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[17] F. Martinelli, C. Shu, and J. R. Perkins, “On the optimality of myopicusually impossible, without introducing extra growth conditions on the
production controls for single-server, continuous-flow manufacturingnmeasurable states of the system. Since then, much subsequent re-
%S(‘)tfms'"'EEE Trans. Automat. Confrvol. 46, pp. 1269-1273, Aug. gearch work has been focused on the output feedback stabilization of

(18] F. Martinelii and P. valigi, “The impact of finite buffers on the nonlinear systems under variosisuctural or growth conditionsOne
scheduling of a single machine two part-type manufacturing syste@f the common assumptions is that nonlinear systems should be in an
The optimal policy,” Dipartimento di Ingegneria Elettronica eoutput feedback form [11] or a triangular form with certain growth con-
gegl'Eflo(;'f%'ggerzo%g'vers'ta di Perugia, Perugia, Italy, Tech. Repyitions [5], [3], [14], [1], [13]. The other condition is that the system

: ' : can nonlinearly depend on the output of the system bilihéar in
the unmeasurable statgl. The latter was relaxed recently in [13] by
only imposing the global Lipschitz-like condition on the unmeasurable
states.
In this note, we consider a class of single-input—single-output (SISO)

Output Feedback Control of a Class of Nonlinear Systems: time-varying systems

A Nonseparation Principle Paradigm r1 =2 + 1(t, 7, u)
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Abstract—This note considers the problem of global stabilization by T =u+ ¢n(t, x, u)

output feedback, for a family of nonlinear systems that are dominated

by a triangular system satisfying linear growth condition. The problem y=mn (1.1
has remained unsolved due to the violation of the commonly assumed -
conditions in the literature. Using a feedback domination design method wherex = (z1, ..., z,)" € R", v € IR andy € IR are the system
which is not based on the separation principleve explicitly construct — state, input, and output, respectively. The mapping®R xIR" xR —
a linear O‘IJItp“t g?mpensator making the closed-loop system globally g ; — 1 ... 5, arecontinuousand satisfy the following condition

t- t . 1 b X 9 b . N .
exponentially stable Assumption 1.1:Fori = 1, ..., n, there is a constant > 0 such

Index Terms—Global robust stabilization, linear growth condition, non-  that
linear systems, nonseparation principle design, output feedback.
j0i(t, 2 w)] < ellan| + -+ + i), (1.2)

I. INTRODUCTION AND DISCUSSION ) o .
Under this hypothesis, it has been shown in [14] that global exponen-

One of the important problems in the field of nonlinear control i) stabilization of nonlinear systems (1.1) is possible usirear state
global stabilization by output feedback. Unlike in the case of lineggeghack. The objective of this note is to prove that the same growth

systems, global stabilizability by state feedback plus observability ggngition, namely Assumption 1.1, guarantees the existenclinea
not imply global stabilizability by output feedback, and therefore, the,tputdynamic compensator

so-calledseparation principlausually does not hold for nonlinear sys-

tems. Perhaps for this reason, the problem is exceptionally challenging g =M¢+ Ny, MeR"™™; NeR"

and much more difficult than the global stabilization by state feedback. u = K¢, KeR'<" (1.3)

Over the years, several papers have investigated global stabilization of

nonlinear systems using output feedback and obtained some interes{iig, that the closed-loop system (1.1)—(1.3) is globally exponentially
results. For example, for a class of detectable bilinear systems [4]@5pe (GES) at the equilibriuf, ¢) = (0, 0).

affine and nonaffine systems wistable-free dynamids], [10], global It must be pointed out that systems (1.1) satisfying Assumption 1.1
stabilization via output feedback was proved to be solvable using th&resent an important class of nonlinear systems that cannot be dealt
input saturation technique [9], [10]. In [7], a necessary and sufficiegifith py existing output feedback control schemes such as those re-
condition was given for a nonlinear system to be equivalent to an %rted in [14], [11], [1], and [13]. To make this point clearer, in what
servable linear system perturbed by a vector field that depends onlysg[ioys we examine three seemingly simple but nontrivial examples.

