of_model
and -relays[10-15, and even a bistable fiber-optic switEh6] applies to small-length flexural pivots, initially curved fixed-
have been demonstrated. A bistable system which would provig&ined segments, or straight fixed-pinned segments of the type
the spring force for assembling microparts has also been s®OWn in the figure. The lengths of the pseudo-rigid links, as well
gested 17]. Work is even progressing in the design of multistabl&S the stiffnesses of the torsional springs, are found using simple
systems[18]. This paper, rather than presenting examples &duations.

bistable mechanisms, develops theory to identify mechanism con-'n€ usefulness of the pseudo-rigid-body model in allowing ac-
figurations that guarantee bistable behavior. curate analysis and synthesis of mechanism motion and energy

storage characteristics has been abundantly demonsfiat-
28]. For the purpose of the analysis presented here, however, it is
sufficient to realize that several types of compliant segments may
. be represented by links joined by pin joints with torsional springs.
Exploration of the Problem Therefore, the remainder of this paper will use rigid-body mecha-
Each of the bistable mechanism examples referenced abdwem models with torsional springs at one or more joints to exam-
stores and releases energy during motion. In fact, all bistable sy compliant mechanism motion and stability. The results of this
tems require some form of energy storage because stable positioask may then be applied to either rigid-body or compliant
occur at local minima of potential energy. Mechanical bistabl@echanisms, depending on the desired mechanism performance
systems typically rely on strain energy storage to gain bistakiéd the designer’s wishes.
behavior. Compliant bistable mechanisms represent an elegal - . . .
way to achieve bistable behavior because the flexible memberrjhe Stability of Compliant Mechanisms. Deflection of

; : : mpliant segments or torsional springs within a mechanism re-
allow both motion and energy storage to be incorporated into 0ﬁuires the application of forces to the mechanism. A mechanism is

A bistable mechanism has two stable equilibrium positio
within its range of motion. This behavior is desirable for a varietﬁ?
of applications. However, bistable mechanism design presents
number of challenges, particularly since the mechanisms’ motid
and energy storage characteristics are strongly coupled. Thig"]
especially true for bistable compliant mechanisms, in which t

romerly afiliated with Brigham Y Universit at an equilibrium position when no external forces are required to
ormerly affiliated with Brigham Young University. e L . L t .
Contributed by the Mechanisms Committee for publication in theRNAL OF mamta.ln the meCha.msm S position. An qulllbl‘lum pos't'or.‘ IS
MECHANICAL DESIGN. Manuscript received May 2000; revised April 2003. Associ-Stable if the mechanism returns to that position after small distur-

ate Editor: K. Farhang. bances, but it is unstable if small disturbances cause the mecha-
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j fore, the problem to be solved may be statEihd the torsional

Z @\F E=(@=======------0) spring locations in a general pseudo-rigid-body four-link mecha-

j Compliant Segment Pseudo-Rigid-Body Model nism which produce two stable positions within the allowable mo-
tions of the mechanism

Fig. 1 The concept of the pseudo-rigid-body model. Compli- The solution to this problem represents an elegant and easily-
ant segments are modeled as rigid segments joined by pin applied set of design tools for bistable compliant mechanisms. It
joints, with torsional springs at the joints. will be presented as a series of theorems governing bistable

mechanism behavior, with the theorem proofs demonstrating the

. . ) solution method outlined above.
nism to change to another position. The potential energy storage

can be related to the stability of the mechanism using the
Lagrange-Dirichlet theorem, which states that an equilibrium pd-heorems Governing Bistable Mechanism Behavior
sition is stable if it corresponds to a local minimum of potential
energy[29]. This theorem leads to a more formal definition of 3
bistable mechanism: a bistable mechanism is a mechanism Whé?
contains two locations of local potential energy minima within its
range of motion. s+l<p+q 2)
Using the pseudo-rigid-body model, the potential energy equas

tion of a compliant mechanism can easily be found. For a segme qgﬁzéiaﬁggiqt"?]re“tnhkeslerghzg}(vtgf Sgﬁgﬁﬁygngﬁghszd tl\ENO
modeled using a torsional spring and a pin joint, the potenti 9 ' P Y- » =0

