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Bistable Configurations of
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Translational Joints
Bistable mechanical devices remain stable in two distinct positions without power in
They find application in valves, switches, closures, and clasps. Mechanically bis
behavior results from the storage and release of energy, typically in springs, with s
positions occurring at local minima of stored energy. Compliant mechanisms offe
elegant way to achieve this behavior by incorporating both motion and energy sto
into the same flexible element. Interest in compliant bistable mechanisms has also re
increased because of the advantages of bistable behavior in many micro-ele
mechanical systems (MEMS). Design of compliant or rigid-body bistable mechan
typically requires simultaneous consideration of both energy storage and motion req
ments. This paper simplifies this process by developing theory that provides prior k
edge of mechanism configurations that guarantee bistable behavior. Configurations
include one or more translational, or slider, joints are studied in this work. Seve
different mechanism types are analyzed to determine compliant segment placeme
will ensure bistable mechanism operation. Examples demonstrate the power of the
in design.@DOI: 10.1115/1.1760776#
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1 Introduction
In many devices, such as switches, closures, and clasps, m

nisms are desired which experience stable equilibrium in two
tinct positions. Several authors have explored bistable mecha
characteristics, including the design of particular bistable mec
nisms @1–3#. There has also been considerable effort devoted
the design and fabrication of bistable micro-mechanisms
micro-valves@4–7#, micro-switches or relays@8–17#, and fiber-
optic switches@18–20#. Work on a mechanically bistable displa
system@21# and multi-stable mechanisms@22# has also been pre
sented. Recent work has even focused on using mechani
bistable devices in a binary reconfigurable device, which uses
stable states of multiple bistable mechanisms to create m
stable positions for the system@23#. Much of this research relies
on residual stress to induce beam buckling, a well-known bista
phenomenon. However, the difficulty of accurately controlling
sidual stress in micromachined materials complicates repro
ibility of such devices@24–25#. Devices that do not require beam
buckling often suffer from a complicated design process, in wh
computer models are manipulated until desired behavior
achieved. Hence, a need exists to develop simplified design m
ods for bistable mechanisms.

Compliant bistable mechanisms are a particular class of bist
mechanisms which use deflections of their members to gain
tion, rather than relying solely on traditional rigid-body joint
Compliant mechanisms represent an elegant way to ach
bistable behavior because the flexible members allow both mo
and energy storage to be incorporated into one element. In a
tion, compliance offers several other advantages, such as re
tion in part-count, reduced friction, and less backlash and w
@26#. However, the design of compliant bistable mechanisms
often not straightforward or easy, requiring the simultaneo
analysis of both the motion and energy storage of the mechan
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This paper addresses this problem by developing theory sp
fying the placement of compliant segments within several diff
ent mechanism types to result in bistable behavior. With a kno
bistable mechanism configuration, dimensional synthesis m
then be performed to meet motion requirements. Previous w
discusses this topic for the four-link mechanism class@27#; this
paper expands the theory to include four-link mechanisms w
translational~slider! joints. Examples are presented to demo
strate the ease of design made possible by this theory.

2 Approach to Mechanism Modeling
The pseudo-rigid-body model provides a convenient tool to

in the analysis and synthesis of compliant bistable mechani
@28#. This model approximates the force-deflection characteris
of a compliant segment using two or more rigid segments join
by rigid-body joints, with springs at the joints to model the se
ment’s stiffness. Flexures which approximate the motion of a
joint, including small-length flexural pivots and fixed-pinned se
ments, are modeled with one pin joint and one torsional spr
@28–30#. The location of the pin joint is determined by loadin
conditions, and the value of the torsional spring stiffness depe
on geometry and material properties of the flexible segme
Functionally binary pinned-pinned~FBPP! segments, consisting
of a compliant segment loaded only at the pin joints on its en
approximate the motion of a slider joint because the segment
only oppose a force directed along the line between its pin joi
Thus, these segments are modeled using a slider attached
translational spring@31#. Although the force-deflection behavio
of the segment is generally non-linear, a linear spring appro
mates this behavior reasonably well and will be used here
simplicity.

