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1 Introduction This paper addresses this problem by developing theory speci-

. . ing the placement of compliant segments within several differ-
In many devices, such as switches, closures, and clasps, me

characteristics, including the design of particular bistable medﬁi’scusses this topic for the four-link mechanism clg2g); this
nisms[1-3]. There has also been considerable effort devoted {o e expands the theory to include four-link mechanisms with
the design and fabrication of bistable micro-mechanisms ffngjational(sliden joints. Examples are presented to demon-
micro-valves[4—7], micro-switches or relayf8—17], and fiber- girate the ease of design made possible by this theory.
optic switcheq 18—-20. Work on a mechanically bistable display
system[21] and multi-stable mechanisnj22] has also been pre- . .
sented. Recent work has even focused on using mechanice%ly Approach to Mechanism Modeling
bistable devices in a binary reconfigurable device, which uses theThe pseudo-rigid-body model provides a convenient tool to use
stable states of multiple bistable mechanisms to create manythe analysis and synthesis of compliant bistable mechanisms
stable positions for the systef3]. Much of this research relies [28]. This model approximates the force-deflection characteristics
on residual stress to induce beam buckling, a well-known bistalf& a compliant segment using two or more rigid segments joined
phenomenon. However, the difficulty of accurately controlling redy rigid-body joints, with springs at the joints to model the seg-
sidual stress in micromachined materials complicates reprodi@ent’s stiffness. Flexures which approximate the motion of a pin
ibility of such device§24—25. Devices that do not require beamioint, including small-length flexural pivots and fixed-pinned seg-
buckling often suffer from a complicated design process, in whidRents, are modeled with one pin joint and one torsional spring
computer models are manipulated until desired behavior [38—30. The location of the pin joint is determined by loading
achieved. Hence, a need exists to develop simplified design metAnditions, and the value of the torsional spring stiffness depends
ods for bistable mechanisms. on geometry and material properties of the flexible segment.
Compliant bistable mechanisms are a particular class of bistafidnctionally binary pinned-pinne=BPP segments, consisting
mechanisms which use deflections of their members to gain nff-a compliant segment loaded only at the pin joints on its ends,
tion, rather than relying solely on traditional rigid-body joints@PProximate the motion of a slider joint because the segment can
Compliant mechanisms represent an elegant way to achigdY OPPose a force directed along the line between its pin joints.

bistable behavior because the flexible members allow both motigRUS: t_hese segments are modeled using a slidcr attache_d toa
and energy storage to be incorporated into one element. In a nslational sprind31]. Although the force-deflection behavior

tion, compliance offers several other advantages, such as reu‘Eithe segment is generally non-linear, a linear spring approxi-

tion in part-count, reduced friction, and less backlash and We@é’r?tt;?cittgls behavior reasonably well and will be used here for

[26]. However, the design of compliant bistable mechanisms ¥ . . . .
Several simple equations involving a few model constants have

often not straightforward or easy, requiring the simultanec%s en developed to express link lengths and spring stiffnesses
analysis of both the motion and energy storage of the mechani Yhin the pseudo-rigid-body modéR8—31; however, it is suf-

- v affiiated with Brigham v Universit ficient here to state that many types of compliant mechanisms can
* ormerly armliated wi rignam young university i . . . .
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by a small-length flexural pivot or a fixed-pinned segment, or
slider joint would be replaced by a functionally-binary pinned
pinned segment. Extensive testing using physical mechanisms
demonstrated the validity of this modg2-36. Therefore, the

theory developed in this paper will treat compliant mechanisn
and rigid-body mechanisms at the same time by allowing any joi
with a spring to represent the appropriate compliant segment.

2.1 The Stability of Compliant Mechanisms. As compli-
ant mechanisms move, they store or release strain energy in tt
flexible members. This storage and release of energy gives th
one or more distinct stable equilibrium positiof®. A mecha-
nism is at an equilibrium position when no external forces ai
required to maintain the mechanism’s position. For this discu K
sion, an equilibrium position is stable if the mechanism returns K] 2

that position after small disturbances, but it is unstable if sme
disturbances cause the mechanism to assume a different posit
In the absence of other energy input, the stable equilibrium po

tions of a mechanism will correspond to local minima in the strai

N

energy storage of the mechani§&Y]. Hence, a knowledge of the
strain energy equation for a compliant mechanism allows calcul X5
tion of stable positions.

