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Abstract

This objective of this article is to give an overview of autopilot software design
for small and miniature unmanned air systems. An architecture that is typical
of commercially available autopilots is described. A detailed explanation of the
inner-loop control structure is described, including the lateral directional feedback
loops and the longitudinal directional feedback loops. We give a brief description
of the sensor package that is usually on small UAS, and describe simple filtering
schemes for extracting estimates of the states needed by the autopilot. Finally, we
briefly describe GPS navigation for following straight lines and orbits.

Keywords: Autopilot design, small unmanned air vehicles, sensors on small UAVs,
Kalman filtering, GPS guidance.

1 Introduction
Unmanned Air Systems (UAS) are playing an increasingly prominent role in military
operations. Technology advancements have enabled the development of large UAS
like the Northrop Grumman Global Hawk and the General Atomics Predator, and also
smaller UAS like the AeroVironment Raven and the InSitu ScanEagle. As recent con-
flicts have demonstrated, there are numerous military applications for small UAS 1 in-
cluding reconnaissance, surveillance, battle damage assessment, and communications
relays. Civil and commercial applications are not as well developed, although potential
applications are extremely broad in scope. Possible applications for UAS technology
include environmental monitoring, forest fire monitoring, homeland security, border
patrol, drug interdiction, aerial surveillance and mapping, traffic monitoring, precision
agriculture, disaster relief, ad-hoc communications networks, and rural search and res-
cue.

The design of the autopilot system for a small UAS differs from manned aircraft in
several ways. The first obvious difference is that a human pilot is not in the loop. This

1In this article, we will use the term small UAS to refer to fixed wing aircraft with wing span between
1-10 feet, and payloads that may range from 0.25-10 kg. Operation times may range from 15 minutes to
10 hours.
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has several important implications. In particular, the pilot is not able to set trim con-
ditions which must therefore be determined automatically by the autopilot. Additional
functions that are typically performed by the autopilot include take-off and landing and
waypoint navigation. The second difference between small UAS and larger aircraft is
the type of sensors that are available. Large aircraft typically have high quality iner-
tial measurement unit (IMU) sensors, angle-of-attack sensors, and GPS. For a small
UAS, the sensor suite is limited to global position system (GPS), microelectromechan-
ical systems (MEMS) gyros and accelerometers, and differential and absolute pressure
sensors. The implication is that estimates of the states of the aircraft will be of much
poorer quality with small UAS. Another difference is that the airspeed and the wind
speed are more closely aligned for small UAS than they are for larger aircraft. The
implication is that navigation algorithms must be explicitly designed for high wind sit-
uations. Finally, small UAS have much less payload capacity than larger aircraft and
can therefore not carry significant computational resources on-board. The consequence
is that the autopilot algorithms must have relatively modest computational and memory
requirements.

There are several commercially available autopilots for small UAS. These include
the Kestrel Autopilot produced by Procerus Technologies [1], the Piccolo Autopilot
produced by Cloud Cap Technologies [2], and the MP2128 Autopilot produced by Mi-
croPilot Inc [3]. These autopilots are shown in Figure 1 and some of their specifications
are shown in Table 1.

(a) Kestrel (b) Piccolo II (c) MP2128

Figure 1: (a) The Kestrel autopilot by Procerus Technologies. (b) The Piccolo II.
Reproduced by permission of Cloud Cap Technology. (c) The MP2128 by MicroPilot.

Kestrel Piccolo II MP2128
(includes datalink)

size (inches) 2 x 1.37 x 0.47 5.6 x 1.8 x 0.24 1.5 x 4 x 0.5
weight (grams) 17 226 28
power (Watts) 2 4 1

Table 1: Size, weight, and power specifications for the Kestrel, Piccolo II, and MP2128
autopilots.

The objective of this article is to describe autopilot technologies for small UAS.
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The principles will be common to all autopilots in this size and weight class. In Sec-
tion 2 we will describe a general autopilot architecture. In Section 3 we will describe
low-level control design using successive loop closure. Section 4 describes sensors
that are typically on-board small UAS and sensor processing necessary to extract state
information, and Section 5 discusses GPS navigation.

