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Design of Nonlinear Automatic
Flight Control Systems*
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A nonlinear aircraft automatic flight control system, developed for use at high angles of
attack, reduces altitude loss during stall and increases the magnitude of the angle of
attack from which the aircraft can recover from stall.

Key Word Index—Aerospace control; attitude control; closed loop systems; control nonlingarities;

nonlinear control systems; perturbation techniques.

Summary—A method for the synthesis of nonlinear automatic
flight control systems is developed, and the performance of a
control system synthesized by use of this method is compared to
the performance of contro! system designed by use of linear
quadratic optimal control theory. Comparisons are made on the
basis of aircraft dynamic response at high angles of attack. I is
found that the nonlinear controller reduces the altitude loss
during stall and increases the magnitude of the angle of attack for
which the aircraft can recover from stall.

1. INTRODUCTION

MODERN high-performance aircraft often operate
in flight regimes where nonlinearities significantly
affect dynamic response. For example, fighter
aircraft may operate at high angles of attack where
the lift coefficient cannot be accurately represented
as a linear function of angle of attack or at high roll
rates where nonlinear, inertial cross-coupling may
result in instabilities. In such situations, dynamic
response may be improved if controller design is
based on nonlinear rather than linear models of
aircraft dynamics.

A number of investigators have studied the
problem of using optimal control theory as the basis
for the design of suboptimal, feedback controllers
for nonlinear systems and a systematic procedure
has been developed for systems in which the
nonlinearities can be expressed as a power series in
the state vector[1-9]. This procedure has been
applied to only a few problems of practical interest
and results previously reported{10, 11] do not
indicate that nonlinear control produces clear-cut
improvements in dynamic response when compared
with controllers designed using linear quadratic
optimal control theory.

The objective of this paper is to apply nonlinear
feedback control theory to the design of a flight
control system which can provide acceptable dyn-
amic_response over the entire range of angle of
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attack which a modern high performance aircraft
may operate. Control system performance 1S parti-
cularly critical at large angles of attack as the
uncompensated dynamic characteristics of the
aircraft may result in abnormal and sometimes
hazardous {lying qualities.

The paper is divided into three major sections. In
the first section, the nonlinear equations describing
the longitudinal motion of an aircraft are developed.
The general equations are derived and are applied
to a specific aircraft, the F-8 Crusader. Synthesis of
the linear and nonlinear controllers is presented in
the second section. The lesser known nonlinear case
is given the majority of attention. Evaluation of the
linear and nonlinear control systems are presented
in the third section. It is found that the nonlinear
system results in considerably improved dynamic
response when compared with the linear system.

2. NONLINEAR DYNAMICAL MODEL
The forces considered and the coordinate system
used are shown in Fig. 1. The drag is small
compared with the lift and weight and is neglected in
this analysis. The lift is separated into its wing and
tail components[12].
The basic equations of longitudinal motion are

(h

mi+wl)= —mgsin 0+ L, sina+ L sina,
m(w—ub)=mgcos 0—L, cosa—L,cosa, (2)
1,i=M,, +IL, cosa—I,L,cos«, —cf) 3)
where
m=mass of aircraft

u=velocity of aircraft in X direction
w = velocity of aircraft in Z direction
0 =angular displacement about Y axis, measured
clockwise from the horizon as shown in Fig. 1
I,=moment of inertia of aircraft about Y axis
L, =winglift
L, =tail lift
o =wing angle of attack
o, =tail angle of attack
M ,=wing moment
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| =distance between wing aerodynamic center
and aircraft center of gravity ‘
I, =distance between tail acrodynamic center and
aircraft center of gravity
¢0 =damping moment.

Equations (1)}-(3) can be refined into three equa-
tions of longitudinal motion in which cubic and
lower order terms are retained.

The tail and wing lift forces are

LW =S CLq_S

L, = CL,qSt

where

C, =coefficient of wing lift
C,, =coefficient of tail lift
q =dynamic pressure

S =wing area

S,  =horizontal tail area.

