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A Pseudo-Rigid-Body Model for much like a translational spring. However, its force-deflection
. . . characteristics are not linear. To better study these characteristics,
Inltlally-Curved Pinned-Pinned symmetry is used to divide the complete segment into two equiva-
i i lent half-segments, shown in Fig. 2. This half-segment will be
Segmen_ts Used in Comp“ant modeled, and the results will be generalized to the full FBPP
Mechanisms segment.

Elliptic Integral Solution
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Larry L. Howell The force-deflectlon relatlon_shlps for FBPP segments require a
: . ) . nonlinear solution. The classical method for determining these
Mechanical Engineering Department, Brigham Young rejationships has been through elliptic integf@ls]. For a fixed-
University, Provo, UT 84602 pinned curved beam with a horizontal force applied to the pinned
end, the solutions ar@]:

The pseudo-rigid-body model concept allows compliant mecha-
nisms to be analyzed using well-known rigid-body kinematics.
This paper presents a pseudo-rigid-body model for initially
curved pinned-pinned segments that undergo large, nonlinear de
flections. The model approximates the segment as three rigis
members joined by pin joints. Torsional springs placed at the , y

joints model the segment’s stiffness. This model has been val R,

dated by fabricating several such segments from a variety of dif- F
ferent materials. Testing of the force-deflection behavior of these x' -+ T -
segments verified the accuracy of the model.
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Introduction l

The nonlinear deflections often associated with the motion of
compliant mechanisms increase the complexity of compliant
mechanism analysis and design. However, these deflections allo
a drastic reduction in part count, increase in reliability, and all of
the other advantages of compliant mechani§mg]. Methods Fig- 1 A functionally binary pinned-pinned  (FBPP) segment
must be developed that simplify large-deflection analysis to aid in
compliant mechanism design. The pseudo-rigid-body model cc
cept has been developed in response to this f@ed his model
unifies compliant mechanism theory with rigid-body mechanisi
theory by replacing a compliant segment with two or more rigi
segments joined by pin joints. The lengths of the equivalent rig
segments are specified so that their motion closely models that
the compliant segments. A torsional spring at the pin joint mode
the segment’s resistance to bending. This type of model has bt
applied to small-length flexural pivo{8], initially straight fixed
compliant segments with external end logdd, and initially
curved segments with similar loagis].

A common compliant link yet to be modeled is the initially-/
curved pinned-pinned segment, or functionally binary pinnec
pinned segment~BPP, shown in Fig. 16]. Because it is pinned /]
at both ends, vertical loads cause rigid-body rotation; only hot
zontal loading produces deflection. Thus, the segment beha‘/
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a=tF(B,t) @)
where
FL? Al (12)
r=
a2=ﬁ 3) 2
and all other parameters are as defined previously. Finally, regard-
N K5 ) @ less of whether or not>1,
= =———C0s6,
2a b \/E
L Ezz(\/)\-l‘l—\/)\-l‘COSﬂo) (13)
=— 5 . . .
Ko Ry ©) whereb is they-coordinate of the pinned end of the beam, mea-

sured from the fixed end.
_ b Figure 3 presents the deflection characteristics for the beam tip
B (6) - : 2 |
at various values ok, calculated using the elliptic integral so
lutions. Just as in previous studies for other beam loadings, the
]2 deflection curves for this type of beam loading are nearly circular,
t= A+l @) although not about the orig{®,5]. Therefore, the beam deflection

) o ) ) can be modeled with an appropriately-placed pin joint and link.
Also, Ry is the initial radius of curvature of the segmelntis the