the output and input of the system. As a consequence, global stabilizgg first example is a planar system of the form
tion by output feedback is achievable for a class of nonlinear systems

that are diffeomorphic to a system in the nonlinear observer form [7], L (14 wPaiad)
[8], and [15]. n=ret
In [12], counterexamples were given indicating that global stabi- P2 =u + w2(1 = cos(wau))

lization of minimum-phase nonlinear systems via output feedback is
y =1 1.4)

which obviously satisfies Assumption 1.1. However, it is not in an
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The next example illustrates that a nonlinear system (1.1) wifeedback. When dealing with the problem of global stabilization via

Assumption 1.1, e.g., output feedbaclkstronger conditionsuch as lower-triangular structure,
differentiability of the vector fields (¢, =, u) = (¢1(-), ..., &1 (-)F
i1 = a9 and the global Lipschitz condition were assumed [14].

In this section, we prove that Assumption 1.1 suffices to guarantee
the existence of a globally stabilizing output feedback controller. This
is done by using a feedback domination design which explicitly con-
structs dinear outputfeedback control law. In contrast to thenlinear
may fail to satisfy the global Lipschitz-like condition given in [13].qytput feedback controller obtained in [14], the dynamic output com-
Consequently, global stabilization of (1.5) via output feedback canngdnsator we propose lisear with a simple structure (1.3).
be solved by the approach of [13]. In fact, it is easy to verify that Thegrem 2.1: Under Assumption 1.1, there exists a linear output
xa sin a9 is not global Lipschitavith respect to the unmeasurable statgaedback controller (1.3) making the uncertain nonlinear system (1.1)
@2, although Assumption 1.1 holds. For this type of nonlinear systemgobally exponentially stable.
most of the existing results on output feedback stabilization are notap- proof: The proof consists of two parts. First of all, we design a
plicable and a “Luenberger-type” observer, which consists of a copear high-gain observer motivated by [2], [5], without using the infor-
of (1.5) plus an error correction term, does not seem to work becayggtion of the system nonlinearities, i.:(t, x, u), i = 1,
convergence of the error dynamics is hard to prove. This results in an error dynamics containing some extra terms that

Finally, in the case when the system under consideration involvggevent convergence of the high-gain observer. We then construct an
parametric uncertainty, the problem of output feedback stabilizatigqtput controller based on a feedback domination design to take care of
becomes even more challenging. Few results are available in i@ extra terms arising from the observer design. This is accomplished
literature dealing with nonlinear systems with uncertainty that ﬁy choosing, step-by-step, the gain parameters of the observer and the
associated with the unmeasurable states. For instance, consider{figal controllers in a delicate manner. At the last step, a linear output
uncertain system dynamic compensator can be obtained, making the closed-loop system
globally exponentially stable.

&2 = + @2 sin a2

y =1 (1.5)

#1 =x2 + di(t)a
o =u+ dao(t) In(1 + x5) sin s

Part —Design of a Linear High-Gain Observer
y = (1.6) 9 9

) o . ) We begin with by designing the following linear observer
which satisfies Assumption 1.1, whelg (¢)| < 1,7 = 1, 2, areun-

knowncontinuous functions with known bounds (equal to one in the .

present case). Whefy () = 0, global stabilization of the uncertain &1 =22 + Lay(z1 — #1)

system (1.6) can be easily solved using output feedback. However,

whends(t) # 0, all the existing methods cannot be used because the .

presence oflz(t) makes the design of a nonlinear observer extremely Tnet =dn + L an_y (21 — 1)

difficult. in =u4 L"an, (21 — &) (2.1)
The examples discussed thus far have indicated that nonlinear

systems (1.1) with Assumption 1.1 cover a class of nonlinear

systems whose global stabilization by output feedback does r%l? reL 2> 1is a gain parameter to be determined later, and> 0

seem to be solvable by any existing design method, and theref = 1’ oo M 8l coefficients of the Hurwitz polynomials) =

is worth of investigation. The main contribution of the note is thé + ars" e An—15 + On.