; ) ), allows classification of four-link mechanisms as Grashof
energyV stored in the segment is mechanismgthose that satisfy the inequalitand non-Grashof

Four-link mechanisms may be classified according to Grashof’s
iterion [30-32 as Grashof or non-Grashof mechanisms.
shof’s criterion is stated mathematically as

1 5 mechanismgthose that do not satisfy)itIn addition, change-
V=5K® (1) point mechanisms are a subset of Grashof mechanisms for which
the left and right sides of Eq2) are equal. In this paper, change-
where K is the torsional spring constant, afl is the pseudo- point mechanisms will be treated differently than all other types of
rigid-body angle, or the angle of deflection of the compliant se@rashof mechanisms, so that the three mechanism classes treated
ment. The total potential energy in the mechanism is the sum Ieére are Grashdhot including change-poihtchange-point, and
the potential energy stored in each compliant segment. Equilifen-Grashof mechanisms.
rium positions may be found by locating mechanism positions
where the first derivative of the potential energy is zero. The sign Grashof Mechanisms
of the second derivative at these points determines the stability of
the equilibrium position, with positive corresponding to a stable Theorem 1. A compliant mechanism whose pseudo-rigid-
position, and negative corresponding to an unstable position. body model behaves like a Grashof four-link mechanism with a
. . . torsional spring placed at one joint will be bistable if and only if
Approach to Mechanism Analysis. The model of an arbi- the torsional spring is located opposite the shortest link and the
trary fully compliant four-link mechanism is shown in Fig. 2. Th%pring’s undeflected state does not correspond to a mechanism

model has four links, with link lengths,, 15, rs, andr,, and position in which the shortest link and the other link opposite the
four torsional springs, with spring constaiitg, K,, K3, andK,.  spring are collinear.

The angle of each link with respect to the horizontal is given by

6,, 65, and 6,, with link one being defined as a horizontal Corollary 1.1. Arigid-link Grashof four-link mechanism with
ground link. The torsional springs are considered to be undene torsional spring placed at one joint will be bistable if and only
flected in the fabrication position determined by link angigg, if the torsional spring is located opposite the shortest link and the
630, andd,o. The bistable mechanism design problem consists 8pring’s undeflected state does not correspond to a mechanism
finding mechanism configurations which will always be bistablgosition in which the shortest link and the other link opposite the
To do this, each possible torsional spring location may be exagpring are collinear.

ined independently to determine whether a spring placed at thabroof
point in the mechanism causes bistable behavior. This is done :
choosing its spring constant to be non-zero while all other spri
constants are set equal to zero. The resulting potential en
equation may be differentiated, and its derivative set equal to z
Solutions to this equation determine equilibrium locations. Th

Theorem 1 will be proven by analyzing the potential

@Pfergy equation for a general four-link mechanism with a spring

err‘lj‘q one joint. Solutions for potential energy minima will then be

eaﬁ¥alyzed to determine whether mechanism motion allows each

erFr"_?i‘nimum to be reached. Because of the previously-demonstrated
3ccuracy of the pseudo-rigid-body model, the results apply
equally well for either compliant mechanisms or rigid-body
mechanisms. Therefore, the same proof applies to both Theorem 1
and Corollary 1.1.

Note that the theorem could be proved by considering the mo-
tion of a Grashof mechanism to determine which pin joints main-
tain the same relative angle in two distinct mechanism positions.
However, the more rigorous proof presented here gives the de-
signer further information about the nature and location of the
stable positions.