segment IengthQO is the a_ngle the _pinned end of the deflecteqhe Pseudo-Rigid-Body Model
beam makes with the-axis, anda is the x-coordinate of the . ) e L
pinned end, measured from the fixed end of the be&mis the Using this concept, a simplified model, called the pseudo-rigid-
beam’s flexural rigidity, andF is the applied horizontal force. P0dy model(PRBM), can be developed to facilitate the force-
F(B.t) is the incomplete elliptic integral of the first kind, anddeflection calculations for FBPP segments. This model, shown in
E(B.t) is the incomplete elliptic integral of the second kind. FoF19- 4, uses two rigid links and a torsional spring to approximate
Egs. (1) and (2), the nonlinear bending characteristics of the FBPP half-segment,
with the link lengths and spring constant dependent on the initial
0<fo=m (8) geometry of the segment.
Note that, due to symmetry, the half-model is equally appli-
cable to either side of the FBPP segment. Thus the entire FBPP
a 1 segment shown in Fig. 1 may be represented in terms of an iden-
= —[2E(¢f,r)—F(44,1)] (9) tical PRBM on each side of the segment midpoint. The resulting
@ pseudo-rigid-body model is given in Fig. 5. The left and right
a=F(,r) (10) sides are coupled by requiring the two anglgs; and® g, to
be equal, as well as the torsional spring constafs.;; and
Keorignht -
Tr?e model for fixed-free curved segmemfs is conceptually
y=asin /1—cosby (11) similar to the model in Fig. 4, thus allowing the pseudo-rigid-body
AN+1 model for the pinned-pinned segment to use some of the results

Similarly, for |\|<1,

where
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developed for that model. But there are also significant differences Table 1 PRBM rigid link characteristics
that cause the two models to be different. One of the main differ-

ences is that the initially curved model is for combined vertical Ko Y Y (A0) gx
and horizontal forces on a cantilever beam. That model was based
on the ratio of the horizontal to vertical force, which ratio would 0.50 0.793 0.791 1.677
be infinity for the type of loading required in this paper. Another 075 0.787 0.783 1.456
difference is that the elements are in series to accurately model thel—
segment. 1.00 0.783 0.775 1.327
1.25 0.779 0.768 1.203
Derivation of the PRBM Link Length
erivation of t ? ) o engths 1.50 0.775 0.760 1.070
For the PRBM in Fig. 4, it is apparent that the key factor gov-

erning accurate endpoint deflection approximations is obtaining
the correct lengths for the two rigid links. The length of the fixed
link is defined by the non-dimensionalized parametethe “fun-
damental radius factor,” als(1— ), whereL is the length of the At any two corresponding points on the PRBM and elliptic
half-segment. The length of the second link must be the radiusinfegral deflection curves, the relative error between the two paths
the circular motion path described in Fig. 3. A paramaies s ¢, whereg is defined to be

defined as the “characteristic radius factor,” with the distapte

being the characteristic radius, after Howell and MidB& p is V(a—ap)®+(b—hy)? 21)
! &=
defined from geometry as J(@a—a,)2+(b—b;)?
_ \/ a (1—7) ? Pi : (14) The error region is defined as a non-dimensionalized constant dis-
P L Y L tanceea, ON either side of the PRBM deflection path. The error

wherea; andb; are the initial horizontal and vertical positions of cg!oN 1S Narrow near the undeflected initial position, and widens
! ! - as the angle of deflection increases. Finally, a variabl® ).« iS
the segment endpoint. efined as
Since the initial locations of both the half-segment and PRBI9I
endpoints are the same, the non-dimensionalized initial horizontal (AB®) max= Omax— 0 (22)

position,a; /L, can be determined from known values as ) o )
where0 ., is the value of the pseudo-rigid-body angle at which
a i . 15 the PRBM approximation exceeds the error bougg,,,
L« SiNko (15) -(A®)nayx is then the difference between the initial angle of the
0 N X . .
rigid link and the final angle at which the error is exceeded.

Similarly, the non-dimensionalized initial vertical endpoint posi- “The search for the optimal fundamental radius factor as a func-

tionb;/L is tion of x, then resolves into the following problem:
b, 1 Find the value of y which maximizes deflection angle
I K—(].*COSKO) (16) (A®)max, Where
0

Since the segment is initially curved, the angle the second link e<emax for O;<O<0p, (23)
makes with the-axis will be non-zero. This angl®, called the  The optimization method implemented for finding is the
pseudo-rigid-body angle, has an initial valée of Golden Section methoHLO]. For all cases, a parameter value of
emax= 0.5 percent was utilized. Table 1 shows thandp values
_— (17) at selecteds, values, with the correspondingA @), value for
a—L(1-y), each curvaturex,.

Upon application of a forc&, the PRBM deflects to the position
shown in Fig. 4. The new value @ is given by

bi

®i=tan_l

by
ap—L(1-7v)
with a, andb, being the new horizontal and vertical coordinate:

of the PRBM endpoint. On the other hand@fis known, thea, 40 T
andb, may be found from

O=tan?!