development of a feedback domination design approach that enableQ€efinesi = (¢; — &)/L'~",i = 1, ..., n. A simple calculation

one to explicitly construct dinear dynamic output compensator 9IVes

(1.3), globally exponentially stabilizing the entire family of nonlinear

systems (1.1) under the growth condition (1.2). It must be pointed o1(t, z, )

out that our output feedback control scheme is not based on the 1 ‘

separation principle. That is, instead of constructing the observer and I do2(t, x, u)

controller separately, we couple the high-gain linear observer design ¢ =LAe + ] (2.2)

together with the controller construction. An obvious advantage of our :

design method is that the precise knowledge of the nonlinearities or ut, 7, u)

uncertainties of the systems needs not to be known. What really needed L“ Lt

is the information of the bounding function of the uncertainties, i.e., ﬂWhere

constant in (1.2). This feature makes it possible to stabilize a family

of nonlinear systems usingsingle output feedback compensator. In

other words, the proposed output feedback controller has a “universal” €1 —day r -0
property. In the case of cascade systems, our design method can deal €2 : Do
with an entire family of finite-dimensional minimum-phase nonlinear R A= _a' L (-) ... 1
systems whose dimensions of the zero-dynamics are unknown. - _Zn 0 ... 0

Clearly, A is a Hurwitz matrix. Therefore, there is a positive—definite
Il. OUTPUT FEEDBACK DESIGN matrix ? = P” > 0 such that

In [14], it was proved that a class of nonlinear systems satisfying
Assumption 1.1 is globally exponentially stabilizable Ioyear state AP+ PA= T
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Consider the Lyapunov functiofp(s) =

L, such that
é1(t, 2, u)

O2(t, v, u)

Vole) ==(n+ DL|e|* +2(n+ 1)e' P L
On(t, 2, u)
—(n+ 1)L|le]]”
1
+elell { e + = |I9|+ +F|I“| .

Recall thate; = #; + L'~ '=;. Hence
1 .
‘F:vi <‘L’ ]Ll—|—|,,| i=1,...,n
With this in mind, it is not difficult to deduce that
Vo(s) < = ((n+ 1)L —mf)ll I

wellll (1l il 4t s

< —((n—|—1)L—C1 n— %cl>||£||2
1 1 .2 1 .2
ta <2 22 vy + + 9L 2n—2 E”)

Part Il—Construction of an Output Feedback Controller
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(n + 1)eT Pe. By As-
sumption 1.1, there is a real constant> 0, which is independent of functionV; (e, &1, ...,
a set of virtual controllerg?, ...,

Initial Step: Construct the Lyapunov functidi (e, #1) = Vo(e)+

(#7/2). A direct calculation gives

<= (4L (Va+ D))ol
1 .5 1 5 1 o
+ 1 §$1+m$2+" +2L2” 5 Tn

+ #1(#2 + Lay=1)

- (nL = (Vi) e ) e

IN

e 1
+e QL) LERR Ry
PN 2 . C1 .2
+ 170 + 1 La;m? + 71 ri
Let L > ¢ and definet; = 72 — @5 with #3 being a virtual control.

Observe that
cr oL L ., 1
51 ;z:f < 54'1)’ 1 572

With this in mind, we have

Vi(e, 1) < — (nL — (ﬁ—l— %) cl) l=II?

1 .
Blap&ta

L2

1 1 32 1 2
talgmitotomm i) Tap @
1
+C1L—12 +J152+1112+L<—(11+ )

Choosing the virtual controller
&5 = —Lb1 21, b1 ::1L—|—l—faf—|—1§>()
results in

Vi < - (nL — (ﬁ—l—

1
+c1 m i

g) cl) llell” = (nL — c1b7 ) it

1 .2 c
+"'+Wl,’” +

W

1 ~%2
=5 Lo .