Several simple equations involving a few model constants h
been developed to express link lengths and spring stiffne
within the pseudo-rigid-body model@28–31#; however, it is suf-
ficient here to state that many types of compliant mechanisms
be treated as rigid-body mechanisms which incorporate spring
the joints. Thus, to create a compliant mechanism from a rig
body mechanism model, one or more pin joints would be repla
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by a small-length flexural pivot or a fixed-pinned segment, o
slider joint would be replaced by a functionally-binary pinne
pinned segment. Extensive testing using physical mechanisms
demonstrated the validity of this model@32–36#. Therefore, the
theory developed in this paper will treat compliant mechanis
and rigid-body mechanisms at the same time by allowing any j
with a spring to represent the appropriate compliant segment

2.1 The Stability of Compliant Mechanisms. As compli-
ant mechanisms move, they store or release strain energy in
flexible members. This storage and release of energy gives t
one or more distinct stable equilibrium positions@3#. A mecha-
nism is at an equilibrium position when no external forces
required to maintain the mechanism’s position. For this disc
sion, an equilibrium position is stable if the mechanism returns
that position after small disturbances, but it is unstable if sm
disturbances cause the mechanism to assume a different pos
In the absence of other energy input, the stable equilibrium p
tions of a mechanism will correspond to local minima in the str
energy storage of the mechanism@37#. Hence, a knowledge of the
strain energy equation for a compliant mechanism allows calc
tion of stable positions.

Using the pseudo-rigid-body model, the strain energy equa
of a compliant mechanism is easily generated. For a segm
which approximates a pin joint, the potential energyV stored in
the segment is

V5
1

2
KQ2 (1)

whereK is the torsional spring constant, calculated using mo
equations, andQ is the pseudo-rigid-body angle, or the angle
deflection of the compliant segment. The strain energy stored
FBPP segment is

V5
1

2
Ks~Dx!2 (2)

whereDx is the change in distance between the segment’s two
joints, andKs is the linear spring constant. Because each com
ant segment stores energy independently of the others, the
strain energy in the mechanism is simply the sum of the ene
stored in each compliant segment@38#.

2.2 Method of Identification of Bistable Mechanism Con-
figurations. To find mechanism configurations resulting
bistable behavior, the strain energy equations for several type
mechanisms will be studied. Each joint in the mechanism can
examined independently by choosing a non-zero spring cons
for a spring operating at the joint, while spring constants for
other joints are zero. For a mechanism to be bistable in a g
configuration, it must meet three criteria. First, the first derivat
of the potential energy equation must have at least three solut
or mechanism positions that make the first derivative of ene
equal to zero. Second, the second derivative of energy mus
positive at two of these solutions, indicating two stable sta
while it must be negative at all of the other solutions, indicati
unstable positions. Third, the two stable positions as well a
least one of the unstable positions must be viable mechan
positions—that is, the mechanism must be able to assume t
positions during normal motion. The results of this analysis
several mechanism classes allow determination of mechan
configurations which are bistable.

3 Double-Slider Mechanisms With a Link Joining the
Sliders

This mechanism type consists of a link joined by pin joints
two slider joints, as shown in Fig. 1. The figure shows sprin
placed at each joint—torsional springs at pin joints and tran
tional springs at sliders.x2 and x4 are measured from the unde
flected state. The displacement equations in terms ofu3 are
658 Õ Vol. 126, JULY 2004
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x25
r 3@sin~u12u30!1sin~u32u1!#

sinu1
(3)

x45
r 3~sinu32sinu30!

sinu1
(4)

whereu30 is the initial angle of the link. All springs are assume
to be undeflected whenu35u30.

3.1 Analysis. The energy equation for this mechanism is

V5
1

2
~K1c1

21K2c2
21K3c3

21K4c4
2! (5)

with

c15x2

c25u32u30 (6)
c35u32u30

c45x4

3.1.1 Analysis for the Spring Labeled K1. If K1 is chosen to
be the only non-zero spring constant,

dV

du3
505K1x2

dx2

du3
5K1S r 3

sinu1
D 2

@sin~u12u30!1sin~u3

2u1!#cos~u32u1! (7)

The solutions to this first derivative equation are

u35u301pn, n50,62,64, . . .

u352u12u301pm, m561,63,65, . . . (8)

u35u11
p

2
m, m561,63,65, . . .

where, for the three solutions to represent distinct mechanism
sitions,

u30Þu11
p

2
m (9)

The second derivative is

Fig. 1 A double-slider mechanism model with the two sliders
joined by a link. Springs at each joint represent compliant seg-
ments modeled with the pseudo-rigid-body model.
Transactions of the ASME
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du3
2 5K1S r 3

sinu1
D 2

$cos2~u32u1!2sin~u32u1!@sin~u12u30!