Analysis of the Energy EquationFor any four-link mecha-
nism, the energy equation is found by summing the potential en-
ergy in each spring, giving

1
V=5 Ky Koy Koy + Kaih) 3)

where
Fig. 2 A four-link mechanism with a torsional spring at each
joint 1= 02— 0
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If sin(6;— 0,)#0, then this equation has two solutions:
02: 03 (11)
0,= 03+

Therefore, the derivative term will be zero when links two and
three are collinear, unless the denominator of &) is also zero

at this point. However, if the denominator is zero, it implies that
links three and four are also collinear, which indicates that the
mechanism is a change-point mechanism. This case will be exam-

| | ined later.
o ——]
Fig. 3 The two different positions of a four-link mechanism for Interpretation of Solutions

agiven angle 6, The analysis presented above has shown that four solutions

exist to the first derivative of the energy equation for a spring
placed at any link of a four-link mechanism. The first two solu-

Yo= Oy— Oz0— (O3— Os0) tions, given in Eq.(8), are stable positions of the mechanism,
(4) while the two solutions in Eq(11) are unstable positions unless
3= 04— O40— (03— O30) 040 is extreme-valued, as defined above. If this is the case, then
the single solution to Eq.7) will be stable, and it will be equiva-
$a=04= 040 lent to one of the two solutions given in E@.1). Therefore, the

Choosingé, as the independent variable, the first derivative is Potential energy equation will have at most two extrema over the
mechanism’s motion—one stable position and one unstable posi-

d_V —0=K.i+K 1- 2% Lk %_ % tion. This proves that a four-link mechanism with a spring at one
de, = Wit Kays dé, s¥s de, do, joint will not be bistable if the two links opposite it are collinear
in the initial position.
K, % ®) While the two stable positions are possible for any configura-
474de, tion of link lengths and one torsional spring, except for the ex-

... treme value case previously discussed, the unstable positions can
. - S5t be reached in some configurations. In other words, a mecha-
ground, only one spring position needs to be anal_yzed, a_n_d m can always be assembled in either stable position, but it may
results may then be applied to any of the four spring positiong. e apje to toggle between the stable positions after assembly.
Position 4 is chosen because the equations are somewhat SimRlgfemonstrate this, consider a mechanism in either unstable po-
and becausé,, the independent variable, does not appear in thgion, “\hen the two links opposite the spring are collinear. For a
expression fory, given in Eq.(4). If K, is exclusively non-zero, mechanism to reach the point whefg= 65, two inequalities

Eq. (5) becomes must be satisfied. These are

0=K4(0s= 040 7~ FiHra=rp+r
a0y 4°)d02 ©) tamiens (12)

The first part of this equatiorf,— 6,,=0, provides two solutions

corresponding to the two ways that the mechanism can be agijarly, if 6, and 6 differ by = radians, the following two
sembled. That is, for any given link lengths, r,, r3, andrs,  ongditions must be met:

and the initial angle of the fourth linkd,,, two different mecha-

[ri—ry<ro+rg

nism positions exist, assuming thé, does not correspond to an P+ =r,—ry
extreme value and that the mechanism can be assembled. An ex- 13)
ample is shown in Fig. 3. The exact positions may be found by [ri—ra|<|ro—ry

solving the Freudenstein equatidrds3]:
g quaticis] The second condition of Eq12) and the first condition of Eq.

I2C0S0,+13C0SO3="r1+T14COSH40 % (13) can be proven at the same time for any four-link mechanism
by showing that the difference of the lengths of any two links is

less than or equal to the sum of the lengths of the other two links.
The solutions to these equations are To prove this, consider the inequality which must be satisfied for

a mechanism to be assembled. For four given link lengths, the

02= 00 o 02=20,= 05 (@) length of the longest link must be less than or equal to the sum of

03= 063 ~ 03=20,— 03 the lengths of the other links. Mathematically, this means

r,SiN0,+r3SiN63=r,SiN0

where s+p+g=1 (14)

r,sin( 6
L‘m) (9) wheres, |, p, andq are as defined in Eq2). Algebra gives the
r1+ 74008 040 three inequalities
and 6, and 5, are the initial angles of the second and third links,

tang,=

respectively. Note, however, thatf, is equal tod,, then these l-g=<s+p
two solutions are identical to each other. This is the case of an |- p=s+q (15)
extreme value foif,g.