Using the pseudo-rigid-body model, the strain energy equati@ft. 1 A double-slider mechanism model with the two sliders
of a compliant mechanism is easily generated. For a segmgiitied by a link. Springs at each joint represent compliant seg-
which approximates a pin joint, the potential enekgystored in  ments modeled with the pseudo-rigid-body model.
the segment is

V= 1|<®2 (1) _ .
2 _ r3[sin(f;— 630) +sin( 63— 61)] ®)
whereK is the torsional spring constant, calculated using model 2 sin 6,
equations, and is the pseudo-rigid-body angle, or the angle of . .
deflection of the compliant segment. The strain energy stored in a Xg= ra(sin 0.373"1 030 )
FBPP segment is sin 6,
1 where 64, is the initial angle of the link. All springs are assumed
V=3 Ks(Ax)? (2)  to be undeflected whefl;= 6s.
whereAx is the change in distance between the segment's two pin-1 Analysis. The energy equation for this mechanism is
joints, andK is the linear spring constant. Because each compli- 1
ant segment stores energy independently of the others, the total V= E(K1¢§+ Ko+ Kas+ Kahh) (5)
strain energy in the mechanism is simply the sum of the energy
stored in each compliant segmégB8]. with
2.2 Method of Identification of Bistable Mechanism Con- P1=X%;
figurations. To find mechanism configurations resulting in U= 03— 0
bistable behavior, the strain energy equations for several types of 2773 T30 (6)
mechanisms will be studied. Each joint in the mechanism can be Wa= 03— O3
examined independently by choosing a non-zero spring constant
for a spring operating at the joint, while spring constants for all Va=X4

other joints are zero. For a mechanism to be bistable in a given . . .
configuration, it must meet three criteria. First, the first derivatiVﬁ 3'&'1 IAnaIyS|s for the.Sprlng Labeled K If K, is chosen to
of the potential energy equation must have at least three solutio g’t e only non-zero spring constant,
or mechanism positions that make the first derivative of energy dv dx,

equal to zero. Second, the second derivative of energy must be WZOZKlXZW: 1(
positive at two of these solutions, indicating two stable states, 3 3
while it must be negative at all of the other solutions, indicating —6,)]cog 63— 6;) (7
unstable positions. Third, the two stable positions as well as
least one of the unstable positions must be viable mechani

s

2
sind; [SiN(61— B39) +sin( 63

t . L . .
frlﬂe solutions to this first derivative equation are

positions—that is, the mechanism must be able to assume these Os= 03+ 7N, N=0,+2,%4, ...
positions during normal motion. The results of this analysis for
several mechanism classes allow determination of mechanism 03=20,— 0o+t 7mm, m==*1*3,*5,... (8)

configurations which are bistable.

_ , _ o 3= 0,4 —m, m=+1+3+5, ...
3 Double-Slider Mechanisms With a Link Joining the 2

Sliders where, for the three solutions to represent distinct mechanism po-

This mechanism type consists of a link joined by pin joints t§1ONS:
two slider joints, as shown in Fig. 1. The figure shows springs

a
placed at each joint—torsional springs at pin joints and transla- 0307 01+ Em 9)
tional springs at slidersx, andx, are measured from the unde-
flected state. The displacement equations in termg;aire The second derivative is
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d2v s 2 ;irsvtil.smble
a4z 1(m) {cog (03— 01) —sin( 03— 61)[SiN( 01— O30)

+sin(03— 61) ]} (10) AN
For the first two solutions in Eq8), the sin term in Eq(10) is
zero, leaving only a césterm, which is always positive. There-
fore, the first two solutions are stable positions for the mechanis
For the last solution, the cbserm is zero, and the remainder of Second Siable
the expression will be negative for all values &f, given the :
restriction in Eq.(9). Therefore, the last solution, which is really
two physical positions for the mechanism, corresponds to two
unstable positions. The restriction in E§) says that the initial Fig. 2 A bistable double-slider mechanism with a link joining
mechanism position cannot be at either of the unstable positiofrss sliders and a compliant equivalent. The second stable po-
these correspond to positions of extreme motion for the slidgition and one of the unstable positions are shown.
attached toK,;. Because this type of mechanism can rotate
through a complete revolution ift;, all of the solutions in Eq(8)
are viable positions for the mechanism, so that a translatiorgiant mechanism modeled as such, like the mechanisms shown in
springK, leads to bistable behavior. Fig. 2. However, a torsional spring placed at either pin joint does
3.1.2 Analysis for the Springs Labeled, Kr K. If either not cause bi_s_table behavior. The figure also_ _shows one of _the
K, or K3 is exclusively non-zero, unstable positions and the second stable position. The compliant
mechanism is shown with a functionally-binary pinned-pinned