1sin~u32u1!#% (10)

For the first two solutions in Eq.~8!, the sin term in Eq.~10! is
zero, leaving only a cos2 term, which is always positive. There
fore, the first two solutions are stable positions for the mechan
For the last solution, the cos2 term is zero, and the remainder o
the expression will be negative for all values ofu1 , given the
restriction in Eq.~9!. Therefore, the last solution, which is real
two physical positions for the mechanism, corresponds to
unstable positions. The restriction in Eq.~9! says that the initial
mechanism position cannot be at either of the unstable positi
these correspond to positions of extreme motion for the sl
attached toK1 . Because this type of mechanism can rota
through a complete revolution inu3 , all of the solutions in Eq.~8!
are viable positions for the mechanism, so that a translatio
springK1 leads to bistable behavior.

3.1.2 Analysis for the Springs Labeled K2 or K3. If either
K2 or K3 is exclusively non-zero,

dV

dx4

505Kn~u32u30!
du3

dx4

5Kn~u32u30!
sinu1

r 3A12S x4

r 3

sinu11sinu30D 2
n52,3

(11)

The only solution to this equation, solved simultaneously with E
~4!, is x450, which is the initial position. Therefore, there are n
other equilibrium positions for the mechanism, proving that a t
sional springK2 or K3 does not result in a bistable mechanism

3.1.3 Analysis for the Spring Labeled K4. If K4 is exclu-
sively non-zero, then the first derivative equation is

dV

du3
505K4x4

dx4

du3
5K4S r 3

sinu1
D 2

~sinu32sinu30!cosu3

(12)

with solutions

u35u301pn, n50,62,64, . . .

u35pm2u30, m561,63,65, . . . (13)

u35
p

2
m, m561,63,65, . . .

where, for the three solutions to represent three distinct me
nism positions,

u30Þ
p

2
m. (14)

In the interest of space, the second derivative of energy will no
explicitly stated in this or subsequent proofs. However, its deri
tion, followed by substitution of the solutions from Eq.~13! re-
veals that the first two solutions give positive values for the s
ond derivative, while the last solution gives negative valu
Moreover, because the link has full rotation, each of the soluti
represents a viable mechanism position. Therefore, a translat
spring K4 will produce a bistable mechanism, unless the rest
tion in Eq. ~14! is not met—that is, if the initial position is an
extreme position for the slider attached toK4 .

3.1.4 Analysis Summary.Hence, for a double-slider mecha
nism with a link joining the sliders, the mechanism will b
bistable if a spring is placed at either of the sliders and the in
position is not an extreme position for the spring. This result
plies to either a rigid-body mechanism with springs or to a co
Journal of Mechanical Design
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pliant mechanism modeled as such, like the mechanisms show
Fig. 2. However, a torsional spring placed at either pin joint do
not cause bistable behavior. The figure also shows one of
unstable positions and the second stable position. The comp
mechanism is shown with a functionally-binary pinned-pinn
segment replacing the spring.

4 Double-Slider Mechanisms With a Pin Joining the
Sliders

This class consists of mechanisms with four joints, includi
two slider joints. The two sliders are joined by a pin joint, a
shown in Fig. 3. Usingu as the independent variable,

r 25
e11e2 cosu

sinu
(15)

and

r 45
e1 cosu1e2

sinu
(16)

For ease of analysis, we require bothe1 ande2 , the slider eccen-
tricities, to be non-negative, and

e1>e2 (17)

These requirements may be made without loss of generality
cause mechanisms which violate these conditions are merely

Fig. 2 A bistable double-slider mechanism with a link joining
the sliders and a compliant equivalent. The second stable po-
sition and one of the unstable positions are shown.

Fig. 3 A model of a fully compliant double-slider mechanism.
Each compliant segment is modeled by a joint with a spring
attached to it.
JULY 2004, Vol. 126 Õ 659
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nematic inversions of a mechanism which does satisfy the crite
Also, note that mechanism motion using these conditions requ
that u remain between 0 andp.

4.1 Case 1: Eccentricities Not Equal. The energy equation
is the same as Eq.~5!, where theK’s are the spring constants a
noted in Fig. 3, and thec’s are the deflections of each sprin
given by

c15u2u0

c25r 22r 20 (18)
c35u2u0

c45r 42r 40

where a ‘‘0’’ subscript indicates the initial position at which a
springs are undeflected.