Lflg fr}) + 216,

~2
Uy

(2.4)

(2.5)

Inductive Step: Suppose at step, there exist a smooth Lyapunov

&) which is positive definite and proper, and
&%, defined byz7 = 0,& =

21 — x] and

—Lbi_ &y i=2 k41

& =& — &7,

with b; > 0 beingindependent athe gain constank, such that

v

e < —((n+1—k)L—

(Va+5) e ) ll=lrP

k
- (n+1—k)L—c1b3) &
J=1

. 1 52 1 52
+ ¢y WJ"‘+2+"'+ WI”

CL 2 1
+ T2k k1t T2 Erlht1.

1
12i—2

(2.6)

Now, consider the Lyapunov function

Vit (2,

517
= -[”71\7(6,51,...

Err1)

1 N L
€k) + 372k [ Skt = Tpt1 — Tpyqa-

Observe that

&k = &k + Lbi—1@p—1 + L*bp—1bp—oir—o

+ L b -

bi&r.

Then, it is straightforward to show that

d 1
dt \ 2L2F S

1 N
= 7 Ertt <l'k+2 +LF

= T Skt

1 k
. 11
Thy2 + L akq121

+ Lbkz ( Fipr + Llaie 1))

k
1 k—it1
+(lk+1€1-|-ZL by

=1

‘ (£i+1 — Lbi&i + L'aie, ))

9&y.
di;

1 . . . X
= Tk Ekt1 (LUA~+2 + Lk+1d061 + Lk+1d1£1 + Lkdzfz

wheredo, ...,

+ -+ Ldk+1§k+1) (2.7)

di+1, are suitable real numbers that aneependent

of the gain constant, andd;1 > 0.

Putting

Vier <

(2.6) and (2.7) together, we have
—(n+1=mL=(Va+ZT)e) eIl

-y

j=1

L2 s((n+1=k)L—c1b?) &

3

1 1
=+ ¢y 2L2—k+4mk+3+'“+2pﬁx

52 )

. 1 :
+ Lg,ﬂ_q Eirr + sz_p Ttz Top Set1let

(l]

do ,
+ ﬁ Ekt1Tpqn + Chpr FCI + FEI

do dr_ dr +1
+ L4+ I2k—3 Ek 1+ Lkzk—z

= &
+ LT—lL €k+l>

A1+ 3+
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— ((n — k)L — (\/ﬁ-i- g) c1> ||5||2 of the controller [i.e.b;, i = 1, ..., n,in (2.10)]. In fact, the observer
1 and controller designs in Theorem 2.1 are heavily coupled with each
—((n=k)L—c1b}) & - - Toh—z other. This is substantially different from most of the existing work

where the designed observer itself can asymptotically recover the state

. _ 2 -2
((n=R)L —eibi) G of the controlled plant, regardless of the design of the controller, i.e.,