The second part of Eq6), the derivative, may be written |—s<p+q

%: M: (10) In addition, because of the definition éfas the length of the
dfy rysin(f3—6,) longest link, the following inequalities result:
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p—s<l+q 3

g—s<Il+p (16)

lp—ql<l+s 2

These six inequalities prove that the difference of any two lin ¢
lengths is less than or equal to the sum of the other two lir
lengths for any four-link mechanism, so that the second conditid ! 4
of Eq. (12) and the first condition of Eq13) are satisfied. How- @ 1 4

ever, for the mechanism to be bistable, it must be able to satisfy a.
leaSt. one of the other two inequalities in Egj2) or (13_)’. showing Fig. 4 The two kinematic chains which form a four-link
that it is able to reach one of the two unstable positions to toggl&chanism

into the other stable position. To determine which mechanism

configurations are bistable, every possible configuration of link

lengths will be considered.

We will call this Condition Two(C2) for a four-link bistable

. mechanism. For a complete analysis of which spring positions
A Few Intermediate Results result in a bistable mechanism, each spring position must be ex-

Before presenting proofs for each mechanism configuratioresnined to determine if either or both of C1 and C2 are satisfied. If

ability to reach an unstable position, three useful relations will Heoth are satisfied, then that spring position results in a bistable
stated. The first two state that the sum of the lengths of the longestchanism that can reach its two stable positions by rotation in
link and one intermediate-length link is greater than or equal &ther direction. If exactly one is satisfied, then that position gives

the sum of the lengths of the other two links: a bistable mechanism that can reach its two stable positions by
toggling through just one of the two unstable states. If neither is

I+p=q+s an satisfied, then that spring position does not result in a bistable

and mechanism.
For either a Grashof, a change-point, or a non-Grashof mecha-
I+q=p+s (18) nism, the mechanism can form one of two kinematic chains, or

The third useful relation expresses the fact that the differenbasic ways that the mechanism can be formed. These are illus-
betweerl ands will always be greater than the difference betweetrated in Fig. 4. In Fig. @), the shortest and longest links are
p andq: adjacent, and in Fig.(®) they are opposite. Each basic chain will
be considered.
| —s=|q—p| (19)
Eqgs.(17), (18), and(19) will be used extensively in the determi- Conclusion of Proof

nation of which mechanism configurations can reach the unstabl . . . .
positions. |11 The material presented to this point applies equally to any four-

The mterial presente up ot it proves that for  sprfl MEET TS, T et secien of e proo hoveer sl
placed at any of its four joints, a four-link mechanism may b Y :

. L P With a spring at position 1. For a Grashof mechanism of the type
assembled in one of two stable positions. However, it will only b own in Fig. 4a) with a spring placed at position 1,

able to toggle between the two positions if one of the two unstabie
positions can be reached. These unstable positions correspond to s+i<p+q (22)

the positions where the two links opposite the spring are collinear, . .
or, in other words, when they have the same angle or their angY& ich violates C1 because the sum of the lengths of the two

differ by = radians. For the mechanism to reach the positio% Jacent links is less than the sum of the lengths of the two op-

YT : : . osite links. Similarly, by Eq(19), C2 is also violated. For a
\t/iv:neroef tgg E\ivg) ?ﬁg:tsgg mlg(ts angles are identical, the first con rashof mechanism of the type shown in Figh)4vith a spring at

position 1,
ra1tras=ry1+ry Condition One(C1) (20) q-s>1-p 23)
wherer ,; andr ., are the lengths of the two links adjacent to the | . . L
spring, andr,; andr,, are the lengths of the two links oppositeWhICh V|_0Iates_C2. By I_Eq(l?), c1 1S V|0Iate_d. Hence, a Grashof
the spring. We will call this Condition Oné&C1) for a four-link "?e"ha“_'sm W'.th a spring at position 1 will not be bistable for
rgéther kinematic chain.

bistable mechanism. Similarly, for the mechanism to reach t ) . "
position where the two opposite links’ angles differ syradians, By following the.same methqd, each'spr.lng position can be
the second condition of Eq13) must be satisfied: analyzed to determine wheth_er it results in bls‘_[able behavior. The
results for Grashof mechanisms are shown in Table 1. In this
[ra1—Ta2l<|ro1—ros| Condition Two (C2) (21) table, spring position 1a means position 1 in Fig)4position 1b