2 Autopilot Architecture
A typical system architecture for a small UAS is shown in Figure 2. The UAS is
composed of a ground component and an air component. The air system includes
the autopilot and a camera, which is often gimbaled. The autopilot communicates to
the ground component via two communication links: one for telemetry and command
and control, and the other for video. Typically, a 900 MHz transmitter is used for
the command and control link, and a 2.4 GHz transmitter is used for the video link.
The autopilot software consists of a state estimator, servo loops, and a path following
module.

Air 

Sensors: 
GPS, gyros, etc. 

Actuators 

By-pass switch 

Autopilot 

900 MHz 
transceiver 

2.4 GHz 
transmitter 

Ground 

RC Controls 

Ground Station 
•  Telemetry 
•   Path planner 
•   Human interface 
•   Video display. 
•   Video processing 

900 MHz 
transceiver 

2.4 GHz 
receiver 

frame grabber 

serial 

On-board 
camera Gimbal 

Servo Loops State Estimator 

Path Following 

Figure 2: Autopilot architecture for small UAS. The architecture includes a ground
component and an air component.

The ground system includes a ground station, the corresponding communication
hardware, and a mechanism to allow radio control (RC) override. The RC override is
for safety and regulatory requirements. The ground station typically includes telemetry
recording, video display, a human interface, and possibly a waypoint path planning
module.

This article focuses primarily on the autopilot software. In Section 3 we discuss
the servo loops. The input to the servo loops is the estimated state x̂ as well as the
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commanded altitude hc, airspeed V c, pitch angle θc, and heading angle ψc. The servo
loops send commands to the actuators which include a rudder δr, aileron δa, elevator δe,
and throttle δt. The path following module receives commands from the ground station
to go to a specified waypoint, or to orbit a specific point on the ground at a certain radius
and airspeed. Section 5 discusses the path following module. The autopilot and the
path following blocks rely on accurate state estimates which are obtained by filtering
the on-board sensors which include accelerometers, rate gyros, pressure sensors, and
GPS. The state estimator is discussed in Section 4.

3 Inner-loop Control Structure
The equations of motion for fixed-wing aircraft are typically decomposed into lateral
and longitudinal dynamics [4, 5, 6, 7]. The lateral dynamics include the roll angle, the
inertial heading direction (measured from North), and the inertial North-East position
of the aircraft. The longitudinal dynamics include the pitch angle, the airspeed, and the
altitude of the aircraft. Feedback loops are designed separately for the lateral and lon-
gitudinal dynamics. While there is coupling between lateral and longitudinal motion,
the feedback loops are designed to reject the disturbances that are due to this coupling.
Design of the feedback control loops for lateral motion is discussed in Section 3.1 and
for longitudinal motion in Section 3.2. The autopilot design discussed in this article
would not be appropriate for highly aggressive maneuvers where the coupling between
lateral and longitudinal motion must be directly addressed.

Figure 3 depicts the definitions of the variables used throughout the rest of the
article. The body frame x-axis is out the nose of the aircraft, the y-axis is out the right
wing, and the z-axis is out the bottom. The rotation rates about the body frame axes
are denoted by p, q, and r, and are called the roll rate, pitch rate, and yaw rate. The
yaw angle ψ is defined by aligning the body axis with the inertial North-East-Down
(NED) axes and rotating about the body z-axis (Down axis) by ψ. The pitch angle is
defined by rotating the resulting coordinate system about the body y-axis by θ. The roll
angle is defined by rotating the yawed and pitched coordinate system about the body
x-axis by φ. The North-East-Down position of the aircraft is denoted by (pn, pe, pd).
The altitude is measured along the negative Down axis and is denoted by h = −pd.
The airspeed of the airframe, which is defined as the speed of the aircraft relative to
the surrounding air mass, is V . The flight path angle, which is the angle that the
velocity vector makes with the North-East plane is given by γ and is equal to the pitch
angle minus the aircraft angle of attack: γ = θ − α. The course angle χ is the angle
of the velocity vector from North and is equal to the yaw angle plus the crab angle:
χ = ψ + χc, where the crab angle is the angle between the inertial velocity vector of
the aircraft, and the body frame x-axis which points out the noise of the aircraft. Note
that the crab angle is different than the sideslip angle, which is the difference between
the relative wind vector and the body frame x-axis. The lateral dynamics involve the
variables p, φ, r, ψ, χ, pn, and pe. The longitudinal dynamics involve the variables q,
θ, χ, V , and h.
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Figure 3: Definition of variables used throughout this article. The angular rates are
given by p, q, and r. The Euler angles are denoted as φ, θ, ψ. The airspeed is V , the
heading angle is χ and the flight path angle is γ. The inertial position is (pn, pe), and
the altitude is h.