dv dés segment replacing the spring.
A =0=K(83~ 030 I
¢ 4 4 Double-Slider Mechanisms With a Pin Joining the
sin 6, Sliders
=Kn( 03— 030 n=2,3 . . . . - . .
X4 2 This class consists of mechanisms with four joints, including
r3\/1—|—sin#;+sin bz two slider joints. The two sliders are joined by a pin joint, as
] shown in Fig. 3. Using as the independent variable,
(11) e;+e,cosd
The only solution to this equation, solved simultaneously with Eq. rfw (15)
(4), is x,=0, which is the initial position. Therefore, there are no
other equilibrium positions for the mechanism, proving that a toénd
sional springk, or K5 does not result in a bistable mechanism. _ejcosfte,
3.1.3 Analysis for the Spring Labeled,K If K, is exclu- ra= sing (16)
sively non-zero, then the first derivative equation is ) ) .
) For ease of analysis, we require bethande,, the slider eccen-
dav. dx, rs . ) tricities, to be non-negative, and
_—0—K4X4_— 4 . (Sll’l 03_S|n 030)00503
dés dés sinf, e =e (17)
(12) 1 2
with solutions These requirements may be made without loss of generality be-
cause mechanisms which violate these conditions are merely ki-
03:030+7Tn, n:0,i2,i4,
93:7Tm_ 930, m:il,i3,i5, PP (13)
o
03=E m, m==x1=*x3=*5...

where, for the three solutions to represent three distinct mecha-
nism positions,

v
In the interest of space, the second derivative of energy will not be
explicitly stated in this or subsequent proofs. However, its deriva-
tion, followed by substitution of the solutions from E@.3) re-
veals that the first two solutions give positive values for the sec-
ond derivative, while the last solution gives negative values.
Moreover, because the link has full rotation, each of the solutions
represents a viable mechanism position. Therefore, a translational
spring K, will produce a bistable mechanism, unless the restric-
tion in Eq. (14) is not met—that is, if the initial position is an
extreme position for the slider attachedKa.

3.1.4 Analysis Summary.Hence, for a double-slider mecha- €,
nism with a link joining the sliders, the mechanism will be
bistable if a spring is placed at either of the sliders and the initiglg. 3 A model of a fully compliant double-slider mechanism.
position is not an extreme position for the spring. This result ajgach compliant segment is modeled by a joint with a spring
plies to either a rigid-body mechanism with springs or to a conattached to it.
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nematic inversions of a mechanism which does satisfy the criteriaat this solution is within the physical range of the mechanism. In
Also, note that mechanism motion using these conditions requirgddition, because,<e,, the third solution is also physically re-

that  remain between 0 and.

4.1 Case 1: Eccentricities Not Equal. The energy equation

noted in Fig. 3, and the/s are the deflections of each sprin
given by

P1=0—10q
Pa=Tr—Ty
P3=0—10q

Pa=r4—Tg0

(18)

where a “0” subscript indicates the initial position at which all j,

springs are undeflected.

4.1.1 Analysis for the Springs Labeled i6r K;. If either

K or K3 is chosen to be the only non-zero spring constant,ragnd

is the independent variable, the first derivative equation is

dV—O—K 0—6 do =1,3
ar, 07 n( o)d—r4 n=1,

Solutions to this equation require eithetto equald, or the de-
rivative term to be zero. Fof to equalf,,

raVritei—e;—ee _ FaoVr ot €15 —ere,

2 2 2 2
ra+e; raotel

(19)

(20)

The sole solution to this equation ig=r 4y, or the initial posi-
tion. The derivative term is given by

de e [
— -
dry, riter (ri+ed)\ri+ei—e’

(1)

There are no real solutions m to this equation. Thus, only one
position satisfies the first derivative equation, proving that a t
sional spring placed either at spring location 1 or 3 will not resu

in a bistable mechanism.