4.1.1 Analysis for the Springs Labeled K1 or K3. If either
K1 or K3 is chosen to be the only non-zero spring constant, anr 4
is the independent variable, the first derivative equation is

dV

dr4
505Kn~u2u0!

du

dr4
n51,3 (19)

Solutions to this equation require eitheru to equalu0 or the de-
rivative term to be zero. Foru to equalu0 ,

r 4Ar 4
21e1

22e2
22e1e2

r 4
21e1

2 5
r 40Ar 40

2 1e1
22e2

22e1e2

r 40
2 1e1

2 (20)

The sole solution to this equation isr 45r 40, or the initial posi-
tion. The derivative term is given by

du

dr4
52

e1

r 4
21e1

22
e2r 4

~r 4
21e1

2!Ar 4
21e1

22e2
2

50 (21)

There are no real solutions inr 4 to this equation. Thus, only on
position satisfies the first derivative equation, proving that a
sional spring placed either at spring location 1 or 3 will not res
in a bistable mechanism.

4.1.2 Analysis for the Spring Labeled K2. If K2 is exclu-
sively non-zero, the first derivative equation is

dV

du
505K2~r 22r 20!

dr2

du
5K2S e11e2 cosu

sinu
2

e11e2 cosu0

sinu0
D

S 2
e21e1 cosu

sin2 u D (22)

The solutions in terms ofu for this equation are

u5u0

u5a cosS 2
~e1

21e2
2!cosu012e1e2

e1
21e2

212e1e2 cosu0
D (23)

u5p2a cosS e2

e1
D

where, for three distinct mechanism positions,

u0Þp2a cosS e2

e1
D (24)

The second solution in Eq.~23! also has the condition

sinu5
sinu0~e1

22e2
2!

e1
21e2

212e1e2 cosu0
(25)

However, for the case wheree2,e1 , the right hand side of Eq
~25! will always be positive, so thatu lies between 0 andp. These
are also the limits for physical values thatu can take, indicating
660 Õ Vol. 126, JULY 2004
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that this solution is within the physical range of the mechanism
addition, becausee2,e1 , the third solution is also physically re
alizable. The stability of each solution position can be determin
from the second derivative of potential energy. Substitution of
solutions in Eq.~23! into the second derivative reveals that th
first two solutions give positive values, while the third gives neg
tive values. Thus, the first two solutions are stable positions, w
the third is an unstable mechanism position which lies betw
the other two. Therefore, a spring attached to the slider with
smaller eccentricity will create a bistable mechanism, unless
initial position corresponds to the third solution in Eq.~23!, which
is the extreme position for the slider.

4.1.3 Analysis for the Spring Labeled K4. If K4 is exclu-
sively non-zero, the first derivative equation is

dV

du
505K4~r 42r 40!

dr4

du
5K4S e1 cosu1e2

sinu
2

e1 cosu01e2

sinu0
D

S 2
e2 cosu1e1

sin2 u D (26)

Note that the equation is identical to the equation with non-z
K2 , with e1 ande2 swapped. The solutions in terms ofu for this
equation are

u5u0

u5a cosF2
~e1

21e2
2!cosu012e1e2

e1
21e2

212e1e2 cosu0
G (27)

u5p2a cosS e1

e2
D

The second solution in Eq.~23! also has the condition

sinu5
sinu0~e2

22e1
2!

e1
21e2

212e1e2 cosu0
(28)

For the case wheree2,e1 , the right hand side of Eq.~28! will
always be negative, so that the second solution given in Eq.~23!
lies between2p and 0. This solution to the equation is thus out
the range of physically realizable mechanism positions. In ad
tion, becausee2,e1 , the third solution is not defined mathemat
cally. Hence, the mechanism could be taken apart and reassem
in a different assembly configuration that would include the s
ond solution in Eq.~27!, but it cannot reach this position throug
ordinary mechanism motion. Hence, a spring placed at spring
cation 4, which is attached to the slider with the larger eccent
ity, will not create a bistable mechanism.

4.1.4 Analysis Summary.Therefore, for this class of double
slider mechanisms, only a spring placed at the slider with
smaller eccentricity will result in bistable behavior, assuming
initial position is not an extreme position for the slider. Figure
illustrates an example. A bistable compliant mechanism may a
be constructed as illustrated, where the spring and slider h
been replaced by a FBPP segment. The figure represents only
possible compliant configuration.