3.1 Lateral Autopilot
Figure 4 shows the block diagram for a lateral-directional autopilot using successive
loop closure. There are five gains associated with the lateral-directional autopilot. The
derivative gain kdφ provides roll rate damping at the innermost loop. The roll attitude is
regulated with the proportional and integral gains kpφ and kiφ . The heading is regulated
with the proportional and integral gains kpχ and kiχ . The idea with successive loop
closure, is that the gains are successively chosen one at a time beginning with the inner
loop and working outward. In particular, kdφ is usually selected first, kpφ second, kiφ
third, kpχ fourth, and kiχ last.

Figure 4: Control loops for the lateral autopilot using successive loop closure.

If a model of the dynamics is available, then the gains can be selected analytically.
From Figure 4, note that if the integrator gain kiφ = 0, then the transfer function from
the commanded roll angle to the roll angle is given by

Hφ/φc(s) =
kpφaφ2

s2 + (aφ1 + aφ2kdφ)s+ kpφaφ2

. (1)
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If the desired response is given by the canonical second-order transfer function

ω2
nφ

s2 + 2ζ
φ
ωnφs+ ω2

nφ

, (2)

then equating denominator polynomial coefficients, we obtain

ω2
nφ

= kpφaφ2 (3)

2ζ
φ
ωnφ = aφ1 + aφ2kdφ . (4)

Solving these expressions for kpφ and kdφ gives

kpφ =
ω2
nφ

aφ2

(5)

kdφ =
2ζ

φ
ωnφ − aφ1

aφ2

. (6)

Therefore, selecting the desired damping ratio and natural frequency fix the values for
kpφ and kdφ .

Since the roll dynamics is a type one system, zero steady-state tracking error in roll
should be achievable without an integrator [8]. However, coupling from the longitu-
dinal dynamics introduces a disturbance that enters at the summing junction before δa
in Figure 4. Disturbances are also introduced into the roll dynamics by gusts or turbu-
lence. To reject these disturbances, an integrator must be included. If aφ1 and aφ2 are
known, then kiφ can be effectively selected using root locus techniques. The closed
loop poles of the system are given by

s3 + (aφ1 + aφ2kdφ)s2 + aφ2kdφs+ aφ2kiφ = 0, (7)

which can be placed in Evans form as

1 + kiφ

(
aφ2

s
(
s2 + (aφ1 + aφ2kdφ)s+ aφ2kdφ

)
)

= 0. (8)

Figure 5 shows the root locus of the characteristic equation plotted as a function of kiφ .
For small values of gain, the system remains stable.

The next step in the successive-loop-closure design of the lateral-directional au-
topilot is to design the heading hold outer loop. If the inner loop from φc to φ has been
adequately tuned, then Hφ/φc ≈ 1 over the range of frequencies from 0 to ωnφ . Under
this condition, the block diagram of Figure 4 can be simplified to the block diagram in
Figure 6 for the purposes of designing the outer loop, where the wind disturbance has
been transformed to the input of the plant.

The objective of the heading hold design is to select kpχ and kiχ in Figure 6 so that
the heading angle χ asymptotically tracks steps in the commanded heading angle χc.
From the simplified block diagram, the transfer functions from the inputs χc and the
input disturbance dχ to the output χ are given by

χ =
(g/V )s

s2 + kpχ(g/V )s+ kiχ(g/V )
dχ +

kpχ(g/V )s+ kiχ(g/V )
s2 + kpχ(g/V )s+ kiχ(g/V )

χc. (9)
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Figure 5: Roll loop root locus as a function of the integral gain kiφ .