4.1.2 Analysis for the Spring Labeled,K If K, is exclu-
sively non-zero, the first derivative equation is

dv dr,

ﬁ=O=K2(r2—rzo) W:Kz

e,+e,cosf e;+e,coshy
siné@ sin 6,

e,+e; cosd -
Sir? 6 (22)
The solutions in terms of for this equation are
0= 90
(e2+e2)cosh,+ 2e,e
f=acog — 21 22 . 2 (23)
ej+e5+2e.e, cosfy
e
0=m—a cos( -2
€1
where, for three distinct mechanism positions,
€2
OpFm—a cos( —) (24)
€1
The second solution in E¢23) also has the condition
sin 6,(e?— €2)
sin 9= gL - (25)

es+es+2e,e, cosh,

However, for the case wheey<eq, the right hand side of Eq.
(25) will always be positive, so that lies between 0 anéa-. These
are also the limits for physical values thétan take, indicating
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alizable. The stability of each solution position can be determined
from the second derivative of potential energy. Substitution of the
solutions in Eq.(23) into the second derivative reveals that the

Sfirst two solutions give positive values, while the third gives nega-
9tive values. Thus, the first two solutions are stable positions, while

the third is an unstable mechanism position which lies between
the other two. Therefore, a spring attached to the slider with the
smaller eccentricity will create a bistable mechanism, unless the
initial position corresponds to the third solution in Eg3), which

is the extreme position for the slider.

4.1.3 Analysis for the Spring Labeled,K If K, is exclu-
sively non-zero, the first derivative equation is

dry

e, cosf+e, e coshyte,
@ZOZKA(M*UO)W—}Q -

sing sin 6y

e, cosf+e;
Sir? 6
Note that the equation is identical to the equation with non-zero

K,, with e; ande, swapped. The solutions in terms éfor this
equation are

(26)

0: 00
(e2+e2)cosfy+ 2e,e
f=acos — 21 22 . e (27)
e;+e5+2ee,Ccosfy
4
0=m—acosg —
€2
The second solution in E¢23) also has the condition
sin B,(e2— €2)
sing= g2 (28)

el+e5+2e,e, cosh,

or the case where,<e,, the right hand side of Eq28) will

Ilways be negative, so that the second solution given infZg).
lies between-7 and 0. This solution to the equation is thus out of
the range of physically realizable mechanism positions. In addi-
tion, because,<e;, the third solution is not defined mathemati-
cally. Hence, the mechanism could be taken apart and reassembled
in a different assembly configuration that would include the sec-
ond solution in Eq(27), but it cannot reach this position through
ordinary mechanism motion. Hence, a spring placed at spring lo-
cation 4, which is attached to the slider with the larger eccentric-
ity, will not create a bistable mechanism.

4.1.4 Analysis Summary.Therefore, for this class of double-
slider mechanisms, only a spring placed at the slider with the
smaller eccentricity will result in bistable behavior, assuming the
initial position is not an extreme position for the slider. Figure 4
illustrates an example. A bistable compliant mechanism may also
be constructed as illustrated, where the spring and slider have
been replaced by a FBPP segment. The figure represents only one
possible compliant configuration.

4.2 Case 2: Eccentricities Equal. The preceding section
has shown that a torsional spring placed at either pin joint will not
cause bistable behavior regardless of the eccentricities. However,
for either non-zerd, or K,, if e,=e;, the solutions in Eq(23)
and Eq.(27) to the first derivative equation are both

0=
Unfortunately, substitution into the second derivative of potential
energy shows that while the first solution is definitely stable, the

value 8= 7 results in a singular mechanism position. In this po-
sition, the lines of action of the two sliders lie on top of each other

Transactions of the ASME



o= 03— 00— (03— O30

|
i (33)
N I Unstable Position l!f3: 03, 030
\ 1
\I\)(Y T l/{l/_tl 1 ¢4:r17r10
IO N | D
L‘\{‘i *t:i:f‘ 5.1.1 Analysis for the Spring Labeled; K If K; is exclu-
Second Stable ¢, = First Stable sively non-zero, the first derivative of energy with respecf4as
Position L\;\’,,/ == Position
9\ : dV 0 K 0 0 d02 K 0 0 *I'3 00303
! g, 0~ 1(62 2°)d¢93_ 1(62— 650) f1=T4C0S0,
34)
The first part,d,— 6,4, gives two distinct solutions when solved
Fig. 4 A bistable double-slider mechanism with a pin joint simultaneously with Eq(31). The second part, the derivative,
joining the sliders, and a compliant equivalent. e, is zero in this gives a third solution. These are
illustration. The unstable and second stable positions are
shown in dashed lines. 03= 039 and 6,= 65,
03: m— 030 and 62: 020 (35)