4.2 Case 2: Eccentricities Equal. The preceding section
has shown that a torsional spring placed at either pin joint will
cause bistable behavior regardless of the eccentricities. Howe
for either non-zeroK2 or K4 , if e25e1 , the solutions in Eq.~23!
and Eq.~27! to the first derivative equation are both

u5u0 (29)
u5p

Unfortunately, substitution into the second derivative of poten
energy shows that while the first solution is definitely stable,
valueu5p results in a singular mechanism position. In this p
sition, the lines of action of the two sliders lie on top of each oth
Transactions of the ASME



h

f

d
,

osi-

the
ker
r a
de-
ere-
ing

o

e
,

as-

to
nk,

e of
may
nk
le

eme
due to their equal eccentricities, and the sliders can move a
where along their line of action in the absence of springs. Thu
translational spring attached to either slider will be free to expa
to its undeflected length when the singular position is reach
making the position stable. As this mechanism position lies wit
the feasible range for the mechanism class~0 to p!, the mecha-
nism will always be able to take on this position during motio
Therefore, the mechanism will have bistable behavior if a tra
lational spring is placed at either sliding joint.

5 Slider-Crank or Slider-Rocker Mechanisms
The slider-crank or slider-rocker mechanism type is shown

Fig. 5 with springs placed at each joint. For this analysis,r 2 is
arbitrarily chosen as the shortest link. Also,e is constrained to the
rangee>0. This may be done without loss of generality becau
the case wherer 2.r 3 is merely a kinematic inversion of the cas
wherer 2,r 3 , and a negative value fore represents a rotation o
the entire mechanism by 180 deg. If

r 32r 2.e (30)

then the mechanism is a slider-crank. If the two sides in Eq.~30!
are equal, then the mechanism is a change-point slider-crank,
if the left side is less than the right side, then the mechanism
slider-rocker. In addition, the displacement equations are

e5r 2 sinu21r 3 sinu3 (31)

r 15r 2 cosu21r 3 cosu3 (32)

5.1 Slider-Rocker or Change-Point Slider-Crank Mecha-
nisms. The energy equation is the same as Eq.~5!, with

c15u22u20

Fig. 4 A bistable double-slider mechanism with a pin joint
joining the sliders, and a compliant equivalent. e2 is zero in this
illustration. The unstable and second stable positions are
shown in dashed lines.

Fig. 5 A model of a general compliant slider-crank or slider-
rocker mechanism
Journal of Mechanical Design
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c25u22u202~u32u30! (33)
c35u32u30

c45r 12r 10

5.1.1 Analysis for the Spring Labeled K1. If K1 is exclu-
sively non-zero, the first derivative of energy with respect tou3 is

dV

du3
505K1~u22u20!

du2

du3
5K1~u22u20!F 2r 3 cosu3

r 12r 3 cosu3
G
(34)

The first part,u22u20, gives two distinct solutions when solve
simultaneously with Eq.~31!. The second part, the derivative
gives a third solution. These are

u35u30 and u25u20

u35p2u30 and u25u20 (35)

u356
p

2

where, for each solution to represent a distinct mechanism p
tion,

u30Þ6
p

2
(36)

For the first two solutions in Eq.~35!, the second derivative is
positive, indicating that they are each stable positions. For
third solution, the second derivative is negative for a slider-roc
mechanism, resulting in an unstable equilibrium position. Fo
change-point slider-crank mechanism, the limit of the second
rivative as the third solution is approached is also negative. Th
fore, for either type, the mechanism will be bistable with a spr
K1 as long as each of the solutions in Eq.~35! represents a viable
mechanism position.

The first two solutions in Eq.~35! are viable for any assembly
configuration because they each satisfy Eq.~31!, assuming the
mechanism may be assembled—that is, there exist valuesu20 and
u30 that satisfy Eq.~31!. The third solution corresponds to tw
different mechanism positions, whereu35p/2 and u352p/2.
For u35p/2, Eq. ~31! may be written

sinu25
e2r 3

r 2
(37)

For a slider-rocker, withr 32r 2,e, the right-hand side of this
equation lies between 1 and21, assuming the mechanism can b
assembled (r 21r 3.e). Similarly, for a change-point slider-crank
with r 32r 25e, Eq. ~37! reduces to sinu2521. Thus, in either
case,u2 is a real number, indicating that the mechanism can
sume this position. On the other hand, foru352p/2, Eq.~31! is

sinu25
e1r 3

r 2
(38)

The right-hand side is greater than one forr 3>r 2 and r 32r 2
,e, indicating that no real mechanism position corresponds
this solution for a slider-rocker. For a change-point slider-cra
no real solution exists unlesse50, in which caser 35r 2 , and
sinu251. Nevertheless, in either mechanism type, at least on
the two unstable positions may be reached; therefore, we
conclude that a slider-rocker or a change-point slider-cra
mechanism with a torsional spring at location 1 will be bistab
unless the initial mechanism position corresponds to the extr
position for the spring, as given by Eq.~36!. Figure 6 shows a
sample mechanism with a spring at location 1.