Table 1 Analysis of the eight spring positions in Fig. 4 for a Grashof mechanism. The inequality proving that the condition is met

or not met is shown, along with the source of the inequality (Grash. =Grashof’s law, otherwise, the equation number is given ).
Spring Condition Source of Condition Source of
Position One met? Proof Proof Two met? Proof Proof
la No s+l<p+q Grash. No |—s=|q—p| (19
1b No g+s<I+p a7 No g—s>l—-p Grash.
2a No p+s<l+q (19 No p—s>l—q Grash.
2b No p+s<l+q (18 No p—s>l—q Grash.
3a Yes p+g>l+s Grash. Yes lg—p|<l-s (19
3b Yes I+p=q+s 7 Yes I—-p<g-s Grash.
da Yes I+q=p+s (19 Yes I-q<p-s Grash.
4b Yes I+q=p+s (18 Yes I—g<p-s Grash.
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Table 2 Analysis of each spring position in Fig. 4 for a non-Grashof mechanism. The conventions used in Table 1 are repeated
for this table.

Spring Condition Source of Condition Source of

Position One met? Proof Proof Two met? Proof Proof
la Yes s+I>p+q Grash. No I—s=|q—p| (19
1b No g+s<I+p 17 Yes g—s<Il—p Grash.
2a No p+s=<l+q (19 Yes p—s<l—q Grash
2b No p+s<l+q (18 Yes p—s<l—q Grash.
3a No p+qg<l+s Grash. Yes lg—p|<l-s (19
3b Yes |+p=q+s 17 No I—p>q-s Grash.
4da Yes I+g=p+s (18 No l—g>p-s Grash.
4b Yes I+q=p+s (19 No I—q>p-s Grash.

means position 1 in Fig.(8), and so on. The table shows that forposition because just one of the two conditions is satisfied for
either kinematic chain, the mechanism will be bistable if theach spring location. The information in the table also allows
spring is placed at position 3 or position 4. This means thatdetermination of which direction a given mechanism will be able
Grashof mechanism will be bistable if a spring is placed at eithts move to reach toggle. Notice that springs placed at 1b, 2a, 2b,
of the two joints that are not adjacent to the shortest link. land 3a result in mechanisms which only meet C2, meaning that
addition, any Grashof mechanism that satisfies one condition stéite angles of the two links opposite the spring must differrby
isfies the other, meaning that the mechanism can toggle througldians. The other spring locations—1a, 3b, 4a, and 4b—result in
either unstable position to reach the second stable position. Tharechanisms which require the two opposite links to reach the

fore, we have proven Theorem 1 and Corollary 1.1. same angle. A close look at Fig. 4 reveals that each of these
) positions which satisfy condition 1 is adjacent to the longest link,
Non-Grashof Mechanisms while each position which satisfies condition 2 is not adjacent to

d_the longest link. This information is valuable in some design prob-

body model behaves like a non-Grashof four-link mechanism wi{ Ts tbecause meﬁtlntg:] C2Ireq!i|rets_, the tv|v10 optﬁ)]ogtte I'T.ksk to be
a torsional spring at any one joint will be bistable if and only if thé el 0 cross ez?tc ?h er. in S'.tﬁa 'O?S where the r\]/_vo deSEI\i;rSe
spring’s undeflected state does not correspond to a mechanr(‘%?ﬁ anar, as IS often the case with surface micromachiné '

position in which the two links opposite the spring are collinear "' is usually not possible.

Theorem 2. A compliant mechanism whose pseudo-rigi

Corollary 2.1. A non-Grashof rigid-link four-link mechanism
with a torsional spring at any one joint will be bistable if and only
if the spring’s undeflected state does not correspond to a mech

nism position in which the two links opposite the spring are Theorem 3. A compliant mechanism whose pseudo-rigid-
collinear. body model behaves like a change-point four-link mechanism

Proof. Once again, the proven accuracy of the pseudo-rigiéﬁ‘!ith a torsional spring placed at any one joint will be bistable if

body model allows us to prove Theorem 2 and Corollary 2.1 s?._nd only if the spring’s undeflected state does not correspond to a

multaneously. All of the material presented in the preceding prod%?l?hamsm position in which the two links opposite the spring are
except for the last section, applies equally to Grashof or nofi®near.