Figure 2 shows the lift coefficient C; vs o curve for
the F-8 wing and linear and cubic approximations
of this curve. For large angles of attack, the cubic
approximation is more accurate than the linear;
therefore, C,  and C,, will be approximated as

— 0 1 (23
Cp,=C.,+Cp o, ~CL o,

0 1 2.3
CL, - CL, + CL'O(, - CL'O(,

where C{ , C} , C} , C}, C} and C} are constants
peculiar to the individual aircraft.

The symbol 8, represents the tail deflection angle
measured clockwise from the x-axis in Fig. 1. If
0C, f00, is written as a,, then the coefficient of tail
lift becomes

C,=C) +CLo,—Cla}+a,d,.
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Because the entire tail of the F-8 rotates, the tail
angle of attack is:

oy =0—¢g+0,

where ¢ is the downwash angle.

The velocity in the z direction, w, and its rate of
change, w, can be eliminated from (1) and (2) by
noting that

0(3
w=utana:u<a+—3—>

and

W=t tan o + ud sec? o~ ud sec? «
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since # is very small compared with u. A nominal
level flight condition of 8, =0, is assumed so that 0
=Af, and
// /é/ 0% | o2
~l——/ cosamx]—-——
Jeos0=1-5 | cosax1-5
3 3

sin0:9——6- sinaza-—%.

The F-8’s tail is within the wing wake, and therefore
terms including the downwash angle, ¢, cannot be
ignored. ¢ may be approximated by a linear function
of a.

E=¢gytan
where g, is a constant and a, = d¢/0a.

With these substitutions, (1)-(3) combine to give
the general nonlinear equations of motion:

3 3
U= —u<oz+%—)0—g(9—%>

2\ g
+<C2wa+C£wa2 ——Cf;g)%s
+{C} +Ci, (a—eo—0a,+8,)—C} (a—eo —a

+6,) +4a,8,}

. @)

x(a-ao—aﬂoﬁée— ¢ -

) 2
d=0(1—a2)+-g—(1—-0——a2>
u 2

— — 3 2]
(0 —&o— a0 +0,) )is

3 2
—<c2w+ CLa-Cia®—Cl, ==

30\ 48
_Ciw—{-)E— {CL+Cl (e —go—ax+3,)

—Ci (a—go—ax+9, ¥ +a.d.}

y 1~‘(oz—ao——aca+5,z)2 gs,
2 mu

(5)

b=MJ;" +(cgw+ Clo—Cla®
o? o\
“ng?aciwa)q‘g]y !

—{C2,+Ci,(a—80—ae“+5e)

—Ci‘(a—so—ae+6e)3+aeée}

e 2
X(l—(a &g ;£a+5e) )(I_S,l,l;l -—Col;l (6)

If we consider disturbances of an F-8 in level,

"TABLE 1. F-8 AIRCRAFT DATA

e =C¢ =0

cl =C} =40

i =C? =120

d, =0.1

s =375{t% (33.75m?)

s, =934 12 (8.41 m?)

m =667.7 slugs (9773 kg)
d, =075

Ly =0

C'".,‘ =0

¢ =11.78{t(3.53m)

I, " =96,800 slug fi2 (127,512 kg-m?)
! =0.189 ft (0.06 m)

l =16.7 1t (5.01 m)

unaccelerated flight at Mach =0.85 and an altitude
of 30,000t (9000 m) using the data given in Table |
equations (4), (5) and (6) become

i = 84500 — 281.6 7030 — 32.26
+5.3703 + 72402 + 0258, (7)
4=0.0380 —a?0—0.0196% —0.0384?
~0.8960 +3.4860° —0.2158,
+0.288,0% +0.47520+0.635  (8)
= —0.3960 —4.1870 — 3.56403
~20.9673, +6.2658,4° + 4652a + 61.463  (9)

The trim conditions are
-

o =0.044 radians 8, = —0.009 radians.