Figure 6: Heading hold outer feedback loop.

Note that if dχ and χc are constants, then the final value theorem implies that
χ→ χc. The transfer function from χc to χ has the form

Hχ =
2ζχωnχs+ ω2

nχ

s2 + 2ζχωnχs+ ω2
nχ

. (10)

As with the inner feedback loops, we can choose the natural frequency and damping of
the outer loop and from those values calculate the feedback gains kpχ and kiχ . Figure 7
shows the frequency response and the step response for Hχ. Note that because of the
zero the standard intuition for the selection of ζ does not hold for this transfer function.
Larger ζ results in larger bandwidth and smaller overshoot.

Comparing coefficients in Equations (9) and (10), we find

ω2
nχ = (g/V )kiχ (11)

2ζχωnχ = (g/V )kpχ . (12)

Solving these expressions for kpχ and kiχ gives

kpχ = 2ζ
χ
ωnχV/g (13)

kiχ = ω2
nχV/g. (14)
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Figure 7: Frequency and step response for second order system.

To ensure proper function of this successive-loop-closure design, it is essential that
the inner (roll) and outer (heading) feedback loops are sufficiently separated. Adequate
separation can be achieved using the rule of thumb

ωnφ > 5ωnχ . (15)

Generally, more bandwidth separation is better. More bandwidth separation requires
either slower response in the χ loop (lower ωnχ ), or faster response in the φ loop (higher
ωnφ ). Faster response usually comes at the cost of requiring more actuator control
authority, which may not be possible given the physical constraints of the actuators.

The rudder is typically used to regulate the side-slip angle β to zero in order to
maintain coordinated turn conditions. Because of space limitations we will not give
the equations for rudder control.

3.2 Longitudinal Autopilot
The longitudinal autopilot is more complicated than the lateral autopilot because air-
speed plays a significant role in the longitudinal dynamics. Our objective in designing
the longitudinal autopilot will be to regulate airspeed and altitude using the throttle and
the elevator as actuators. The method used to regulate altitude and airspeed depends on
the altitude error. The flight regimes are shown in Figure 8.

In the take-off zone, full throttle is commanded and the pitch attitude is regulated
to a fixed pitch angle θc using the elevator.

In the climb zone, the objective is to maximize the climb rate given the current
atmospheric conditions. To maximize the climb rate, full throttle is commanded and the
airspeed is regulated using the pitch angle. If the airspeed increases above its nominal
value, then the aircraft is caused to pitch up which results in an increased climb rate and
a decrease in airspeed. Similarly, if the airspeed drops below the nominal value, the
airframe is pitched down thereby increasing the airspeed but also decreasing the climb
rate. Regulating the airspeed using pitch attitude effectively keeps the airframe away
from stall conditions. Note however, that we would not want to regulate airspeed with
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Figure 8: Flight regimes for the longitudinal autopilot

pitch attitude immediately after take-off because after take-off the airframe is always
trying to gain airspeed but pitching down will drive the aircraft into the ground.

The descend zone is similar to the climb zone except that the throttle is commanded
to zero. Again, stall conditions are avoided by regulating airspeed using the pitch angle
thus maximizing the descent rate at a given airspeed. On some airframes zero throttle
may not be possible or desirable. In these cases, the throttle is set to a minimum value.

In the altitude hold zone, the airspeed is regulated by adjusting the throttle, and the
altitude is regulated by commanding the pitch attitude.

To implement the longitudinal autopilot shown in Figure 8 we need the following
feedback loops: (1) pitch attitude hold using elevator, (2) airspeed hold using throttle,
(3) airspeed hold using pitch attitude, and (4) altitude hold using pitch attitude. The
design of each of these loops will be discussed in the next four subsections. Finally,
the complete longitudinal autopilot will be presented in Section 3.2.5.