(18) 50 T

ap
r=l—y+pCOS® (29)

and
o
by, .
T-F sin® (20)
Upon deflection, the PRBM endpoint path should stay within
specified error regioficompared to the actual endpoint pativer 10 T
a certain range of deflection. Thus the optimal PRBM is the or
whose link lengths allow the largest range of deflection ove
which the error stays within the specified region. Because tl
fundamental radius factoty, determines the characteristic radius
. . 0.0 0.5 1.0 1.5 2.0
factor p, the deflection path depends only an The solution AO®
method followed for obtaining the value of will be similar to
that followed by Howell and Midh5]. Fig. 6 Force-deflection relationship at various
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Table 2 Torsional spring constant characteristics atzz KoA® (29)

K Kg (AO)ax whereK g is the spring stiffness coefficient.
The approximation was extended over the largk6t range
0.50 259 0.99 possible while keeping the correlation coefficiert=0.999.
075 262 0.86 Table 2 contains the values Kfg for selected curvatures,.
. . . If a simple equation is desired for quick calculations, the fol-
1.00 2.68 0.79 lowing relationship has a correlation coefficiert=0.999 and
can be used to approximate the torsional spring constant for cur-
1.25 2.75 0.71 vatures of 0.5 xy=<1.5:
1.50 283 0.63 K=2.568-0.028¢,+0.137 (30)
Table 3 Second-order spring constant characteristics The value of the torsional spring constdtimay be found using
the equation
Ko LCY] Ko (AB)max El
0.50 2.24 0.46 1.68 K=pKe~ (31)
0.75 2.30 048 1.46 When a largerA® range is required, a second-order curve fit
will accurately model the force-rotation relationship over the en-
1.00 234 0.55 1.33 tire range that the PRBM deflection path is accurate. Similar to
1.25 2.40 0.64 1.20 Eqg. (29), it will be of the form
1.50 2.48 0.73 1.07 at2: K@1A® + K@)z(A@)z (32)

The values foK g, andKg, at various curvatures are shown in
Table 3. The equation for the spring functi®t(A®) may be
The ko— y graph has two nearly linear regions along the cufound using the approach used above for the first-order curve fit. It
vature range. Hence two linear least-squares curve fits describifg
yin terms ofkg are

El
y=0.8063-0.0265¢, 0.500< x,=<0.595 (24) K(A0)=p 1~ (Ke11+Ke,A0) (33)
y=0.8005-0.0173¢; 0.595< ko= 1.500 (25)

with a correlation coefficient?=0.999 in each case. Validation of the PRBM
To verify the PRBM for FBPP segments, several complete
FBPP segments were machined for testing. Test mechanisms were

Derivation of the PRBM Spring Constant created from A36-mild steel, 6061-T651 aluminum, and polypro-

The spring constant of the torsional spring needs to be ascBylene, with the flexural rigiditiesEl) being different in each
tained to complete the modeling of the segment’s stiffness. Nort6ase- Space does not allow the results to be reported in detail, but
[11] and Howell et al[12] proposed stiffness coefficients for ini- they are recorded if6]. The plot of the deflection paths shows a
tially straight fixed-pinned segments, while Howell and Midh Close approximation of the PRBM equations to the actual physical
extended the theory to initially curved fixed-pinned segments supggments, while more error is evident in the force-deflection
jected to variable-angle end forces. However, the case of pi@&Vves. The selection of, which determines link lengths and
horizontal loading has not been addressed by these authors. geflection paths, requires deviation from the analy_tlcal solution of
cause load direction strongly influences the equivalent spring stifeSs than 0.5 percent. However, no strict bound is placed on the
nesg5], the modeling must be extended to predict FBPP segmeHior implicit in choosmg<@_; as a result, the model approximates
deflection with sufficient accuracy. actual _behawor V\_/eII but without the same accuracy expected for

Conceptually, the force component acting tangential to trfeflection predictions.
link’s motion, F, deflects the link, while the axial compondfj
has no effect on rotation. The tangential force is

F,=F sin® (26) Conclusion

The non-dimensionalized tangential foreg is then given by Functionally binary pinned-pinned segments are becoming im-
) portant parts of many compliant mechanisms. Their non-linear
FL“sin®