1 -2 1 -2 the controller design is independent of the observer design—known as
+a | s Tk ot o5 e ; =
1 <2sz+4 k+3 2[2n—2 ) the separation principle.
I S L I 1 Cort€ Theorem 2.1 has an interesting consequence on output feedback sta-
L2‘+2 k+2 L2‘+’ 2T ok ShRISkE2 bilization of a family of time-varying nonlinear systems in the form
1 2 1
+ Tk Chp12ran + £k.+1 =T ay,1(t, y) 1 . 0 0
2 & a2 di + 1) : : : :
<(4+(I+ et k41 %-dew'Fl)- T = r+ | |u
2.8) an_1,1(t, y) an_i1 2(t,y) --- 1 0
. , 1
. . L . Un, 1(t, y) “‘71,2(ta y) o Qnn (t» y)
From the previous inequality, it follows that the linear controller y =z, (2.12)
Fripz = = Lbry1&eta wherea; j(t,y), k = 1,...,i,i = 1,..., n, areunknown con-
with tinuousfunctions uniformly bounded bylknownconstant. Obviously,
2 e d 1 Assumption 1.1 holds for (2.12). Thus, we have the following result.
b1 =n—k+— (0 + + + k L+ w +diy1+1>0 Corollary 2.3: For the uncertain time-varying nonlinear system
4 (2.12), there is a linear dynamic output compensator (1.3), such that
being |ndependentdr,, renders the closed-loop system (2.12) and (1.3) is globally exponentially
e n : stable.
Vi < —((n=0L = (Va+ 5 ) er) el _ -
ML= (n ) Vi 2/ e ”1 Note that this corollary has recovered the output feedback stabiliza-
—((n =R L= exb?) & — e — o tion theorem in [1], for the time-invariant triangular system
. ((77‘ — k)L — ¢ bi+1) EZ+1 1 =r2 a1 (y)y
1 1
+Cl<2L2—I‘+4EZ+J++Wli> T)—T%-FZ(I;]C(?/
(&) 1
+ o [2k+2 £k+2 + =5 L2k £k+1£k+) (29)
This completes the inductive argument. i =u+ Z an e (y) 2k
Using the inductive argument step by stept thenth step one can o
design the linear controller y =1 (2.13)
u=—Lb.§, with globally bounded:;, ;(y)’s (see [1]).
= — Lb, (& + Loy (dn_i 4+ Lba(&s + Lbydy) -+ +) In the rest of this section, we use examples to illustrate applications

(2.10) of Theorem 2.1.
’ Example 2.4: Consider a continuous but nonsmooth planar system
withb; > 0,i =1, ..., n being real numbers independent of the gainf the form

parameter, such that . .9
Ty =2y + TS0 Ty

o< (L= (vt 5)e ) el - (L- ety & by L

— e Ll )& - s L6 (24D) y=mn (2.14)
_ ~ o ] Due to the presence of (¢, =1, x2) = =1 sin 23, system (2.14) is not
whereV;, is a positive—definite and proper function defined by in a lower-triangular form. Moreovery, (£, z1, r2) = 222}/ is
) ) 1 Y only anon-Lipschitz continuouinction. Neither the differentiability
Vale, &1, -vns &) = Vole) + Z srz-n Si- nor the global Lipschitz condition [14], [13] is fulfilled. As a result,
=1

global output feedback stabilization of (2.14) cannot be solved by the
If we choose the gain constafit > L* := max{l, (/n + methods proposed in [14] and [13].
(n/2))cr, eibi, ..., cibi_y}, the right-hand side of (2.11) becomes On the other hand, it is easy to verify that
negative definite. Therefore, the closed-loop system is globally
exponentially stable.
Remark 2.2: The novelty of Theorem 2.1 is two-fold: on one handThat is, Assumption 1.1 holds. By Theorem 2.1, the output feedback
in contrast to the common observer design that usually uses a cégytroller
of (1.1), we design only &near observer (2.1) for the uncertain non- S S, Ly — 1)
xro

[p1 (w1, w2)| < laa|  |da(wa, w2)| < |aa| + |wal.

linear system (1.1). Such a construction, under Assumption 1.1, avoids Iz
dealing with difficult issues caused by the uncertainties or nonlineari- =u+ Ly i)
ties of the system. On the other hand, the gain paranietdithe ob- w=—Lby(& + Lb1#1) (2.15)

server (2.1) is designed in such a way that it depends on the paramejgfis 5 suitable choice of the parametdrsh, andbs (e.g.,by = 11/4,
1At the last step, the design of the controlieis slightly different from that 02 = 20 and L > 100), globally exponentially stabilizes system

of inductive argument, because all the junk terms (¢3.1 < j < n)in (2.6) (2.14). The simulation shown in Fig. 1 demonstrates the GES prop-
have already been canceled at Step 1. erty of the closed-loop system (2.14) and (2.15).
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¢ ' ' ’ ' ‘ ' to transform (2.17) into

s |

4 i i‘l =2

i Fy(t) K mgd
3 2 !
= - g — — X1 — osxp — 1

. | Ty =3 7 2 7 r1 7, (cos a1 )