3.2.1 Pitch Attitude Hold

The pitch attitude hold loop is similar to the roll attitude hold loop and we will follow a
similar line of reasoning in its development. From Figure 9, the transfer function from
θc to θ is given by

Hθ/θc(s) =
kpθaθ3

s2 + (aθ1 + kdθaθ3)s+ (aθ2 + kpθaθ3)
. (16)

Note that in this case, the DC gain is not equal to one.
If the desired response is given by the canonical second order transfer function

KθDCω
2
nθ

s2 + 2ζ
θ
ωnθs+ ω2

nθ

, (17)
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Figure 9: Pitch attitude hold feedback loop.

then equating denominator coefficients we obtain

ω2
nθ

= aθ2 + kpθaθ3 (18)
2ζ

θ
ωnθ = aθ1 + kdθaθ3 . (19)

Solving these expressions for kpθ and kdθ gives

kpθ =
ω2
nθ
− aθ2
aθ3

(20)

kdθ =
2ζ

θ
ωnθ − aθ1
aθ3

. (21)

Therefore, selecting the desired damping ratio and natural frequency fixes the value for
kpθ and kdθ .

The DC gain of this inner-loop transfer function approaches one as the kpθ → ∞.
The DC gain is given by

KθDC =
kpθaθ3

(aθ2 + kpθaθ3)
, (22)

which for typical gain values is significantly less than one. For the design of the outer
loop, we will use this DC gain to represent the gain of the inner loop over its full
bandwidth. An integral feedback term could be employed to ensure unity DC gain
on the inner loop. The addition of an integral term, however, can severely limit the
bandwidth of the inner loop.

3.2.2 Altitude Hold Using Commanded Pitch

The altitude hold autopilot again utilizes a successive loop closure strategy with the
pitch attitude hold autopilot as an inner loop. Assuming that the pitch loops function as
designed and θ ≈ KθDCθ

c, the altitude hold loop using the commanded pitch is shown
in Figure 10.

In the Laplace domain we have

h(s) =




KθDCV kph

(
s+ kih

kph

)

s2 +KθDCV kphs+KθDCV kih


hc(s)

+
(

s

s2 +KθDCV kphs+KθDCV kih

)
dh(s), (23)
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Figure 10: The altitude hold loop using the commanded pitch angle.

where again we see that the DC gain is equal to one, and input disturbances dh are
rejected for low frequencies. The closed loop transfer function is again independent
of airframe parameters and is only dependent on the known airspeed. The gains kph
and kih should be chosen such that the bandwidth of the altitude-using-pitch loop is
approximately five times less than the bandwidth of the pitch attitude hold loop.

If the desired response of the altitude-hold loop is given by the canonical second
order transfer function

ω2
nh

s2 + 2ζ
h
ωnhs+ ω2

nh

, (24)

then equating denominator coefficients and solving for kih and kph we obtain

kih =
ω2
nh

KθDCV
(25)

kph =
2ζ

h
ωnh

KθDCV
. (26)

3.2.3 Airspeed Hold Using Commanded Pitch

The airspeed can also be regulated using the pitch angle as a control variable since in
level flight pushing the nose down increases airspeed and pulling the nose up decreases
airspeed. The block diagram for airspeed hold using pitch attitude hold as an inner
loop is shown in Figure 11. Disturbance rejection requires a proportional-integral (PI)
controller.

In the Laplace domain we have

∆V (s) =




(−KθDCgkpV2
)(s+

kiV2
kpV2

)

s+(aV1 −KθDCgkpV2
)s−KθDCgkiV2


∆V c(s)

+

(
s

s2 + (aV1 −KθDCgkpV2
)s−KθDCgkiV2

)
dV (s). (27)

Note that the DC gain is equal to one and that step disturbances are rejected. The angle
of attack α enters into the block diagram at the same location as dV . If we assume that
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∆V c ∆V

Figure 11: PI Controller to regulate airspeed using the pitch angle.

the angle of attack is constant, then the PI controller winds up the integrator to reject α.
Therefore, the output of the PI controller can be used as the input to the pitch attitude
hold loop.