Substituting the new variables, @ =« +0.044 and J,
=§,—0.009 into (8) and (9), and changing the &, §,
notation back to a, §,, we obtain

o =0—0a?0—0.088a0 —0.877x 4 0.47a> + 3.8464>
—0.2156, + 0.286,02 +0.4782a + 0.6352—0.01902 v
(10)

0= —0.3960 —4.208x — 0.47a% — 3.5640>
~20.9675, + 6.2655 02 + 4662 + 61.453. (11)

3. CONTROL SYNTHESIS
We will first synthesize a linear controller for (10)
and (11) to provide a basis for comparison with the
nonlinear controller. :
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Linearizing (10) and (11) yields

4=0—08770—02156, (12)
= —0.3960 —4.208x —20.9675,  (13)

Letting/a:;:, 0=x,, 0 =X3,0, =l

x'l "‘0.877 0 1 xl
HLi= 0 o 1 X,
% —4208 0 —0.396 | | x3
—-0.215
+ 0 [ (14)
-20.976
X=AX+bpy.

The control is selected to minimize the quadratic
performance index

J =43 [XT0X + ru*]de (15)
1t is well known that the optimal linear control is
p=—r"'b"PX (16)

where P is the positive definite solution of the matrix
Riccati equation

ATP+PA—Pbr 'b"P+Q=0. (17)
A choice of
025 O 0
g={ 0 025 O and r=1
0 0 025

yielded the control law
p=—0.053x, +0.5x,+0.521x3 - (18)

which was found to give good response, without
exceeding a maximum tail deflection of 25° and a
tail deflection rate of 60°/sec.

In the nonlinear
involving 6%, n=2,3,4,...,and a"¢', n,m=1, 2,3,...,
are eliminated, These terms are small and the
controller synthesis technique to be_used cannot
account for nonlinear control terms.

The resulting nonlinear equations of motion are

e e e A e

o

Xy -0877 0 1 X,
X |= 0 0 1 Xy
X3 —4208 0 —-039%610Lx;

R
..»«———*’/

T X2, —0.088x, x5 —0.019x2 +0.47x? + 3.846x7}
+ 0

—047x?  —3.564x}

-+

/\\
This is of the form

X =AX+¢(X)+by (20)

where X, 4, b, and u are the same as for the linear
case, and ¢(X), is an analytic vector function
representing the system nonlinearities. The optimi-
zation problem s, asi linear case, to determine
the feedback control which transfers any initial state
to_the origin and which minimizes the guadratic
index of performance (+6)" |§

unique optimal feedback control is

ov
= 1.~ le o
v 2r X
where V(x) satisfies the Hamilton-Jacobi partial
differential equation:

VT VT VT, 4
WA R M X

+XTQX=O, V(0)=0 (21)

Since (21) usually cannot be solved analytically,
perturbational procedures are used to obtain
approximate solutions[ 1, 5, 6, 8, 10]. The solution of
(21) can be represented in series form as

Vo= T Vi(X). @)
If "
N

$00= T i) 3

where f, ., is of order n+1 in X then the V,’s are
given by the following equations

vy s OVE 11V | w1

6XAX 46Xb b6X+XQX =0 |

VI o VT 20 | Lq

X XA b e T
L T | ‘j,,u'i”
* X X ox

av? aVI g

S AX—E S b o ax
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ove
0 b av,

—le___l
% X
aVT n—1 6VT

a n+1+ Z n+1 K

Z aV‘\b”leaV- _0. (24

oX
The resulting optimal control is
= o,
=—r Ty 2. 5
u r’'b ng'o X (25)

It should be noted that ¥, is quadratic function in X,
V, is cubic in X, and in general ¥, is of order n+2 in
X. Also, solution of V, leads to the n+1 order
control term.

For the nonlinear aircraft model

d’(x): Zl f,1 X)

0.47x2 —0.088x,x; —0.019x3
0
— 0473

i

3.846x3 — xix4
+ 0 26)
—3.564x3

The solution of the first equation of (22) is
Vo=X"PX (27)

where P is the positive definite solution of (17).

In order to compare the nonlinear control with
the linear control determined previously, the values
of @ and r used in the derivation of the linear control
are also used in the derivation of the nonlinear
control. Thus, the solution for P is the same as in the
linear case and the linear terms of the control are the
same as the linear controller developed earlier.

