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SUMMARY

This paper presents a direct adaptive recon"gurable #ight control approach and demonstrates its e!ec-
tiveness via an application to an advanced tailless "ghter aircraft. The recon"gurable control law is based on
a dynamic inversion controller in an explicit model following architecture. An on-line neural network is used
to adaptively regulate the error between the desired response model and the actual vehicle response. An
on-line control allocation scheme generates individual control e!ector commands to yield the moments
commanded by the controller, while prioritizing critical axes and optimizing performance objectives such as
maneuver load alleviation. An on-line system identi"cation module generates estimates of the vehicle's
stability and control derivatives for use in control allocation and command limiting. The recon"gurable
control laws are demonstrated by comparing their performance to a dynamic inversion control law when
unknown failure/damage are induced. Copyright ( 1999 John Wiley & Sons, Ltd.
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INTRODUCTION

Recon"gurable #ight control refers to the ability of a control system to adapt to unknown failures
and damage. This expands on the capability of many currently "elded systems (e.g. F/A-18),
where the control laws adapt to failures identi"ed by the failure detection and isolation (FDI)
algorithms to provide safe operation and desirable handling qualities. Undetectable failures and
damage are accommodated only through the inherent robustness of the control laws with no
guarantees of stability or good handling qualities. As a result, recon"gurable control laws o!er
obvious enhancements in #ight safety and mission e!ectiveness.

Recon"gurable #ight control has received considerable attention in recent literature, and
several approaches have been proposed. The self-repairing #ight control system1 achieved failure



and damage tolerance through a recon"gurable #ight control system which performed on-line
damage isolation and estimation using hypothesis testing techniques in conjunction with a bank
of Kalman "lters. Response characteristics were compared to a nominal model to isolate failures
and estimate the control derivatives of the failed/damaged surface for use in a pseudoinverse
control allocation scheme. This work was extended by Chandler et al.,2 where a Hop"eld network
was used to generate an optimal model following control based on stability and control derivative
estimates from an on-line least-squares system identi"cation algorithm. The self-designing con-
troller3 program successfully #ight-tested a scheme on the VISTA/F-16 aircraft which used
least-squares system identi"cation, with spatial and temporal constraints, to estimate the stability
and control derivatives required for the solution of a receding horizon optimal control problem.
Pachter et al.,4 employed a similar approach to maximize an aircraft's tracking performance
before and after control surface failures, while preventing instability and departure. Kim and
Calise5 presented an approach based on neural networks for a feedback linearization control
architecture and demonstrated the approach via simulation studies with an F/A-18 aircraft.
Approaches based on genetic algorithms,6 a linear model following architecture which minimizes
the upper bound of the tracking error,7 and sliding modes8 have also been proposed.

Signi"cant research has also been performed in the areas of system identi"cation and control
allocation, which directly support recon"gurable control. Chandler et al.9 developed a static
system identi"cation scheme based on least-squares estimation which incorporates a priori
information to enhance parameter estimates. Windowing techniques are used to produce accu-
rate parameter estimates during normal operation and following abrupt changes to the aircraft
(e.g. failures or damage). The estimation algorithm is disabled during periods of low excitation to
prevent the generation of erroneous estimates. Carrette et al.10 propose the use of a data selection
criterion, based on singular value decomposition techniques, that discards the poorly informative
data in order to decrease the total mean square error of the estimated parameters. Pan and
Basar11 have proposed an alternate method which estimates uncertain parameters based on
H

=
control and "ltering methods.

A variety of approaches have also been proposed for on-line control allocation. Durham and
Bordignon12 limit the moment commands to the attainable moment rate subset, which is the set
of moments which can be generated by the control e!ector suite subject to position and rate limit
constraints. Pseudoinverse control allocation was employed by Huang13 to implement the
control distributor concept. Bu$ngton14 has developed a control allocation approach for
dynamic inversion control laws which decomposes the control law into a sequence of prioritized
portions and scales these portions to provide command limiting which prevents actuator
saturation and yields graceful response degradation for unachievable commands.

Our recon"gurable #ight control approach is based on a dynamic inversion control law in an
explicit model following framework. The dynamic inversion15~17 architecture was selected since
it is commonly used for aircraft #ight control design. Dynamic inversion o!ers inherent gain
scheduling to accommodate non-linear dynamics and direct tuning of #ying qualities parameters
through the desired dynamics.