The gains kpV2
and kiV2

should be chosen such that the bandwidth of the airspeed
to pitch loop is less than the bandwidth of the pitch attitude hold loop. Following
a procedure similar to previous sections, we can determine values for the feedback
gains by matching denominator coefficients in Equation (27) with those of a canonical
second-order transfer function. Denoting the desired natural frequency and damping
ratio we seek to achieve with feedback as ω2

nV2
and ζ

V2
, matching coefficients and

solving for the control gains gives

kiV2
= −

ω2
nV2

KθDCg
(28)

kpV2
=
aV1 − 2ζ

V2
ωnV2

KθDCg
. (29)

3.2.4 Airspeed Hold Using Throttle

The closed loop system for the airspeed using the throttle as an input is shown in
Figure 12. The transfer function is given by

kiV

s

kpV

∆V c ∆V

Figure 12: Airspeed hold using throttle.
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∆V =
(

aV2(kpV s+ kiV )
s2 + (aV1 + aV2kpV )s+ aV2kiV

)
∆V c

+
(

1
s2 + (aV1 + aV2kpV )s+ aV2kiV

)
dV (30)

where ∆V is the deviation of the airspeed from trim, ∆V c is the commanded deviation
from trim, where it is clear that the DC gain is one and that input disturbances dV are
rejected for low frequencies. If aV1 and aV2 are known, then the gains kpV and kiV can
be effectively determined using the same technique we have used previously. Equating
the closed-loop transfer function denominator coefficients with those of a canonical
second-order transfer function, gives

ω2
nV = aV2kiV (31)

2ζ
V
ωnV = aV1 + aV2kpV . (32)

Inverting these expressions gives the control gains

kiV =
ω2
nV

aV2

(33)

kpV =
2ζ

V
ωnV − aV1

aV2

. (34)

Note that since ∆V
4
= V − V̂ and ∆V c

4
= V c − V̂ , then

∆V c −∆V = V c − V. (35)

Therefore, the control loop shown in Figure 12 can be implemented without knowl-
edge of the trim velocity V̂ . Similarly, since the integrator will wind up to reject step
disturbances, and a constant error in δ̂t can be thought of as a step disturbance, we can
set δt = ∆δt.

3.2.5 Altitude Control State Machine

The longitudinal autopilot modes can be combined to create the altitude control state
machine shown in Figure 13. In the climb zone, the throttle is set to its maximum
value (δt = 1) and the airspeed hold from commanded pitch mode is used to control
the airspeed and thus ensure that the airframe avoids stall conditions. In simple terms,
this causes the UAS to climb at its maximum possible climb rate until it is close to
the altitude set point. Similarly, in the descend zone, the throttle is set to its minimum
value (δt = 0) and the airspeed hold from commanded pitch mode is again used to
control airspeed. In this way, the UAS descends at a steady descent rate until it reaches
the altitude hold zone. In the altitude hold zone, the airspeed from throttle mode is used
to regulate the airspeed around V c, and the altitude from pitch mode is used to regulate
the altitude around hc.
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Figure 13: Altitude control state machine. The commanded altitude is hc and δ̄h de-
fines a small altitude window around hc.

4 On-Board Sensors and Sensor Processing
One of the biggest challenges with small UASs is to accurately estimate the dynamic
states of the aircraft. Commercially available autopilots like the Kestrel, Piccolo II, and
MP 2128 include the following sensor suite:

• Three-axis MEMS rate gyros,

• Three-axis MEMS accelerometers,

• Absolute and differential pressure sensors,

• GPS.

Optional sensors that may be available include a two-axis magnetometer and an ul-
trasonic range finder (for landing). In Section 3 we saw that the low-level autopilot
requires knowledge of the following states:

• Roll rate p, pitch rate q, yaw rate r,

• Roll angle φ, pitch angle θ,

• Airspeed V , altitude h,

• Heading angle χ.

The navigation algorithm discussed in Section 5 will also make use of the North-East
position of the aircraft, which will be denoted by pn and pe. The objective of this
section is to describe how the available sensors are used to estimate the required states.
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4.1 Angular rates, airspeed, and altitude
The angular rates, airspeed, and altitude of the aircraft can be estimated by directly
inverting the sensor models. A brief discussion of this process is described below.