Grashof mechanisms. Therefore, Theorem 2 and Corollary 2.1 carCorollary 3.1. A rigid-body change-point four-link mecha-
be proven by showing that a spring at any position in eithefism with a torsional spring placed at any one joint will be
mechanism configuration shown in Fig. 4 satisfies at least oneétable if and only if the spring’s undeflected state does not cor-

the two conditions in Eq(20) and Eq.(21) (C1 and C2 The respond to a mechanism position in which the two links opposite
material already presented proves that the mechanism will not #pe spring are collinear.

bistable if the two links opposite the spring are collinear in the . .
undeflected position. Proof. Theorem 3 and Corollary 3.1 will again be proven to-
For example, if a spring is placed at position 1a, following thg€ther. For a spring placed at position 4, as shown in Fig. 3, we

nomenclature used earlier, then Grashof’s law gives the inequaﬁSﬁViOUSW_ noted that when links _2 and 3 are collinear, the deriva-
tive term in Eqg.(10) may result in both the numerator and de-

s+1>p+q (24)  nominator being zero. This is because the position where all links

which proves that the non-Grashof mechanism satisfies C1. Ho¢ _collinear in a change-point mechanism is a singular
ever, by Eq.(19), C2 is not satisfied. If a spring is placed afPosition—at this point, the mechanism can move in two different

position 1b, then Eq(17) proves that C1 is not met. Also, Ways. If it moves one direction, thei,— 6,9 becomes larger; if
Grashof's law gives it moves the other direction, thejg,— 6,/ becomes smaller.

Thus, movement in one direction means that the derivative,of
g—s<I-p (25) changes sign; in the other direction, its sign remains the same. If

which proves that C2 is met. Results for all other spring positio§ Sign changes, th_eln the singurl]:?llr position rerf)resents a relar:ive
are shown in Table 2. Exactly one of the two conditions is Sat%ammum in potential energy, while no sign change means that

aChange-Point Mechanisms

fied for every possible spring position. This means that a spri e P‘?te”ﬁa' energy continues to increase. This is true reggrdless
placed at any of the four positions will cause a non-Grash IWhICh link is shortest or longest because th_e change-point po-
mechanism to be bistable, unless the spring is undeflected w tﬁo” may always be reached for a change-point mechaf8sin

the two opposite links are collinear. Therefore, Theorem 2 afjgnen the mechanism reaches this position, the spring will tend to
Corollary 2.1 are proven orce the mechanism to move in the direction which will reduce

potential energy, resulting in bistable behavior. Thus, for a
A Further Note Regarding Non-Grashof Mechanism¥é/hile  change-point mechanism, a spring placed at any of the four loca-
a non-Grashof mechanism with a spring at one joint will alwaytsons will result in a mechanism with bistable behavior unless the
be able to reach one of the two unstable positions, Table 2 prowsing is undeflected when the two opposite links are collinear, as
that it will not be able to reach the other unstable equilibriunwas previously discussed. Note that because all links are collinear
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Table 3 Analysis of each spring position in Fig. 4 for a change-point mechanism. The conventions used in Table 1 are repeated
for this table.