due to their equal eccentricities, and the sliders can move any- o
where along their line of action in the absence of springs. Thus, a 3=+~
translational spring attached to either slider will be free to expand 2

to its undeflected length when the singular position is reacheghere, for each solution to represent a distinct mechanism posi-
making the position stable. As this mechanism position lies withition,
the feasible range for the mechanism clé&<o ), the mecha-

nism will always be able to take on this position during motion.
Therefore, the mechanism will have bistable behavior if a trans-
lational spring is placed at either sliding joint.

T
O30 == (36)
2
For the first two solutions in Eq35), the second derivative is
5 Slider-Crank or Slider-Rocker Mechanisms pqsitive, i_ndicating that they_ are ea_mh stab_le positior_ls. For the
third solution, the second derivative is negative for a slider-rocker
The slider-crank or slider-rocker mechanism type is shown iechanism, resulting in an unstable equilibrium position. For a
Fig. 5 with springs placed at each joint. For this analysjsis  change-point slider-crank mechanism, the limit of the second de-
arbitrarily chosen as the shortest link. Algds constrained to the rivative as the third solution is approached is also negative. There-
rangee=0. This may be done without loss of generality becaus@re, for either type, the mechanism will be bistable with a spring
the case where,>r 3 is merely a kinematic inversion of the case; as long as each of the solutions in E85) represents a viable
wherer,<rj3, and a negative value f@ represents a rotation of mechanism position.
the entire mechanism by 180 deg. If The first two solutions in Eq(35) are viable for any assembly
Fae [ >0 (30) configuration because they each sati_sfy B, a_ssuming the
3 2 mechanism may be assembled—that is, there exist valyyeend
then the mechanism is a slider-crank. If the two sides in(BQ. 4, that satisfy Eq.(31). The third solution corresponds to two
are equal, then the mechanism is a change-point slider-crank, alifterent mechanism positions, whegy=7/2 and ;= — /2.
if the left side is less than the right side, then the mechanism ifar 6;= 7/2, Eq.(31) may be written
slider-rocker. In addition, the displacement equations are

. e—rj
e=r,sinf,+r;sinb; (31) sin6,=

@37
2

F1=r3C0Sf,+r3COSH; (32)  For a slider-rocker, withrs—r,<e, the right-hand side of this
5.1 Slider-Rocker or Change-Point Slider-Crank Mecha- equation lies between 1 andl, assuming the mechanism can be

nisms. The energy equation is the same as £, with assembledr(,+r3;>e). Similarly, for a change-point slider-crank,
" with r;—r,=e, Eq. (37) reduces to sim,=—1. Thus, in either
U1=0,— 0 case,f, is a real number, indicating that the mechanism can as-

sume this position. On the other hand, foy= — 7/2, Eq.(31) is

. etrs
sin@,=

(38)

2
The right-hand side is greater than one fger, andrz—r,
<e, indicating that no real mechanism position corresponds to
this solution for a slider-rocker. For a change-point slider-crank,
no real solution exists unless=0, in which caser;=r,, and
sin6,=1. Nevertheless, in either mechanism type, at least one of
the two unstable positions may be reached; therefore, we may
conclude that a slider-rocker or a change-point slider-crank
mechanism with a torsional spring at location 1 will be bistable
unless the initial mechanism position corresponds to the extreme
position for the spring, as given by E¢(36). Figure 6 shows a

r, ,l sample mechanism with a spring at location 1.
5.1.2 Analysis for the Spring Labeled,K If K, is exclu-
Fig. 5 A model of a general compliant slider-crank or slider- sively non-zero, then the first derivative equation usthgas the
rocker mechanism independent variable is
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Unstable Unstable o) Stable Position

First Stable Position Position  Second Stable Position Second Stable PositioPosition
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Fig. 7 A bistable slider-rocker with a spring placed at location

. . . ) ) . 2, and a compliant equivalent
Fig. 6 A bistable slider-rocker with a spring at location 1. The

unstable position and second stable position are also shown,
as well as a sample compliant mechanism.