A MEMS rate gyro contains a small vibrating lever. When the lever undergoes an
angular rotation, Coriolis effects change the frequency of the vibration, thus detecting
the rotation. The output of the rate gyro is given by

ygyro = kgyroΩ + βgyro + ηgyro, (36)

where ygyro is in Volts, kgyro is a gain, Ω is the angular rate in radians per second,
βgyro is a bias, and ηgyro is zero mean white noise. The gain kgyro and the bias βgyro
are strongly dependent on temperature and need to be carefully measured. The com-
mercially available autopilots described in Section 1 have preprogrammed firmware
routines that include look-up tables for the gain and bias as a function of temperature.
Unfortunately, this process does not completely compensate for the bias term βgyro
which drifts with time. Therefore, during the preflight phase, it is necessary to cali-
brate the rate gyros.

If three rate gyros are aligned along the x, y, and z axes of the vehicle, then the rate
gyros measure the angular body rates p, q, and r as follows:

ygyro,x = kgyro,xp+ βgyro,x + ηgyro,x (37)
ygyro,y = kgyro,yq + βgyro,y + ηgyro,y (38)
ygyro,z = kgyro,zr + βgyro,z + ηgyro,z. (39)

Therefore, assuming knowledge of the gain and bias, the angular rates p, q, and r can
be estimated by low-pass filtering as

p̂ = (Hlpf (ygyro,x)− βgyro,x) /kgyro,x (40)
q̂ = (Hlpf (ygyro,y)− βgyro,x) /kgyro,x (41)
r̂ = (Hlpf (ygyro,z)− βgyro,x) /kgyro,x, (42)

whereHlpf (·) denotes the application of a low-pass filter, and where the “hat” notation
denotes an estimated quantity.

The airspeed is measured using a pitot tube attached to a differential pressure sen-
sor. If the pitot tube is oriented in the direction of motion, then the output of the
differential pressure sensor is

ydiff pres =
1
2
ρV 2 + ηdiff pres, (43)

where V is the airspeed, ρ is the density of air, and ηdiff pres is zero mean white noise.
A simple estimation scheme for the airspeed is

V̂ =
√

2
ρ
Hlpf (ydiff pres). (44)

The altitude of the UAS is measured using an static pressure sensor, where the
output of the sensor is given by

ystatic pres = ρgh+ ηstatic pres, (45)
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where ρ is the density of air, g is the gravity constant, h is the altitude of the UAS, and
ηstatic pres is zero mean white noise. Therefore, the altitude of the UAS can be estimated
as

ĥ =
Hlpf (ystatic pres)

ρg
. (46)

4.2 Roll and Pitch angles
The most difficult states to measure are the vehicle roll and pitch angles. The basic idea
that we will discuss in this section is to estimate the roll and pitch angles by integrating
the rate gyros and using the accelerometers to correct for integration constants and
biases and drift in the rate gyros.

A MEMS accelerometer contains a small plate attached to torsion levers. The plate
rotates under acceleration and changes the capacitance between the plate and the sur-
rounding walls [9]. The output of a single-axis accelerometer is given by

yacc = kaccA+ βacc + ηacc, (47)

where yacc is in Volts, kacc is a gain, A is the acceleration in meters per second, βacc
is a bias term, and ηacc is zero mean white noise. The gain kacc and the bias term βacc
are strongly dependent on temperature. Therefore the accelerometer must be calibrated
in a temperature chamber.

Accelerometers measure the specific force in the body frame of the vehicle. A
physically intuitive explanation is given in [10, p. 13-15]. Additional explanation is
given in [11, p. 27]. Mathematically we have



ax
ay
az


 =

1
m

(F− Fgravity) , (48)

where F is the total force acting on the center of mass of the UAS, and Fgravity is the
force due to gravity. For a flying vehicle, the total force is composed of four compo-
nents:

F = Fthrust + Fdrag + Flift + Fgravity, (49)

where Fthrust is the thrust force, Fdrag is the drag force, and Flift is the lift force. For
a fixed-wing aircraft in unaccelerated flight, the total forces on the UAS sum to zero.
Therefore, from equation (48) we have that the accelerometers measure the direction
of the gravity vector, which can be used to extract the roll and pitch angles.