5.1.2 Analysis for the Spring Labeled K2. If K2 is exclu-
sively non-zero, then the first derivative equation usingu2 as the
independent variable is
JULY 2004, Vol. 126 Õ 661
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dV

du2
505K2@u22u32~u202u30!#S r 1

r 12r 2 cosu2
D (39)

The solutions to Eq.~39! which satisfy Eq.~31! are

u25u20 and u35u30

u25u2022a tanS e

r 10
D1p and u35u3022a tanS e

r 10
D1p

sinu25
e21r 2

22r 3
2

2er2
and r 150 (40)

where, for the three solutions to represent distinct mechanism
sitions,

sinu20Þ
e21r 2

22r 3
2

2er2
and r 10Þ0 (41)

As expected, the first two solutions in Eq.~40! give positive re-
sults in the second derivative for any configuration, whereas
third solution gives a negative result for a slider-rocker mec
nism. For a change-point slider-crank, the second derivative g
zero divided by zero for the third solution, but the limit goes
negative infinity as the third solution is approached. Thus,
either a slider-rocker or a change-point slider-crank mechanism
spring placed at location 2 will result in a bistable mechanism
long as each of the solutions in Eq.~40! corresponds to a viable
mechanism position.

The first two solutions represent feasible mechanism positi
for any mechanism position because, in either case, the solut
satisfy Eq.~31!. For the third solution to be feasible, we requir
from Eq. ~31!,

21<
e21r 2

22r 3
2

2er2
<1 (42)

For a change-point slider-crank, the term in the center of t
inequality reduces to 1, indicating that this is a viable positio
The only exception is whene50, indicating thatr 25r 3 , so that
the center term is undefined. This is because this position is
change-point position for the mechanism, which is a singular
sition. Because a change-point mechanism will always be abl
assume the change-point position, any change-point slider c
will be able to reach the position corresponding to the third so
tion. For a slider-rocker, the inequalities used in the previous s
tion (r 32r 2,e and r 31r 2.e) may be manipulated to result in
the inequality in Eq.~42!. Therefore, a slider-rocker or a chang
point slider-crank with a springK2 will also result in a bistable
mechanism, unless the initial position of the mechanism is
extreme position for the spring, as given by Eq.~41!. An example
mechanism with the spring in this location is shown in Fig. 7.

5.1.3 Analysis for the Spring Labeled K3. If K3 is exclu-
sively non-zero, then the first derivative equation is

Fig. 6 A bistable slider-rocker with a spring at location 1. The
unstable position and second stable position are also shown,
as well as a sample compliant mechanism.
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dV

du2
5052K3~u32u30!

r 2 cosu2

r 3 cosu3
(43)

This equation has three solutions which also satisfy Eq.~31!. They
are

u25u20 and u35u30

u25p2u20 and u35u30 (44)

u256
p

2

where, for the three solutions to be distinct mechanism positio

u20Þ6
p

2
(45)

The second derivative of energy is positive for the first two so
tions in Eq.~44! and negative for the third solution for a slider
rocker. Its limit is negative for a change-point slider-crank. The
fore, the first two solutions are stable positions, while the third
an unstable position. Furthermore, it is easy to show that the
two solutions in Eq.~44! represent feasible mechanism positio
for any configuration of slider-rocker or change-point slider cra
because each solution satisfies Eq.~31!. The third solution repre-
sents two possible mechanism positions:u256p/2. For u2
5p/2, there is a real value ofu3 to satisfy Eq.~31! for any set of
r 2 , r 3 , ande that satisfy the conditions outlined earlier (r 3>r 2
andr 31r 2>e). However, foru252p/2, a real value foru3 only
exists for a change-point slider-crank. Because there are two
sible stable positions and at least one feasible unstable posi
the mechanism is bistable with a springK3 , provided that the
initial position is not an extreme position for the spring, as giv
by Eq. ~45!.