dV_O_ Kl bam 0 r,cosé, 43
ds, 0~ 3(63— 630) 7,050, (43)
d_V =0=K,[ 6,— 03— (60— 030 ] _ (39) This equation has three solutions which also satisfy(&f). They
do, r,—r,C0S6, are
The solutions to Eq(39) which satisfy Eq(31) are 0,= 0,0 and Os= O
0,= 0, and O3= 03, 0,=1m— 60,5 and O3= 0, (44)
e e
02: 920_2atar<_ +ar and 03: 030_ Zatar(_ + 0 _ _,_z
I'10 lo 27 =5
sin 02:e2+r§—r§ and r,=0 (40) where, for the three solutions to be distinct mechanism positions,
Zel’z T
where, for the three solutions to represent distinct mechanism po- 0207 iE (45)
sitions,
s 2 o The second derivative of energy is positive for the first two solu-
. e +r;—r3 tions in Eqg.(44) and negative for the third solution for a slider-
Sin 0,07 “Zer, and ryo#0 (41)  rocker. Its limit is negative for a change-point slider-crank. There-

. . . . » fore, the first two solutions are stable positions, while the third is
As expected, the first two solutions in E@0) give positive re- an ynstable position. Furthermore, it is easy to show that the first
sults in the second derivative for any configuration, whereas thgo solutions in Eq(44) represent feasible mechanism positions
third solution gives a negative result for a slider-rocker mechgr any configuration of slider-rocker or change-point slider crank
nism. For a change-point slider-crank, the second derivative givgscause each solution satisfies Bf). The third solution repre-
zero divided by zero for the third solution, but the limit goes tQents two possible mechanism positiorgs= + 7/2. For 6,
negative infinity as the third solution is approached. Thus, fat /2 there is a real value df, to satisfy Eq(31) for any set of
either a slider-rocker or a change-point slider-crank mechanismy 2 . ande that satisfy the conditions outlined earliers&r,
spring placed at location 2 will result in a bistable mechanism &hdr,+r,=e). However, ford,= — /2, a real value foB; only
long as each of the solutions in E@O) corresponds to a viable exists for a change-point slider-crank. Because there are two fea-
mechanism position. ) . . sible stable positions and at least one feasible unstable position,
The first two solutions represent feasible mechanism positiofle mechanism is bistable with a spriiig, provided that the
for any mechanism position because, in either case, the solutighigial position is not an extreme position for the spring, as given
satisfy Eq.(31). For the third solution to be feasible, we requirepy Eq. (45).
from Eq. (31),
5.1.4 Analysis for the Spring Labeled,K If K, is exclu-

2 2
_ e’ +r5—rj3 _ (42) sively non-zero, the first derivative of energy is
2er, Y
For a change-point slider-crank, the term in the center of this d—02=0=K4(r1—r10)(r2 cosf,tanf;—r,sing,)  (46)

inequality reduces to 1, indicating that this is a viable position. ) ) ) )

The only exception is whee=0, indicating thatr ,=r, so that There are four solutions that satisfy this equation and (8.
the center term is undefined. This is because this position is theey are

ch_ange-pomt position for the_mechanlsm, whl_ch is a singular po- 0,= 0,0 and 6= Oy,

sition. Because a change-point mechanism will always be able to

assume the change-point position, any change-point slider crank e e

will be able to reach the position corresponding to the third solu- 62=2atar< r_) — 6y and 03=2atar{ r_) — 030

tion. For a slider-rocker, the inequalities used in the previous sec- 10 1o

tion (ry3—r,<e andrz+r,>e) may be manipulated to result in ) e 47)
the inequality in Eq(42). Therefore, a slider-rocker or a change- 0= 03=asin ToFra

point slider-crank with a spriné, will also result in a bistable 2003

mechanism, unless the initial position of the mechanism is an . e

extreme position for the spring, as given by E4{l). An example 0=+ 03=asin F—1s

mechanism with the spring in this location is shown in Fig. 7.
. . . where, for the solutions to represent distinct mechanism positions,
5.1.3 Analysis for the Spring Labeled; K If K; is exclu-

sively non-zero, then the first derivative equation is 007 O30 and O,07 7+ 39 (48)
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The second derivative is positive for the first two solutions in Ec Unstable

Position

(47) and negative for the second two solutions, as long as t o (P st Stable Position

condition in Eq.(48) is met. Therefore, the mechanism has twi S0

stable positions and two unstable positions. Feasibility of the Speme ™ \ ¢4 \-
lutions is all that remains to be proved.