Spring Condition Source of Condition Source of

Position One met? Proof Proof Two met? Proof Proof
la Yes s+l=p+q Grash. No I—s=|q—p| (19
1b No g+s<I+p 17 Yes gq-s=Il-p Grash.
2a No p+s=<l+q (19 Yes p—s=Il—q Grash.
2b No p+s<l+q (18 Yes p—s=Il—q Grash.
3a Yes p+q=I+s Grash. Yes lg—p|<l-s (19
3b Yes |+p=q+s 17 Yes |—p=q-s Grash.
4da Yes I+g=p+s (18 Yes I—q=p-s Grash.
4b Yes I+g=p+s (19 Yes I—q=p-—s Grash.

at the change-point position, a mechanism which has the chantfee mechanism will each work for or against bistable behavior in

point position as its initial state will not be bistahle a way that is given by the proofs presented above. Designers can
use this knowledge to develop designs with various desired

A Further Note Regarding Change-Point Mechanisms  bistable characteristics. For example, a bistable mechanism may

While the argument above proves Theorem 3 and Corollary 3he desired which stores considerable energy in the second stable

more information about change-point mechanisms may be gair%eition, ready to be released upon switching. This can be accom-

by pursuing the same analysis procedure used above for Graghisied by using one spring which causes bistable behavior, and

or non-Grashof mechanisms. Table 3 shows the results of exa€ Or more that work against stability in the second position
rresponding to that spring. The additional springs in the mecha-

ining each spring position from Fig. 4. Note that a spring at any: - oM :
position will cause bistable behavior when the mechanism mova§m would allow significant storage of energy in the second
through the change-point position. However, the mechanism wifaPle position.

only be able to reach toggle in either direction if the spring is

placed opposite the shortest lifigpring positions 3 and 4 in the Application to Bistable Mechanism Design

table. Therefore, a change-point mechanism behaves like a hy- . . : o
brid between a Grashof and a non-Grashof mechanism. A springlhe theory presented in the preceding sections greatly simpli-
located at any of the four joints will cause bistable behavior, bifS bistable mechanism design. Knowledge of the mechanism
the mechanism will be able to move in either direction towargonfigurations which lead to bistable behavior allows a designer
toggle only if the spring is located opposite the shortest link. [fp focus on the other constraints of a bistable mechanism design
addition, for a spring located adjacent to the shortest link, tigoblem, adding springs to guarantee bistable behavior after other
mechanism can only reach the unstable position in which the dinsiderations, such as mechanism path, are met. Two examples
posite links are at the same angle if the spring is also adjacent¥§ Presented to demonstrate the idea.

the longest link. If the spring is not also adjacent to the longest Example: A Fully-Compliant Bistable Switch. A fully-

link, then the mechanism will only pe able to reach the Unstabl%mpliant bistable light switch would allow reduced assembly
position in which the opposite links’ angles differ byradians. st and complexity. However, the switch should retain the look
Summary of Results. The results of each theorem and it2nd feel of a conventional light switch for the consumer market.
proof are summarized in Table 4 for mechanisms which meet tA8€ problem can be most easily solved by using well-known
condition that the links opposite the spring are not collinear in t{B€chanism synthesis techniques to design a rigid-body mecha-
initial position. An example of a four-link bistable mechanisnfliSm with a coupler point which moves approximately in a circu-
with a spring at position 4 is shown in Fig(éh. For a compliant ar arc to mimic the motion of a conventional light switch. The
ural pivot or a straight or curved fixed-pinned segment. Figufd00se a joint for spring placement that will guarantee bistable
5(b) shows a bistable compliant mechanism made by replacing thghavior. _ _ — -
spring and pin joint in Fig. &) with a straight fixed-pinned seg-  The four-link mechanism design shown in Fig. 6 satisfies the
ment. motion requirements of the problem. The table next to the drawing
While the results presented apply specifically to mechanisf&/€S mechanism dimensions. As it is a non-Grashof mechanism,
with just one spring, they can be generalized to aid in design 8fding a spring at any joint will guarantee bistable behavior. Here,
mechanisms with multiple springs. Because each spring stoff§ Spring is placed at position 4. The spring stiffness can be

energy independently of the others, springs at various locationsG0Sen to give the switch a similar force response to a conven-
tional light switch.

°The special case of a deltoid change-point mechanismp(and |=q) will
possess infinitely many stable positions if the spring is placed between either the two
short links or the two long links and the two opposite links are collinear.

G > Unstable
/ 4 Position
Table 4 The spring locations which cause bistable behavior in
four-link mechanisms.