1 - L3 = T4

0 . n K* K Fi(t)

) ) ) ) Ty =0 7 5 U1 — ﬁ’l‘% - — T4
5 o0z 004 005 o008 o1  ofz 014 o016 o018 oz ST N? J2 N J1
Time Yy =2x. (218)

100 : : : : Since F1(t) and F,(t) are unknown, most of the existing results are

not applicable to the output feedback stabilization problem of (2.18).
Observe that Assumption 1.1 holds for (2.18) because

-100 h ot
|coszy — 1| < |aq| ‘ 2 )arg < cixa|
200 . J2
] Fi(t
800 ]—() 24| < calral, for constants:, co.
J1

400 ‘ . . x . . ‘ l l
0 002 004 005 008 O 012 04 016 018 02 Using Theorem 2.1, it is easy to construct a linear dynamic output

Time
compensator of the form (2.1)—(2.10), solving the global stabilization
Fig. 1. Transient responses of (2.14) and (2.15) With(0), x-(0), #,(0), problem for (2.18).
#2(0)) = (5, 50, 1, —200). We end this section by pointing out when Assumption 1.1 fails to
be satisfied, global stabilization of (1.1) by output feedback may be
Example 2.5: Consider the three-dimensional system with unceimpossible. For instance, the nonlinear system
tainty 1 =79
;L’1;l‘§
14 w24+ T%

Lo =3 + X2 sin T2

T = + L2 =3
. 2
T3 =u + x3

Yy = (2.19)

3 =u + d(t) In(1 + |z2z3]|) ) N _ _
I (2.16) is not globally stabilizable by any continuous dynamic output compen-
J=n ' sator. This fact can be proved using an argument similar to the one in
where the unknown functionl(t) is continuous,belonging to a [12].
known compact se® (e.g.,2 = [—1, 1]). Sinced=(t, 1, x2, u) =
¢a(w2) = wasinwa, [2(r2)| < |v2|. Note that, however, there is no 1. UNIVERSAL OUTPUT FEEDBACK STABILIZATION
smooth gain functiom(z1) > 0 satisfying

) o . . From the design procedure of Theorem 2.1, it is clear that there is a
|f2(x2) = @2(22)| < e(a1)]wrz — &2f, Ve €R, @2 € R singlelinear output feedback controller (1.3) making the entire family
i.e., the global Lipschitz condition required in [13] does not hold an@f nonlinear systems (1.$)multaneouslgxponentially stable, as long
therefore, the existing output feedback control schemes such as g they satisfy Assumption 1.1 with the same boundhis is a nice
[14], and [13] cannot be applied to (2.16). On the other hand, (2.14)fgature of our output feedback control scheme, due to the use of the
globally exponentially stabilizable by the linear output feedback cofeedback domination design.

troller (2.1)—(2.10) as Assumption 1.1 is obviously satisfied. For example, it is easy to see that the output feedback contrqller
Example 2.6: Consider a single-link robot arm system introduced?2.15) designed for the planar system (2.14) also globally exponentially
for instance, in [6]. The state-space model is described by stabilizes the following system:
3 =29 #1 =mxo + i(.’l?] + 21 sin(urs))
3, = KV sy — Fy(t) o — £ o= mgd o8 21 &2 =u + 21 sin(uws)
. .]2"7\/ J2 JZ ']2 Yy =x (31)
Z3 = Z4
) 1 K K Fi(t) which was proved to be globally stabilizable by linear state feedback
=g + TN TN T [14]. However, the problem of output feedback stabilization was not
=z (2.17) solvedin[14] because (3.1) violates the growth conditions (B1)—~(B2)
of [14].