The first solution in Eq(47) is feasible because it is the initial
position. The second solution is also feasible because it satislies

Eq. (31). For the third solution to be feasible, we require Fig. 8 A histable slider-crank with a spring at location 3. The

second stable position and one of the unstable positions are
< <1 (49) shown in dashed lines. An equivalent compliant mechanism is
rs3+r, also shown.

e

which will be satisfied for any assembled mechanism, for which
r,+r;>e. However, the fourth solution will not be feasible for a
slider-rocker mechanism becausg—r,<e, making the argu-
ment of the asin function out of its domain. On the other hand, for Op==* 2 (54)

a change-point slider-crank, the fourth solution will reducegto . ) S )
—asin(—1), which is feasible. Therefore, because in eithethich may be reached for any slider-crank for which link 2 is the
mechanism type at least one unstable position is feasible, a?ﬂprtest link. This is beqause the crank, Whll(.:h is the shortest Ilnk,
slider-rocker or change-point slider-crank mechanism with 8ay fully rotate for a slider-crank. To specifically show that this
translational spring attached to the slider will be bistable, as lof§dle may be reached, substitute Esf) into Eq.(31) to get

as the initial position is not an extreme position, or one which exr,

violates Eq.(48). sin 63=

(55)
3

5.1.5 Analysis Summary.The preceding sections prove tharr.]r . T ) .
o e —— . : at either position is defined may be proved using the known
a slider-rocker or change-point slider-crank mechanism with Oir‘l%qualities fa—1,>6 [4=r, and r,4ry>e. Hence, the

spring placed at exactly one joint of the mechanism will be . . . . . h
bistable as long as the initial position does not represent an ér%_echanlsm will be bistable with a spring placed opposite the

treme position for the spring, regardless of which of the fourjoint% ortest link. For example, Fig. 8 shows a bistable slider-crank

; : : : ; With a spring at position 3.
is used. The slider-crank mechanism remains to be examined. Finally, for a translational spring<,, the unstable positions,

5.2 Slider-Crank Mechanisms. The previous analysis from Eq.(47), are
showed that stable and unstable positions exist for springs at any e
of the four spring locations. Moreover, the stable positions are 0,=asin ) (56)
feasible mechanism positions for any slider-crank mechanism be- raxrs

cause no knowledge of the precise mechanism type was requigshin it is easy to show that either position is feasible from the

to demonstrate their feasibility. All that remains is to showasic inequalities. Figure 9 shows a bistable slider-crank with a
whether or not the unstable positions corresponding to a Spriggring placed at the slider.

placed at each joint are feasible for a slider-crank mechanism. “npote that ifr,>r 3, then the shortest link will be link 3, so that
For a springK,, which is attached to the shortest link, they gpring at joint 1 will cause bistable behavior, while a spring at

unstable positions are, from E(B5), joint 3 will not. This may easily be seen by repeating the preced-

ing analysis using,>r5. Therefore, a slider-crank mechanism

0= iz (50) with a spring placed at one joint will be bistable only if the spring
2 is located at the slider or opposite the shortest link, assuming the
Substitution into Eq(31) gives initial mechanism position is not an extreme position for the
spring.
. efrg -
Sin6,= Iy Gh 6 Summary of Spring Locations Necessary

Knowing thatr;=r, and, for a slider-crank,;—r,>e, this equa- for Bistable Mechanisms
tion reduces to Table 1 summarizes the spring locations for each mechanism
. ) type which will result in a bistable mechanism if no other springs
sing,>1 or sinfg,<—1 (52)

for which neither condition can be met. Hence, the mechanism
cannot assume the unstable position, preventing it from switchi First Stable Position
between the two feasible stable positions. In other words, ti
mechanism can only switch from one stable position to the oth
if it is disassembled and reassembled in the other position—
cannot do so through normal mechanism motion.