5 o, deflection behavior, however, has complicated design. Therefore,
=TI sin® @7)  rBPP segments have been analyzed in this paper to model their
. o i ) force-deflection characteristics. Elliptic integral solutions were
The deflection of the rigid linkA®, can be defined as the differ- used to develop analytic expressions for FBPP segment motion.
ence between the current pseudo-rigid-body angle and the initigding these solutions, a pseudo-rigid-body model was developed
angle, or to allow easier modeling of FBPP segments. This model repre-
AG=0-0, (28) sents the FBPP half-segment as two rigid beams joined _by a pin
joint. A torsional spring at the pin joint models segment stiffness.
For various non-dimensionalized curvatureg, a graphical The force-deflection characteristics of the segment are modeled by
representation of the force-rotation deflectiotf(—A@) relation- choosing appropriate link lengths as well as the torsional spring
ship, based on the elliptic integral solutions, is found in Fig. @&onstant. The accuracy of the model was tested using physical
Over the first portion of the graph, the slope of each of the curvesgments fabricated from aluminum, steel, and polypropylene. In
is nearly constant. Therefore, it may be modeled by a linear releach case, the model accurately predicted the segments’ force-
tionship as deflection characteristics.
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The aim of this paper is a detailed analysis of a particular mecha-
nism with variable piston stroke. This crank mechanism is pres-
ently applied to metering pumps, because it allows the piston
stroke to be adjusted in length and permits the pump flow to be
changed also during the pump functioning. The following analysis
shows the different characteristics of piston motions obtainable by
changing the ratios among the mechanism rod lengths.
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Introduction

The mechanism that is the object of this paper is presently A
applied to diaphragm metering pumps: these pumps are used to E
meter and pump limited quantities of reagents in chemical indus-

adjustable distance
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The position of point D, referred to point A in the reference sysg(t)
tem of Fig. 2, can be expressed as:

=d+ coswt(—d coswt+ d(cof wt—1)+a2)—r coswt+b

Xp(t)=acosa(t)—r coswt+b coss(t) 4)
Because off(t)=e(t)—r, the relation that connectst and —d coswt+ Vd2(co wt—1)+a%—r _ 2
S(t) is immediately obtainable by the following relationship: 1- b sinwt | (7)
_b — _f(t) (5) In order to obtain a real value af,(t) from the Eq.(7), some
sinwt  siné(t) conditions are needed that constrain the design parameters: in par-
from which: ticular, for each value of timg it must result:
f(t) d?(cof wt—1)+a?=0 Vt=AC=<AB (8)
sind(t)= Tsinwt (6)
|f(t)sinwt|<b Vt=0C<OD 9)

By replacing the expressiortg), (3) and(6) into the(4) and by

suitably rearranging the different terms, it results: l

The last conditions require Eq&) and (6) to have real solutions.
To proceed further in the analysis, it is advisable to make the fun€fiomon-dimensional by dividingp(t) by the length of the rod
AB, chosen as reference:

To(t) = Tajat COS@L( — Taa COSwE+ \72,,(COL wt — 1) + 1) — 7/, COSwL

— Tg/a COSwt+ \/7’§,a(COS2 ot—=1)+1-7.,
T Toam \ 1

Thia

sin wt (20)

The piston stroke is estimated as the difference between the « if 7, < 7%, the piston D runs only one stroke for each drive

maximum and the minimum value assumed by expres&ipn shaft rotation;
. s o if 742> 7., the piston D runs two strokes for each drive
Piston Stroke Description shaft rotation, but one of these strokes is incomplete.

If the function (10) is represented for each value of tirhéor,
similarly, for each value of the drive shaft rotation angig and
of the adjustable distana#® for a general set of rod lengths, the
surface assumes the aspect shown in Fig. 3.