Determination of the nonlinear control is very
laborious. The general procedure for solving for V,,
n=1,2,3,...is as follows

1. Assume

—\n+2-k\{nt+2 +2-j-k
I/H_Zk=0 J= Oan+2 ji- k_;kx(n i )xl

ov,
2. Calculate .
alculate ==

4. Set the sum of coefficients of like terms equal to

-Z€ro.

5. Solve the resulting simultaneous linear alge-
braic equationsfor ay ., — ;- k. j.x-

After V, is obtained; 8V, /0X can be calculated and
substituted into (25) to obtain u,,,. The algebra
encountered is simple but tedious.

For the second-order control, ten unknown
coefficients must be found. Four of these coefficients
are nearly zero and the resulting expression for ¥,
0V,/6X and p, are

Vl = 0058x? —'0.077X%XZ + 0.002x%X3
+0.045x,x2 —0.015x3 —0.003x X, X3
v _
X
0.174x% —0.154x, x, +0.004x, x; +0.045x3
—0.003x2x3

—0.077x2 +0.09x, x, — 0.045x2 —0.003x, X
0.002x% —0.003x X,
11 = 0.04x2 — 0,048, x, +0.0004x X3
+0.005x3 —0.0003x,x3,

The only significant terms in y, are the first two, so
that

1t ~0.04x2 — 0,048, X,.

For the cubic terms, the assumed form of ¥, has 15
unknown coefficients: however, only two are signi-
ficant.

The cubic control is

13 =0.374x3 —0.312x}x,.

The nonlinear control including ub to third order
terms is

2= —0.053x, +0.5x, +0.521x, +0.04x
—0.048x, x5 4 0.374x3 —0.312x3x,.

The increasing complexity of implementing higher
order control terms and the increasing effort needed
to derive them make the practicality of in-
cluding higher order terms questionable. Thus we
will stop with cubic control terms. The procedure
for generating control laws discussed above can be
shown to converge under certain circumstances[6,
14]. It can also be shown that if the vector ¢(X) can
be written in terms of a Taylor series in a small
parameter &, truncation of the procedure described
above with terms of order & provides a (2k+1)
order approximation of the optimal control8, 15,
16].
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4. RESULTS
The response of the aircraft to the three different
controllers derived in the previous sections was
tested. These controls expressed in terms of the state
variables are

1. 8,=—0.0530+0.50 +0.5210,
linear control

2. §,=—0.053x +0.50 4-0.521 0+ 0.04a
—0.048a0,
second order control

3. 8,= —0.0530+0.50 +0.5210 +0.0402
—0.048a0 + 0.3740* — 0.31220,
third order control.

At the flight conditions considered, Mach=0.85
and at 30,000 feet (9000 m), the F-8 stalls when the
angle of attack is 23.5°. The time response for
several initial values of angle of attack are shown in
graphical form in Figs. 3 and 4. In Fig. 3, it can be
clearly seen that if the initial angle of attack is below
the stall angle, the responses for all three controllers
are very similar but as the initial value of angle of
attack increases, the beneficial effects of the third
order control grow. In all cases the second order

controller produced a response closer to that of the
linear controller than that of the third order
controller. This illustrates the importance of the
cubic terms for an effective nonlinear control.
Figure 3 shows that when a(0)=30.1° the linear
control cannot recover from the stall. The second-
order control recovers after 2sec while the third-
order control recovers in less than 1sec. It _was
found that as a(0) approaches 34.5°, the third-order
control _loses effectiveness and for a(0)>34.5°, it
cannol rec from_sfall. Close study of the data
indicates that the key to the effectiveness of the third
order control is its ability to reduce o below 20°
more quickly than the linear control. Once « has
reached about 20°, its rate of decrease is approx-
- imately equal for all three control systems.