An on-line neural network, based on the work of Kim and Calise,5 is used to adaptively
regulate the error in the plant inversion. This network stabilizes the system following failures or
damage, thus reducing the criticality of system identi"cation. On-line control allocation is used to
generate individual control e!ector commands which yield the desired rotational accelerations
while optimizing performance objectives such as maneuver load alleviation and radar signature.
On-line system identi"cation is used to estimate the control derivatives used by the control
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Figure 1. Tailless advanced "ghter aircraft (TAFA)

allocation algorithms. This recon"gurable control law is demonstrated via an application to the
Boeing tailless advanced "ghter aircraft (TAFA),18 shown in Figure 1.

This paper presents an overview of the TAFA aircraft and its critical failure and damage
modes. Recon"gurable control laws using the direct adaptive control architecture are developed
for the TAFA vehicle and evaluated at several key operating conditions. Additional details on the
models, #ight control system design, and analysis are provided in Boeing's RESTORE system
design report.19

TAFA AIRCRAFT DESCRIPTION

The TAFA aircraft is a conceptual design of an advanced "ghter con"guration which blends an
extensive suite of conventional and innovative control e!ectors to achieve high agility in a low
observable design. The TAFA is a single engine, single seat "ghter designed for air-to-air and/or
air-to-ground missions.

The TAFA airframe is characterized by a chined forebody, symmetric air inlets, and no vertical
tail. The wing and all moving canard are thin and feature a moderate aft sweep and no dihedral.
The leading edge of the wing is equipped with passive porosity which can be used as a low rate
roll control device during covert maneuvers.

The trailing edge of the wing features ailerons, trailing edge #aps and aft body split #aps. The
trailing edge #aps provide a powerful pitch control e!ector which can also be de#ected di!eren-
tially to augment the ailerons during rolling maneuvers. If necessary, the #aps and ailerons can be
de#ected in opposing directions to generate yawing moments without inducing roll. The aft body
split #aps are &clamshell' devices which consist of two panels on each side of the aircraft. One
panel opens above the wing and the other below the wing to produce yawing moments while
inducing very little roll. The all moving canards are used as a low-rate trim device for perfor-
mance optimization, but also provide supplementary yaw control power through di!erential
de#ections. In addition, the canards generate substantial nose down control capability to help
meet control margin requirements at high angles of attack.

The TAFA is powered by a moderate bypass ratio turbofan engine equipped with
axi-symmetric thrust vectoring. The pitch and yaw thrust vectoring enhance maneuvering
capabilities and stability augmentation. In addition, main engine thrust is routed to forebody
ports for pneumatic control. The ports are mounted to serve as a yaw control device.
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Figure 2. RESTORE mission pro"le

The mission scenarios and critical maneuvers for evaluating the recon"gurable control laws are
based on requirements for a low-signature, Class-IV light-attack or strike-"ghter aircraft, and
were selected from the mission pro"le of Figure 2. Powered approach, air combat maneuvering,
low altitude ingress/egress, and high-speed supercruise mission segements were selected. The
maneuvers performed during these mission phases have been selected to fully utilize the available
control power of the aircraft and to provide su$cient challenge for the system identi"cation,
recon"guration, and control allocation algorithms.

The recon"gurable control laws must provide stability and good handling qualities during
normal operation, as well as under failures and damage. The failure modes are classi"ed,
depending on the severity of the failure or damage, as Class 1 (C1) and Class 2 (C2), and
correspond to the requirement to meet Level 2 or 3 #ying qualities. These classi"cations
correspond very closely to the operational states II and III de"ned in MIL-F-9490D. Class
1 incidents include either minor damage or single failures, where the actuator/control e!ector
responds to the failure as designed. Several examples are (1) ratcheting of the surface to a zero
position, (2) &#oating' in a damped-trail mode, or (3) locking at the de#ection where failure
occurred. Also included are minor damage scenarios which result in partial (physical) loss of
a control e!ector.
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Class 2 includes any combination of two Class 1 incidents, plus situations in which the actuator
is unable to respond to the failure as designed. Hard-over failure of an e!ector to its maximum
position, for example, will likely require constant use of a comparable surface for trim alone,
e!ectively disabling two e!ectors. Likewise, complete loss of a large all-moving surface (e.g.
trailing edge #ap) is a signi"cant damage state, and may also be evaluated under the less severe
#ying qualities requirements.

The large control e!ector suite of the TAFA aircraft results in a large number of potential
failure and damage conditions.18 In order to streamline veri"cation and validation of the
recon"gurable control laws, an e!ort was performed to identify the critical failure and damage
conditions at each of the #ight conditions. These critical failure and damage conditions are the
primary conditions used to evaluate the performance of the recon"gurable control laws. Selection
of the critical failure and damage conditions was based on an achievable dynamics analysis18 of
candidate failure/damage con"gurations. Classes 1 and 2 conditions which allowed the #ying
qualities objectives (Level 2 for C1 failure and Level 3 for C2 failure) to be met through optimal
use of the remaining control e!ectors were selected for subsequent analysis. The critical failure
and damage conditions are tabulated along with the vehicle's static stability characteristics under
these conditions in Figure 3.