Location of Springs for Bistable ~  /_-/__.<=-.% ,
Mechanism Class Mechanism - v
Grashof Four-Link Mechanism Either location opposite the ls)zgﬁ‘i‘;‘ns‘able
shortest link
Change-Point Four-Link Any location @ ®)
Mechanism
Non-Grashof Four-Link Any location Fig. 5 A bistable four-link mechanism showing the two stable
Mechanism positions and one unstable position (a), and a compliant

equivalent (b)
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)
- Soleh 57 Less Stiff
ra 2.0cm
T3 1.0 cm
‘ \9“\ Iy 1.23cm
- ;orsional spring 640 142°

Fig. 6 Arigid-body four-link mechanism that meets the design
requirements (@

The mechanism can be made fully compliant by putting .
small-length flexural pivof34] in place of the spring. The other St‘ Less Stiff
joints can be made compliant without introducing significant sti
ness by using living hinges, which are short, very thin hing 2 2
whose behavior closely approximates that of a rigid-body revolu
joint. The material should be highly ductile to allow these hinge © )
to pivot without fracture. Polypropylene is commonly used to
meet this condition. The completed fully-compliant switch layoufig. 9 Four possible mechanism configurations for bistable
in both positions is shown in Fig. 7. It has been fabricated argicro-mechanisms. (a) is Grashof, and (b), (c), and (d) are non-
tested to verify proper functiofB5]. Grashof.

@'C') Less Stiff

Example: A Bistable Micro-Device. Applications such as
micro-switching would benefit from a bistable micro-mechanism. | ) ) o
Because of fabrication constraints in three-layer surface micron®ing will change the location of the second stable position, as
chining, pin joints are most easily constructed when they are fix¥¢!l as the energyand force required to reach the unstable po-
to the substrate. The requirements can be met using a four-lifikoN. In fact, such behavior may be desired, as in a bistable
mechanism with two fixed pin joints. The resulting mechanis@Witch which requires only a small force to move it out of its
has springs placed at positions 2 and 3. A model for this mechcond energy well. Simple calculatidiig may be used to verify
nism is shown in Fig. 8. Because of the usefulness of this geneFét?ta,b'e behavior fand calculate the new stable position and force
mechanism model, it has been more rigorously defined and cl&gquired to reach it. i i ) i )
sified[5]. General design observations are made here. Figure 9 shows mechanism designs which meet the design cri-

Because of the two torsional springs in the pseudo-rigid-bocﬁ?r'a- Figure @a) is a Grashof mechanism with the shortest _Ilnk as
model, Theorems 1 through 3 do not guarantee bistable behav@Pund, andb), (c), and(d) are non-Grashof mechanisms with the
However, by choosing one spring to be stiff compared to tH@”Q?St link as coupler, ground, and side Il_nk, respectively. Figure
other, the mechanism’s behavior may be approximated by9£p) is chosen for further development. Figure(d0shows how

mechanism with only one spring. Note that the other, weak8HS mechanism design could be implemented as a compliant
mechanism using the pseudo-rigid-body model. Because both

springs are adjacent to the longest link, each requires the two links
opposite it to be at the same angle in its unstable position. Thus, if
each spring were considered separately, each one would require
motion in opposite directions to result in bistable behavior. How-
ever, the spring on the shorter link has a much higher spring
stiffness, causing its potential energy curve to dominate in the
mechanism’s total potential energy curve. For this reason, the
mechanism is stable in the two positions shown in FigbLO
Note that in the second position, the short compliant link is nearly
undeflected. This example micro-mechanism has been fabricated
and tested in a separate stUdy.

actuation lever

living hinges ——

contacts

(@) (b}

Fig. 7 Layout for a fully-compliant bistable switch as-
fabricated (a) and closed (b)

Torsional Spring

Constant K A

Torsional Spring
Constant K

1 Fig. 10 An example of a bistable compliant micro-mechanism
whose pseudo-rigid-body model is a non-Grashof four-link
Fig. 8 A model of the four-link mechanism class chosen for mechanism. (a) shows the mechanism and its pseudo-rigid-
the bistable micro-mechanism body model, and (b) shows the two stable positions.
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