Figures 5-7 show the 8, § and &, responses for the
case a(0)=230.1°. It is evident that the third-order
control causes a larger error in @ for the first 3 sec.
But the error for all three controls is small; the
maximum being about 11°. For t> 3 sec, the third-
order control returns to zero more quickly than the
linear control. The 0 response shown in Fig. 6
explains the 0 response just mentioned. The third-
order control produces the largest negative value for
0 early in the response, but also switches to a
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positive value before the others. Figure 7 shows the
difference in control signals produced by the three
feedback systems. While the linear controller in-
itially orders a rapid negative tail deflection, the
third-order controller initially produces a positive
tail deflection. Basically the third-order control is
acting to produce a larger pitch error in order to
more rapidly reduce the angle of attack. As time
passes and « decreases, all of the feedback systems
produce similar control signals. The importance of

the initial control signal differences is emphasized
by the fact that the linear system fails to recover
from stall in this case, while the third-order system
recovers in less than 1 sec.

A better insight into the initial control signal
differences and their effects can be found by
examining the control equations and the equations
of motion. For all the cases examined, the initial
values of & arc negative. Negative values of 6
correspond to a nose down effect, resulting in
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FiG. 8. Altitude lgss due to stall vs a(0).

decreasing angle of attack. Since 6 and 0 are initially
zero, the linear control produces a negative value of
3,. This in turn gives the major control term,
—20.9675,, a positive value, thereby reducing the
nose down effect. For the same initial conditions,
the third-order control produces a positive value of
5,. This is due to the terms 0.04a? and 0.3740>. The
positive value of §, created by the third-order
control gives the major control term, —20.9675,, a
negative value. This increases the nose down effect,
resulting in recovery from stall. Once the angle of
attack decreases to a non-stall condition, the terms
0.040% and 0.373a® become less significant and the
third-order control behaves very similarly to the
linear control.

One example of improved aircraft performance
resulting from non-linear controls is in the area of
altitude loss due to stall. Figure 8 shows altitude loss
as a function of a(0). Figure 9 charts the percent
decreasein altitude loss due to nonlinear controls as
a function of «(0). The improved performance
shown in Fig. 8 and Fig. 9 is of great interest since
minimization of height loss due to stall is of major
importance.

The recoverable stall range is significantly wid-
ened by use of nonlinear controls. The ranges are

1. 23.5° <a <29.3° for the linear-control.
2. 23.5° <a < 30.7° for the second-order control.

3. 23.5° <a < 34.5° for the third-order control.

The range for the third-order control is almost twice
as large as the range for the linear control.

The maximum tail deflection rate required during
individual responses averaged about 309 less for
the linear control than for the third-order control.
These maxima always occurred at the beginning of
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FiG. 9. Percent decrease in altitude loss vs a(0).

the response. Within 2 sec the difference in de-
flection rates was negligible. After two seconds, the
linear rate usually became and remained higher.

A final simulation was run for the simplified third-
order control

8, = —0.053¢+0.50 4 0.5210 + 0.04a® + 0.374a>.

The terms —0.48x0 and —0.312a?0 have been
eliminated for ease of implementation. The response
of this simplified control closely paralleled that of
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control.
the original third-order control. An example is REFERENCES

shown in Fig. 10.

5. CONCLUSIONS

The results presented in this paper indicate that
nonlinear controls can lead to significant improve-
ments in aircraft performance. When the aircraft is
near the stall condition, the ability of the nonlinear
control to recover from stall and reduce the angle of
attack below 20° faster than the linear control
makes it a superior system. This superiority is
evidenced by substantial decreases in altitude loss
during stall. Another dividend of nonlinear control
is the postponement of non-recoverable stall. For
the case presented, the range of recovery from stall
was almost doubled through the use of third-order
control.

Future research should include development of
computer routines capable of eliminating the
laborious algebraic calculations used to derive the
nonlinear control terms. Currently considerable
effort is required to determine even the second order
terms and effort required grows quickly as higher
order terms are sought. The interaction between the
longitudinal and lateral dynamic response of the
controlled aircraft should be investigated for high
angles of attack. The nonlinear feedback control law
would probably be realized vsing digital methods.
Simulations to demonstrate the effects of quanti-
zation, computation, and truncation errors on
stability and dynamic response should be carried
out.
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