RECONFIGURABLE CONTROL LAWS

The proposed recon"gurable control law architecture is shown in Figure 4. It is based on
a dynamic inversion control law in an explicit model following framework.

The on-line neural network adaptively regulates the inversion error between the plant model
assumed by the control law and the true aircraft. Inversion errors may be due to modelling
uncertainties, or induced by failures/damage. The neural network detects that an inversion error
is present by monitoring the tracking error between a desired response model and the true
aircraft. Large errors will cause the network to augment the desired dynamics input to the
inverting controller with a signal which attempts to cancel the inversion error. The neural
network has the ability to stabilize the vehicle following failures/damage without requiring
system identi"cation estimates of the stability and control derivatives. This reduces the criticality
of system identi"cation in the overall recon"gurable control law. The neural network's stabilizing
characteristics are supported by an analytical proof of stability. Details of the neural network
controller and performance results are provided by Calise et al.20

The neural controller models the inversion error using a basis function expansion implemented
via a sigma-pi neural network. The network weights are updated on-line (no pre-training of the
network) using a weight adaptation law derived from Lyapunov stability theory.

Figure 5 illustrates the roll channel control law architecture, which incorporates the desired
response model, the inverting controller ( fK ~1), and the on-line neural network. The #ying
qualities requirement in the roll axis is a "rst-order stability axis roll rate (p

4
) response given by
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which is selected as the desired response model. The resulting pseudocontrol input to the
inverting controller is
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Figure 3. Critical C1 and C2 failures for each mission segment

where u
1
(t) is the roll channel pseudocontrol, uL

!$1
(t) is the roll channel adaptation signal (output

of the neural network), and pR
#&

is the "ltered stability axis roll acceleration. For a linearly
parameterized network, the network output is de"ned by
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The learning rate (c
1
) was selected as 20 for this application.
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Figure 4. Recon"gurable control law architecture

Figure 5. Structure of roll channel adaptive controller

The roll neural network is linear in sideslip, roll rate and yaw rate, and quadratic in angle of
attack and the roll channel pseudocontrol. The pseudocontrol inputs to the network are passed
through a sigmoidal activation function, p(u

1
), to guarantee the existence of a "xed-point solution

(required for the analytical proof of stability). The basis functions of the network (m
i
) comprised

the various combinations of products formed from the network's parameterizing variables. The
network output is then formed as the sum of the products of the basis functions and their
respective network weights. The roll neural network architecture is illustrated in Figure 6.
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Figure 6. Structure of roll channel neural network

Figure 7. Structure of yaw channel adaptive controller

The #ying qualitites requirements in the pitch and yaw axes are speci"ed by the second-order
transfer functions
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Since both axes use second-order response models, the adaptive control architecture will be the
same for these axes. This architecture is shown for the yaw channel in Figure 7. The network
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weights are adapted using the law
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The learning rates were selected to be ca"20 in the pitch axis and cb"20 in the yaw axis.
The yaw neural network parameterization is identical to the roll channel. The pitch channel

neural network is linearly parameterized with pitch rate and quadratically parameterized with
angle of attack and the pitch pseudocontrol.

The integrated control e!ector management (ICEM) algorithm performs control allocation
while optimizing selected performance objectives. It accepts moment commands from the invert-
ing controller (d), control derivatives from the system identi"cation algorithm (B matrix), and the
available control de#ections as inputs to generate the individual control e!ector commands (u). If
the moment commands can not be satis"ed, the weighted error norm, 1

2
EBu!dE

Wd
, is minimized.

The weighting matrix, =
d
, is used for axis prioritization by heavily weighting the errors in the

critical axes. When the moment commands can be satis"ed, the redundancy in the control e!ector
suite is used to satisfy the moment commands while driving the e!ectors toward a preferred
position (u

1
).This notion is made precise with the objective to minimize

1
2
(u!u

1
)T=

1
(u!u

1
) where=

1
"=T

1
'0

subject to Bu"d.