5.1.4 Analysis for the Spring Labeled K4. If K4 is exclu-
sively non-zero, the first derivative of energy is

dV

du2
505K4~r 12r 10!~r 2 cosu2 tanu32r 2 sinu2! (46)

There are four solutions that satisfy this equation and Eq.~31!.
They are

u25u20 and u35u30

u252a tanS e

r 10
D2u20 and u352a tanS e

r 10
D2u30

u25u35asinS e

r 21r 3
D (47)

u25p1u35asinS e

r 22r 3
D

where, for the solutions to represent distinct mechanism positio

u20Þu30 and u20Þp1u30 (48)

Fig. 7 A bistable slider-rocker with a spring placed at location
2, and a compliant equivalent
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The second derivative is positive for the first two solutions in E
~47! and negative for the second two solutions, as long as
condition in Eq.~48! is met. Therefore, the mechanism has tw
stable positions and two unstable positions. Feasibility of the
lutions is all that remains to be proved.

The first solution in Eq.~47! is feasible because it is the initia
position. The second solution is also feasible because it sati
Eq. ~31!. For the third solution to be feasible, we require

21<
e

r 31r 2
<1 (49)

which will be satisfied for any assembled mechanism, for wh
r 21r 3.e. However, the fourth solution will not be feasible for
slider-rocker mechanism becauser 32r 2,e, making the argu-
ment of the asin function out of its domain. On the other hand,
a change-point slider-crank, the fourth solution will reduce tou2
5asin(21), which is feasible. Therefore, because in eith
mechanism type at least one unstable position is feasible,
slider-rocker or change-point slider-crank mechanism with
translational spring attached to the slider will be bistable, as l
as the initial position is not an extreme position, or one wh
violates Eq.~48!.

5.1.5 Analysis Summary.The preceding sections prove th
a slider-rocker or change-point slider-crank mechanism with
spring placed at exactly one joint of the mechanism will
bistable as long as the initial position does not represent an
treme position for the spring, regardless of which of the four joi
is used. The slider-crank mechanism remains to be examined

5.2 Slider-Crank Mechanisms. The previous analysis
showed that stable and unstable positions exist for springs at
of the four spring locations. Moreover, the stable positions
feasible mechanism positions for any slider-crank mechanism
cause no knowledge of the precise mechanism type was req
to demonstrate their feasibility. All that remains is to sho
whether or not the unstable positions corresponding to a sp
placed at each joint are feasible for a slider-crank mechanism

For a springK1 , which is attached to the shortest link, th
unstable positions are, from Eq.~35!,

u356
p

2
(50)

Substitution into Eq.~31! gives

sinu25
e6r 3

r 2
(51)

Knowing thatr 3>r 2 and, for a slider-crank,r 32r 2.e, this equa-
tion reduces to

sinu2.1 or sinu2,21 (52)

for which neither condition can be met. Hence, the mechan
cannot assume the unstable position, preventing it from switch
between the two feasible stable positions. In other words,
mechanism can only switch from one stable position to the o
if it is disassembled and reassembled in the other position
cannot do so through normal mechanism motion.

The other spring attached to the shortest link isK2 . The un-
stable position for this spring is characterized by, from Eq.~40!,

sinu25
e21r 2

22r 3
2

2er2
(53)

For a slider-crank, the right-hand side of this equation is less t
21, indicating that this mechanism position is not feasible. The
fore, springs located at joints adjacent to the shortest link will
result in bistable behavior.

K3 is the torsional spring not adjacent to the shortest link. T
unstable positions for this spring location, from Eq.~44!, are
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(54)

which may be reached for any slider-crank for which link 2 is t
shortest link. This is because the crank, which is the shortest l
may fully rotate for a slider-crank. To specifically show that th
angle may be reached, substitute Eq.~54! into Eq. ~31! to get

sinu35
e6r 2

r 3
(55)

That either position is defined may be proved using the kno
inequalities r 32r 2.e, r 3>r 2 , and r 21r 3.e. Hence, the
mechanism will be bistable with a spring placed opposite
shortest link. For example, Fig. 8 shows a bistable slider-cra
with a spring at position 3.

Finally, for a translational springK4 , the unstable positions
from Eq. ~47!, are

u25asinS e

r 26r 3
D (56)

Again, it is easy to show that either position is feasible from t
basic inequalities. Figure 9 shows a bistable slider-crank wit
spring placed at the slider.

Note that ifr 2.r 3 , then the shortest link will be link 3, so tha
a spring at joint 1 will cause bistable behavior, while a spring
joint 3 will not. This may easily be seen by repeating the prece
ing analysis usingr 2.r 3 . Therefore, a slider-crank mechanism
with a spring placed at one joint will be bistable only if the sprin
is located at the slider or opposite the shortest link, assuming
initial mechanism position is not an extreme position for t
spring.