The other spring attached to the shortest linkis. The un-
stable position for this spring is characterized by, from &),

) e’+ r§— r§ b , Unstable Position
— ~
sin 02_—2er2 (53) N // /,
N\ \\ 7z ~
For a slider-crank, the right-hand side of this equation is less th \\ N //
—1, indicating that this mechanism position is not feasible. Ther NGOV

fore, springs located at joints adjacent to the shortest link will not ~=" Second Stable Position

result in bistable behavior. _ _ Fig. 9 A bistable slider-crank with the two stable positions
K3 is the torsional spring not adjacent to the shortest link. Thghd one unstable position shown. In this case, the spring is
unstable positions for this spring location, from E44), are placed in position 4.
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Table 1 The spring locations necessary for each mechanism type to cause bistable behavior

Mechanism Class Location of Springs for Bistable Mechanism
Double-Slider(pin joint joining), e;# e, translational joint with shorter eccentricity
Double-Slider(pin joint joining), e;=¢, either translational joint
Double-Slider(link joining) either translational joint
Slider-Crank translational joint or pin joint not attached to shortest link
Change-Point Slider-Crank any joint
Slider-Rocker any joint

act on the mechanism. The table applies to either rigid-bodymplifies design by giving the designer prior knowledge of the
mechanisms or compliant mechanisms modeled using the apprompliant mechanism configurations that will lead to a bistable
priate rigid-body mechanism. If multiple springs are present, threechanism. Once the mechanism configuration is selected, its di-
potential energy equation must be solved for a full understandingensions can be chosen to meet force or motion requirements of
of the location of the unstable and stable positions. However, thedesign problem without concern for compromising the bistable
analyses presented here give a designer knowledge of whiméhavior of the mechanism. Two examples were presented to
spring positions will work for or against bistable behavior. Moredemonstrate the use of the theory in design.

over, in many cases it is possible to make one spring significantly
stiffer than the other springs in the mechanism, allowing the stiff
spring to dominate the others. Then, the mechanism behaves m~h
as if the dominating spring were the only spring in the mechi
nism.

IQN

7 Examples in Design

The information regarding placement of springs to produc
bistable behavior is very useful for design. By knowing before
hand the spring locations which will produce bistable behavior,
designer can quickly generate many viable mechanism configu
tions. The examples here demonstrate the process.

7.1 Example: Bistable CD Ejection Actuator. A bistable @ ®
mechanism is desired to eject compact discs or similar media frc
a case. The mechanism must move in a straight line to push -
CD out of the case; hence, one or more translational joints
desirable. Thus, any of the mechanism classes discussed in
paper may be used. To develop designs, each mechanism t
may be considered in a configuration using one of the spri
locations specified in Table 1. Figure 10 shows four examp
mechanisms. In each case, one of the joints has a spring attac
to it with the spring locations given by Table 1. One of thes
designs may then be chosen for further development. For ¢
ample, if design(a) is chosen, a compliant mechanism like tha © @
shown in Fig. 11 could result. In this mechanism, the pin joints are
approximated with very small, thin flexural hinges, known as livEig- 10 Possible mechanisms that could be used to make a
ing hinges. The spring and slider joint are approximated usingPigtable CD ejection actuator. ~ (&) and (b) are the two types of
functionally binary pinned-pinned segment. Dimensions and m (__)éjbrler—slllgerrnrrechhimsr:]ns}. (C)t' anld (d) are a slider-crank and
terials can be chosen to meet any other design constraints. SHder-rocker mechanism, respectively.

VWY ©4

7.2 Example: Bistable Electrical Switch. A bistable elec-
trical switch with a rotating link used to toggle the mechanism
between states is desired. Figure 12 shows five different mecha-
nism configurations which could be used. These configurations are
chosen by investigating various inversions of the slider-rocker
mechanism type with different spring locations. This figure illus-
trates how mechanism inversions can be used to create many dif-
ferent possible configurations. Figure(&Ris developed further
here because of its simplicity, allowing it to be constructed with
only one link and one slider. In addition, by replacing the spring
and slider with a FBPP segment, and by using living hinges in
place of pin joints, the mechanism can be made fully compliant.
The design is shown in Fig. 13. Again, dimensions and materials
can be chosen from any other design constraints.

8 Conclusion

Using knowledge of mechanism motion, analyses have been
presented regarding the placement of compliant segments in a
pseudo-rigid-body model to guarantee a mechanism'’s bistable gy 11 The resulting compliant bistable mechanism, based on
havior. This paper has focused on identifying such mechanisf@ double-slider with a pin joint joining the sliders. A pseudo-
configurations that contain one or more slider joints. The wortigid-body model mechanism is shown in dashed lines.
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