whereJ,, Jo, K, N, m, g. d are known parameters, add (¢) and  The yniversal stabilization idea above can be extended to a family of
F(t) are viscous friction coefficients that may vary continuously witho minimum-phase nonlinear systems. Specifically, considesas-

time. Supposd* (¢) and I;(t) are unknown but bounded nown 4 systems with the same relative degree
constants. The control objective is to globally stabilize the equilibrium " F“( k) C“(f . )
s =Fr(z")+G {2, 2, u

(z1, 22, 23, z4) = (0, 0, mgd N/ K, 0) by measuremerfeedback. In
the current case, —the link displacement of the system is measurable it =ab + okt 25, b w)
and, therefore, can be used for feedback design. To solve the problem,
we introduce a change of coordinates :
K mgd K it :;zrf_,_l + q’)f(t, :k, :L'k, u)

rKT =21, T2 = Z2, I3 ,7,'4:ﬁ34
JoL

CTRNTT
and a prefeedback

K < L mgd> i =utoh(t, 25, e ),

v= J.N \J, = s y :;zrlf, k=1,....m (3.2



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 10, OCTOBER 2002 1715

wherez* € R*" ands* is anunknownnonnegative integer. wherec, is a uniform constant defined as
Theorem 3.1:Suppose for each individual system (3.2), T
b = F*(:*) is GES at:* = 0 and cp = max{(E Y+, k=1, ..., m}.
|G (8, 25, 2, w)| <@k Observe that (3.8) is almost identical to inequality (2.3) in the proof
|<;’)f;"(t, gk W) < Ck( |Zk|| + |l,$| Tt |l,§|)7 pf Theorem 2.1. Using a recursive design procedure S!mllar to the one
in Theorem 2.1, we can obtain at thth step the following globally
k=1 ...,m exponentially stabilizing controller:
Then, there is aniversallinear output feedback controller w = —Lby (& + Lby—y (#r—1 ++++ Lbo(ds + Lbydy) -++) (3.9)
§ =M+ Ny, MeR™: NeR’ whereb; > 0,i = 1, ..., r, are real numbers independent of the
u=KE, KeR"™" (38.3) gain parametef, andL > L* := max{l, ¢ + (/7 + (+/2))ci,
Clbz, ey Cll)%, }
that simultaneously exponentially stabilizes thecascade systems Blecause (3.81)'holds uniformly for the systems with a common
3.2). L o ke . constant; > 0, itis not difficult to prove that the feedback control law
Proof: Sincez" = F"(:") is globally exponentially stable, by (3.9) together with theingle r-dimensional observer (2.1) stabilizes
the converse theorem there is a positive definite and proper functigf,,, systems (3.2) simultaneously. I
V*(=*) such that
OVH (%) PR < — 4 IV. CONCLUSION
D2k - We have presented a new output feedback control scheme for a
oV* (") N TN class of nonlinear systems whose global stabilization problem via
|| L&) with & > 0. s
0z output feedback cannot be handled by existing methods. The proposed

o . output dynamic compensatorisear and can stabilizeimultaneously
This, in turn, implies - . : . ;
a family of nonlinear systems which are dominated by a chain of
AVECR) e v P integrators perturbed by a triangular vector field with linear growth
Tk (F )+ Gt =7, 2, '”)> condition. Moreover, the result can also be applied fimige number
3 kn2 ka2 ko ’ of globally exponentially minimum-phase systems (say, for instance,
< =325+ (c ¢ ) EX k=1,....m. (34) , controlled plants), in which the dimensions of the zero dynamics