6 Summary of Spring Locations Necessary
for Bistable Mechanisms

Table 1 summarizes the spring locations for each mechan
type which will result in a bistable mechanism if no other sprin

Fig. 8 A bistable slider-crank with a spring at location 3. The
second stable position and one of the unstable positions are
shown in dashed lines. An equivalent compliant mechanism is
also shown.

Fig. 9 A bistable slider-crank with the two stable positions
and one unstable position shown. In this case, the spring is
placed in position 4.
JULY 2004, Vol. 126 Õ 663
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Table 1 The spring locations necessary for each mechanism type to cause bistable behavior

Mechanism Class Location of Springs for Bistable Mechanism

Double-Slider~pin joint joining!, e1Þe2 translational joint with shorter eccentricity
Double-Slider~pin joint joining!, e15e2 either translational joint
Double-Slider~link joining! either translational joint
Slider-Crank translational joint or pin joint not attached to shortest link
Change-Point Slider-Crank any joint
Slider-Rocker any joint
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act on the mechanism. The table applies to either rigid-b
mechanisms or compliant mechanisms modeled using the ap
priate rigid-body mechanism. If multiple springs are present,
potential energy equation must be solved for a full understand
of the location of the unstable and stable positions. However,
analyses presented here give a designer knowledge of w
spring positions will work for or against bistable behavior. Mor
over, in many cases it is possible to make one spring significa
stiffer than the other springs in the mechanism, allowing the s
spring to dominate the others. Then, the mechanism behaves m
as if the dominating spring were the only spring in the mec
nism.

7 Examples in Design
The information regarding placement of springs to produ

bistable behavior is very useful for design. By knowing befo
hand the spring locations which will produce bistable behavio
designer can quickly generate many viable mechanism config
tions. The examples here demonstrate the process.

7.1 Example: Bistable CD Ejection Actuator. A bistable
mechanism is desired to eject compact discs or similar media f
a case. The mechanism must move in a straight line to push
CD out of the case; hence, one or more translational joint
desirable. Thus, any of the mechanism classes discussed in
paper may be used. To develop designs, each mechanism
may be considered in a configuration using one of the sp
locations specified in Table 1. Figure 10 shows four exam
mechanisms. In each case, one of the joints has a spring atta
to it with the spring locations given by Table 1. One of the
designs may then be chosen for further development. For
ample, if design~a! is chosen, a compliant mechanism like th
shown in Fig. 11 could result. In this mechanism, the pin joints
approximated with very small, thin flexural hinges, known as l
ing hinges. The spring and slider joint are approximated usin
functionally binary pinned-pinned segment. Dimensions and m
terials can be chosen to meet any other design constraints.

7.2 Example: Bistable Electrical Switch. A bistable elec-
trical switch with a rotating link used to toggle the mechanis
between states is desired. Figure 12 shows five different me
nism configurations which could be used. These configurations
chosen by investigating various inversions of the slider-roc
mechanism type with different spring locations. This figure illu
trates how mechanism inversions can be used to create many
ferent possible configurations. Figure 12~c! is developed further
here because of its simplicity, allowing it to be constructed w
only one link and one slider. In addition, by replacing the spr
and slider with a FBPP segment, and by using living hinges
place of pin joints, the mechanism can be made fully complia
The design is shown in Fig. 13. Again, dimensions and mater
can be chosen from any other design constraints.

8 Conclusion
Using knowledge of mechanism motion, analyses have b

presented regarding the placement of compliant segments
pseudo-rigid-body model to guarantee a mechanism’s bistable
havior. This paper has focused on identifying such mechan
configurations that contain one or more slider joints. The w
, JULY 2004
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simplifies design by giving the designer prior knowledge of t
compliant mechanism configurations that will lead to a bista
mechanism. Once the mechanism configuration is selected, its
mensions can be chosen to meet force or motion requiremen
a design problem without concern for compromising the bista
behavior of the mechanism. Two examples were presented
demonstrate the use of the theory in design.

Fig. 10 Possible mechanisms that could be used to make a
bistable CD ejection actuator. „a… and „b… are the two types of
double-slider mechanisms; „c… and „d… are a slider-crank and
slider-rocker mechanism, respectively.

Fig. 11 The resulting compliant bistable mechanism, based on
the double-slider with a pin joint joining the sliders. A pseudo-
rigid-body model mechanism is shown in dashed lines.
Transactions of the ASME
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Fig. 12 Five different possible configurations of the slider-
crank or slider-rocker class which could meet the design speci-
fications. The second positions of „d… and „e… are included to
aid in visualization.

Fig. 13 The conceptual design for the bistable electrical
switch
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