First of all, it is possible to observe that the surface is symmet- 1.6
ric as regards time axis origin, because the functions /
coswt esir? ot that appear in Eq10) are even functions. Further, 1.4 /

the system behavior changes when the paramgigiincreases:

\

piston stroke .
=

o
@©

T T I T T
vl assa gy Yoy
i

A A AT LTI T LT
L L AT T AT SIS TAY
S
R ey
S e

4

0.2 T4 0.6 0.8 1
adjustable parameter 1,

"ll
e,
AL /7
Rrae feuend

/7
/ 14 11/ [TH -'!'!"’
&t 1y

: i

L7
LT
LY
AT
£

piston stroke 1f)

O
§ Fig. 4 Piston stroke as a function of the adjustable distance
& ratio 74,

LR TR AT
..%"':'.":’:“'.":":’.{"""",""
"0'.'. ALY
LIS
%

7
7y [/
s eashay I
I
’0.'.0....:{.'..:' '
<y

Fig. 5 Rods position when t=0

)

N
/ N\
AN

Ppiston stroke 1{f)
N
p.

/ \
/ \

piston stroke T {1)

5 oo o
@ oo o
a o

-186 -120 -60 60 120 180 -180 -120 ~60 0 60 120 160
driving shaft rotation ot [degrees) driving shaft rotation ot [degrees|
(d=d) (d=d)

Fig. 3 Piston D position as function of the drive shaft rotation
angle and of the variable distance d Fig. 6 Rods position when wt=axw

Journal of Mechanical Design SEPTEMBER 2001, Vol. 123 / 469



If the piston stroke diagram is observed, when the parameter desired actual

T4/a Change in Fig. g iti i :
dla gegas shown in Fig. ¥ it is possible to conclude that » N \ N\ N / Ia\

o if 74a<7ya, the stroke doesn’t change withy,, but it \ \ / I \
keeps a constant value; 1.2 ‘

o if 74a>75,, the maximum displacement of piston D &€, 7 \ 5 ™
changes roughly proportionally tey,, as required by the & T x \\ f %
applications. g 0.8 1 M Fi \

@ v I L \ R
If 79a<7}., the piston displacement has its maximum value § 0.6
whenwt=0 (condition represented in Fig) &nd its minimum is s I
worth wt= 7 (situation of Fig. 6; when wt=0: 0.4 U U
75(0)=1= 7Ty /at Tpa (11) 0.2 i
while, if wt= . -360 -240 -120 0 120 240 360
driving shaft rotation ot [degrees)

’TD(’TT/(U):_].JF Tr/a"!‘ Th/a (12)

then it results that the piston stroke is given by: Fig. 8 Desired and actual piston displacement
Te= 2(1- 7'rla) (13)

and it is independent from the variable distamce Thi diti hat ti is oricin will b .
Then, to apply the studied crank mechanism to control the pis- Is condition guarantees that time axis origin will be a mini-

ton stroke, a particular configuration of the mechanism is needdg!M Point, that the piston motion will include two strokes for
for each value of lengtld, the second condition explained, each drive shaft rotation and that the piston stroke will change

>7%,,) must be verified. The piston runs two complete strokes f(‘)"(lth the variable distance, as required.

each rotation of the drive shaft, it presents two symmetric maxj To enlarge the application fields of the system, two other con-
L 1P y Hitions must be imposed on piston motion characteristics, in ad-
mums and two minimum values whest=0 andwt= .

dition to the condition(15):

Conditions on Rod Lengths * both the two strokes of the piston for each drive shaft rotation
) ) . ) . must be complete;

In Fig. 7 the diagram of piston displacement extreme positions, iye two strokes must require the same time, to be considered
are represented; the bifurcation corresponds to vafjeof pa- equivalent.
rameterry,: the origin, that is the maximum point whety,,
<7}., becomes a relative minimum point wheg,,= 75,, and
the second derivative of functiory(t) must assume value zero.

Analytically, it gives:

d?7p(t)
dt?

The piston motion obtained with a general choice of rod lengths
doesn’'t show the last two characteristics, as illustrated in Fig. 8.