The control e!ector preference vector, which comprised trim schedules and signals used to aid
identi"cation of the control derivatives, is constrained to lie in the kernel of the B matrix by the
control allocation algorithm and thus does not a!ect the vehicle's response. Quadratic program-
ming algorithms are used to solve the resulting constrained optimization problem. Details of the
control allocation algorithms are provided by Enns.21

Axis prioritization refers to the desire to give priority to achieving the moments commanded in
a given axis when the available control power is insu$cient to achieve all commanded moments.
Priority is given to axes which are statically unstable to prevent departures, as well as those
critical to performing a given task (e.g. pitch axis during terrain following). This priority can be
imposed through the control allocation algorithm via the=

d
weighting matrix shown above.

Maneuver load alleviation refers to the utilization of the available control e!ectors in a manner
which achieves the desired moments for the vehicle while minimizing the forces or moments
(loads) at speci"ed points on the aircraft. E!ective load alleviation algorithms can reduce the
structural requirements of the aircraft, thereby reducing weight and cost. Maneuverability is
maintained by using the e!ectors in a way which keeps the loads within their acceptable
boundaries, while maximizing the control power available to control the aircraft.

Maneuver load alleviation can be achieved using the on-line control alloction algorithms
discussed above. The load induced by a given control e!ector is related to its position (i.e. larger
de#ections tend to yield larger loads). The preference vector, u

1
, employed by the control
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allocation algorithm can be used to drive the control e!ectors toward positions which minimize
the loads on the aircraft. Since all of the preferred e!ector positions may not be attainable, the
preference weighting matrix is used to assign a relative priority to various e!ectors being at their
preferred position. This matrix re#ects the relative in#uence of the various e!ectors on the loads
to be minimized.

The system identi"cation module uses a least-squares algorithm to estimate the coe$cients of
a basis function expansion representing the aerodynamic and propulsive forces and moments.
These coe$cients include the vehicles stability and control derivatives. A singular value de-
composition technique is used to eliminate measurements with low information content to
prevent erroneous estimates. Filters on the pilot commands are used to generate signals which are
added to the control e!ector preference vector for injection into the kernel of the control
distribution matrix. These signals facilitate identi"cation of the control derivatives for surfaces
which are ganged together by the control allocation function. This ganging causes the parameters
to be colinear, which would normally prevent identi"cation of the individual parameters. The
signals in the kernel of the control distribution matrix eliminate this colinearity and allow
estimation of the individual parameters. This approach avoids injection of undesirable dither
signals when the pilot is not maneuvering the aircraft. In addition, the signals in the kernel of the
control distribution matrix can be tied to the magnitude of the pilot input, thereby allowing
system identi"cation only during large maneuvers. Details of the system identi"cation algorithms
are provided by Elgersma and Enns.22

The notation used to describe the aircraft dynamics whose parameters are to be estimated is
described below. Let

x3Rn, u3Rm, H3Rn]k, b3Rq, f3Rn

Any dynamical system can be written as the product of a coe$cient matrix, H, times a vector of
basis functions, b(x, u), plus a residual. The residual can be made arbitrarily small by increasing the
number, q, of basis functions. However, this also increases the size of the coe$cient matrix, H, which
must be recomputed when the system changes (e.g. due to battle damage to an aircraft).To keep the
residual small, while using a minimal number of basis functions, a nominal function, f (x, u), which
does not depend on any undetermined coe$cients can be separated out as shown below.

xR "f(x, u)#H*b(x, u)#residual

For an aircraft, the aerodynamics forces and moments could be represented by H*b(x, u), while all
other terms of the dynamics may be put into f(x, u). This is consistent with the fact that minor
damage to the aircraft can signi"cantly change the aero coe$cients, while having only a small
e!ect on the mass and moments of inertia.

The system identi"cation approach assumes that x, u, and xR can be measured with sensors or
accurately estimated. Then, by comparing the measured value of xR with the computed values of
f(x, u) and b(x, u), the coe$cient matrix H can be computed. For a rigid aircraft, xR consists of
translational acceleration of the e.g. vR

#'
3R3, and angular acceleration u5 3R3. Translational

acceleration, vR
#'

, can be measured with a single 3-axis accelerometer, while rotational acceler-
ations, uR , can be computed from measurements of three 3-axis non-collinear accelerometers or
estimated by numerical di!erentiation and "ltering of the rotational rates.