. . . .., can bedifferentandunknown
Now, one can constructgingler-dimensional observer (2.1) with

the gain parametéek to be determined later and a Lyapunov function
REFERENCES

k «
r; — g

i i=1,...7. [1] G.Besancon, “State affine systems and observer-based contri@tgin
Li—1 7’ ’ NOLCOS’'98 vol. 2, July 1998, pp. 399-404.
L . . [2] H. K. Khalil and F. Esfandiari, “Semiglobal stabilization of a class of
Similar to the proof of Theorem 2.1, there is a real constént- 0 nonlinear systems using output feedbadEEE Trans. Automat. Contr.
satisfying vol. 38, pp. 1412-1415, Sept. 1993.
. . [3] H.K.Khaliland A. Saberi, “Adaptive stabilization of a class of nonlinear
VR 4 V(M) systems using high-gain feedback?EE Trans. Automat. Confrvol.
) 2 . 32, pp. 1031-1035, Nov. 1987.
<-32 =517 + (Z'%’”) lz¥)® = (r + 1)L||"))? [4] J. P. Gauthier and I. Kupka, “A separation principle for bilinear sys-
. . tems with dissipative drift,/IEEE Trans. Automat. Contwol. 37, pp.
ezl o ) . (35 1970-1974, Dec. 1992.

Vo(=) = (r + 1)() P with =F =

L Lr—1 [5] J. P. Gauthier, H. Hammouri, and S. Othman, “A simple observer for
nonlinear systems, applications to bioreactodiSEE Trans. Automat.
By the completion of squares, it is easy to see that Contr, vol. 37, pp. 875-880, June 1992.
[6] A. Isidori, Nonlinear Control System8rd ed. New York: Springer-
|zk’||2 (3.6) Verlag, 1995.
[7] A.J. Krener and A. Isidori, “Linearization by output injection and non-
|52J: ke R n linear observer,'Syst. Control Lett.vol. 3, pp. 47-52, 1983.
LJ_]*l + &< ey | [8] A.J.Krener and W. Respondek, “Nonlinear observers with linearizable
4 ’ o error dynamics,’SIAM J. Control Optim.vc_)l_. 23, pp. 197—_216, 1985.
c ||J~||2 + P (#;)° + Fk”gk” |J;,| 3.7) [9] W. Lin, “Input saturation and global stabilization of nonlinear systems
- © 9r2G-1) - A= e ) via state and output feedbackEEE Trans. Automat. Contrvol. 40,
o . . pp. 776-782, Apr. 1995.
Substituting (3.6) and (3.7) into (3.5) yields [10] —, “Bounded smooth state feedback and a global separation principle
. . for nonaffine nonlinear systemsSyst. Control Letfvol. 26, pp. 41-53,
VECER) +70(M) 1995.
< _l”_/kHZ —(r+ 1)L||Ck||z [11] R. Marino and P. Tomei, “Dynamic output feedback linearization and
= 21~ - global stabilization,’Syst. Control Lett.vol. 17, pp. 115-121, 1991.
ka2 ko Tk k2 —hk Ak 242 [12] F. Mazenc, L. Praly, and W. D. Dayawansa, “Global stabilization by
+ ((C C A+ 2 ¢ ) 1717 + (27 ety output feedback: Examples and counterexampl8gst. Control Lett.
w1 5 1 1 o vol. 23, pp. 119-125, 1994.
+c 5 ry + 572 -+ SL—2 Ty [13] L. Praly, “Asymptotic stabilization via output feedback for lower trian-
1 gular systems with output dependent incremental rateProc. 40th
k2 N2 ~ T k2 IEEE Conf. Decision and ControDrlando, FL, 2001, pp. 3808-3813.
< 2 =1 ((r + DL = (1) “avr 2 cl) 1= [14] J. Tsinias, “A theorem on global stabilization of nonlinear systems by

; e’“na’“n(uz’“n et +

~k k k ~kN2 k2
SN M= <@ + ¢

k
Ak k |l| Sk k
&le II—L/,1 <&l

r 1 linear feedback, Syst. Control Lett.vol. 17, pp. 357-362, 1991.
+ ¢y Z TS l? (3.8) [15] X.H. Xiaand W. B. Gao, “Nonlinear observer design by observer error
= 2L linearization,”SIAM J. Control Optim.vol. 27, pp. 199-216, 1989.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