From an analytical point of view, the first condition is equiva-
lent to:

(1= 782 Tira)” ’
:0@_1_273/3_(73/92"_Tr/a_+ra T _
t=0 bla 0)=m 7 ©2(1—7,,)=0 (16)

=0 (14) Equation (16) is satisfied for each value ofq, only if 74
To impose in equatiori14) that r4,> 75, for each value of =1, thatis only if lengths AB and BO are congruent; then, the
Taa, it is required thatr%, =0; then, the following condition Ne€Ww condition(16) doesn't add anything to the conditidd5).
referred to rod length is obtained: The system behavior is represented in Fig. 9, as function of the
drive shaft rotation angle and of the variable paramejgrwhen
(1-70)% the condition(15) is respected.
Thia

=1+ 7, 0 (15)

On the contrary, the second condition indicated is the equiva-

) ) lent of imposing the presence of a maximum when the drive shaft
that gives the solution,;,=1, that means lengths BO and ABqtation has the value/2:

must be equal.
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Fig. 7 Piston displacement extreme position set Fig. 9 Piston displacement versus shaft rotation and Tda
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If we impose also that,,;,= 1, as obtained from Eq¢$15) and
(16), the condition(17) can be analytically represented as:

Taal =1+ V1175,

1-\1-75,— =0

(—1+V1-75,)7

Trla \/l 2

Trla
Unlike Egs.(15) and(16), Eq. (18) does not allow a solution

independent from the variable distandebut it's satisfied only
when 74,,=0, that is wherd=0.

(18)
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Fig. 12 Velocity of piston D versus shaft rotation
N 7,0.8

N

\>@-w4

S

| |
N = o
I
I e

[
l
/

\ /
v

-120 -60 0 60
driving shaft rotation ot [degrees]

wend |\

1
w

-180

piston dimensionless acceleration dz':D(t)/dt 2[s'2]

Fig. 13 Acceleration of piston D versus shaft rotation

The diagrams confirm the previous remarks: if it is needed that
the forward and backward motion of the piston during the first
stroke has similar characteristics of that of the forward and back-
ward motion during the second stroke, for every complete drive
shaft rotation, it is necessary to limit the maximum variation of
the stroke obtainable by the mechanism studied here, i.e. it is
suitable to choose reduced values for the adjustable parameter
Td/a -

Conclusions

In the present paper the operating principles of a special mecha-
nism have been shown, usable in order to vary the stroke length of
the piston of a metering pump during its motion. Further the ana-
lytical kinematic model has been obtained. The system behavior

This means that, if the two strokes of piston D must have gihs peen studied under different ratios between the rods. The op-
equal time length, a restriction on variation of the range of parammum design has been printed out to obtain the best working

eterd is needed.

performance. In particular the noticeably different effects pro-

In confirmation of what has been demonstrated, the diagramsfced on the piston movement by different choice of the param-

piston displacement obtained for two different valueare com-
pared in Fig. 10 withd=0.8a (that is 74,,=0.8) andd=0.3a
(that is 74,=0.3); the graph obtained wheth=0.3a reproduces
better the required characteristics for the piston motion.

eters are illustrated.

Nomenclature

Whereas, in Fig. 11, the diagram of the piston displacement

phase error is illustrated as function of lengih between the

driving shaft rotation angle value corresponding to the maximum

point of piston displacement and its ideal valuer/2.

Piston Velocity and Acceleration

The following graphs represent the piston velo¢fig. 12 and
the piston acceleratio(fig. 13 when the conditio(15) is veri-
fied and for two different values of distande

Journal of Mechanical Design

= rod AB length;
b = distance OD;
c piston D stroke;

d = distance AC(adjustablg
e(t) = distance BC;
f(t) = distance OC;
r = radius BO;
t = time;
Xp(t) = piston D position as a time function;
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a(t) = rotation angle of rod AB; () = xp(t)/a.
3(t) = rotation angle of the connecting rdcepresented by 75(t) = value of 7p(t) whend/a= 7%, ;

the vector OD; o = drive shaft angular speed.
7. = Cla;
Tpa = ratio between the lengthsanda; References
_ ; ; . [1] Cambiaghi, D., and Mimmi, G., 1981, “Studio di una Pompa Volumetrica
Tria rat!o between the radiusand the lengﬂa’ Alternativa a Portata Variabile,” Organi di trasmissione, 180.
Tya = ratio between the lengtianda; [2] Beyer, R., 1963Kinematics Synthesis of Mechanisr@hapman-Hall.

* ; [3] Hein, K., 1967,Applied KinematicsMcGraw-Hill.
T, = t\N
d/a threshold value Ofrd/a thaft cause one or two piston [4] Chironis, N. P., 1965Mechanisms, Linkages and Mechanical Controls
strokes per shaft revolution; McGraw-Hill.
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