After acquiring k samples, let

F"[xR (t
1
)!f(x(t

1
), u (t

1
)), xR (t

2
)!f (x(t

2
), u(t

2
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and

G"[b (x(t
1
), u(t

1
)), b (x(t

2
), u (t

2
)),
2

, b (x(t
k
), u (t

k
))]

The G matrix is size q]k where k<q, and thus the equation to solve for H,

F"HG

represents an over-determined linear algebra problem.
If a priori knowledge on the approximate value of H is available, the solution can be biased to

stay close to the preferred value, H
0
. Let

H"H
0
#H*

and combine the last two equations, using a q]q weighting matrix =, to give

[F!H
0
G, 0]"H*[G,=]

The least-squares solution is

H*"[F!H
0
G, 0][G, =]T([G,=][G,=]T)~1

"(F!H
0
G) GT(GGT#==@)~1

If the [G,=] matrix is poorly conditioned, its inverse can be approximated using the singular
value decomposition:
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1
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1
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which yields

H*"[F!H
0
G, 0]<

1
&~1
1
;T

1

SIMULATION RESULTS

Non-linear simulation analysis of the recon"gurable control laws was conducted to test their
ability to adapt to critical failure and damage scenarios and evaluate the stability and handling
qualities of the vehicle following the critical failures and damage. Simulations were initiated from
a trimmed #ight condition. Stick or pedal doublets, with a magnitude equal to half of the
maximum de#ection, were then applied. The failure or damage was introduced 1 s after maneuver
initiation. The stick or pedal input was not modi"ed after the failure or damage, thus requiring
the recon"gurable control law to stabilize the vehicle (i.e. no pilot aiding to compensate for the
failure/damage).

Simulation results are shown for a longitudinal stick input at the ingress/egress #ight condition
in Figure 8. The simulation results compare the dynamic response of the nominal vehicle (solid
line) to that with a missing left trailing edge #ap (dotted line). The damage occurs at 2 s (1 s after
maneuver initiation).

The "rst two rows of plots compare the dynamic response parameters for the two conditions.
These results show that the recon"gurable control law adapts to the damage and restores the
tracking performance in the normal load factor (NL) response. The sideslip excursions caused by
the damage are held to less than 43, while the rotational rates are stabilized.

The "nal set of plots compare the parameter identi"cation results for the two conditions.
These plots show the dimensionalized control derivatives (rotational acceleration per e!ector

ADAPTIVE RECONFIGURABLE CONTROL 1009

Copyright ( 1999 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 9, 999}1012 (1999)



Figure 8. Performance of recon"gurable control law following failure/damage

command) for the ailerons and trailing edge #aps. Control power estimates are generated based
on the individual e!ectors, rather than collective and di!erential pseudocontrols, to capture the
cross axis e!ects induced by failures and damage. For the failed condition, the left TEF
derivatives should go to zero, while the remaining derivatives should be comparable to the
nominal case (some di!erences may be induced due to trajectory deviations and variations in
control surface utilization). The results show that the left TEF derivatives tend to zero as
expected, while the right TEF derivatives track the nominal values. The damage induces some
perturbation in the aileron derivatives prior to the estimates converging to their desired values.

Overall, the responses under the simulated damage condition achieve the goal of providing at
least Level 3 #ying qualities under severe damage. The responses are stable and the rates
adequately damped. More benign maneuvering (which would typically be the case under severe
damage) would likely yield improved tracking results.

Good results were obtained for most scenarios (i.e. combinations of #ight condition, failures,
damage, and pilot inputs). All Class 1 failures/damage were handled very well, with the dynamic
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responses being nearly identical to the nominal vehicle. The Class 2 failure/damage scenarios
were handled by the recon"gurable control law for most inputs. Failures or damage during
aggressive maneuvers can result in control power reductions that prevent stabilization and
recovery. Modifying the inputs to aid in recovery from the failure/damage (i.e. pilot aiding in
stabilizing the vehicle) may improve results at these conditions.

The bene"ts on integrating fault detection and identi"cation (FDI) algorithms into the
recon"gurable control laws was also investigated via these non-linear simulations. The FDI
algorithms were modelled as a "xed time delay in detecting locked or #oating control e!ector
failures. The FDI algorithms provided no information about sustained battle damage. The FDI
algorithms generated a #ag indicating whether an e!ector was locked or #oating. The system ID
module uses this #ag to remove the failed e!ector from the regressor matrix, while the control
allocation removes the failed e!ector from the B matrix used to allocate the moment commands.
FDI information provided improved performance for locked and #oating actuator failures by
allowing direct compensation for the failure.

CONCLUSIONS

A recon"gurable control approach has been developed based on direct adaptive control
techniques and has demonstrated very good performance in non-linear simulations using tailless
advanced "ghter aircraft. The direct adaptive approach reduces the criticality of system
identi"cation for stabilizing the vehicle following failures and damage, and is supported by an
analytical proof of stability. Follow-on research to mature these algorithms includes manned
simulation and #ight testing.
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