We note here that while accelerometers can be used effectively to estimate roll and
pitch for fixed-wing vehicles or for hovercraft in the forward motion regime, they are
not useful for hovercraft in the hover regime. Near hover, the lift and drag forces are
essentially zero. Therefore, from Equation (48) the accelerometers measure the thrust
vector and not the gravity vector. Since the thrust vector is a body fixed quantity, the
orientation of the aircraft cannot be extracted.

The acceleration of any rigid body is given by

v̇ + ωb/i × v =
1
m

F (50)
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where v
4
= (u, v, w)T is the inertial velocity expressed in the body frame, and ωb/i

4
=

(p, q, r)T is the angular velocity of the body with respect to the inertial frame, ex-
pressed in the body frame. Plugging Equation (50) into Equation (48), and expressing
the gravity vector in terms of the roll angle φ and the pitch angle θ gives

ax = u̇+ qw − rv + g sin θ (51)
ay = v̇ + ru− pw − g cos θ sinφ (52)
az = ẇ + pv − qu− g cos θ cosφ, (53)

where a∗ is the specific acceleration along the ∗-axis of the body. If the gains of the
accelerometers are calibrated and normalized to 1/g, and the biases calibrated and
removed, then the outputs of the accelerometers are given by

yacc,x =
u̇+ qw − rv + g sin θ

g
+ ηacc,x (54)

yacc,y =
v̇ + ru− pw − g cos θ sinφ

g
+ ηacc,y (55)

yacc,z =
ẇ + pv − qu− g cos θ cosφ

g
+ ηacc,z. (56)

The body frame velocity vector can be expressed as


u
v
w


 = V




cosα cosβ
sinβ

sinα cosβ


 , (57)

where α is the angle of attack and β is the sideslip angle [10]. Since α and β are
typically not measured on small UAS, and since for small fixed-wing vehicles α and β
are typically small, we assume that α ≈ θ and β ≈ 0 to obtain



u
v
w


 ≈ V




cos θ
0

sin θ


 . (58)

Approximating u̇ = v̇ = ẇ = 0, Equation (55) becomes

yacc,x ≈
qV sin θ

g
+ sin θ + ηacc,x (59)

yacc,y ≈
rV cos θ − pV sin θ

g
− cos θ sinφ+ ηacc,y (60)

yacc,z ≈
−qV cos θ

g
− cos θ cosφ+ ηacc,z. (61)

Therefore, a simple inversion scheme that does not include the integration of rate gyros
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is given by

θ̂accel = sin−1


Hlpf (yacc,x)

q̂V̂
g + 1


 , (62)

φ̂accel = tan−1



Hlpf (yacc,y)−

(
r̂V̂ cos θ̂−p̂V̂ sin θ̂

g

)

Hlpf (yacc,z) +
(
q̂V̂ cos θ̂

g

)


 . (63)

A fixed gain Kalman filter can be used to fuse the accelerometer and rate gyro
information. The relationship between the angular rates φ̇ and θ̇ and the body fixed
angular velocities p and q is given by [10]

φ̇ = p+ q sinφ tan θ + r cosφ tan θ (64)

θ̇ = q cosφ− r sinφ (65)
= q + (q(cosφ− 1)− r sinφ) . (66)

If we lump the nonlinearities into noise variables and make the (admittedly bad) as-
sumption that the noise will be zero mean and Gaussian, then we have

φ̇ = p+ ξφ (67)

θ̇ = q + ξθ, (68)

where we assume that ξφ ∼ N (0, Qφ) and ξθ ∼ N (0, Qθ).
The accelerometers are used for measurement correction. Therefore

yφ = φ̂accel = φ+ ηφ (69)

yθ = θ̂accel = θ + ηθ, (70)

where we again assume that ηφ ∼ N (0, Rφ) and ηθ ∼ N (0, Rθ). The steady-state
Kalman filter equations are [12]

˙̂x = Ax̂+Bu+ L(y − Cx̂) (71)

L = PCTR−1 (72)

0 = AP + PAT +GQGT − PCTR−1CP. (73)

The Riccati equation for the roll angle simplifies to

Qφ −
P 2
φ

Rφ
= 0. (74)

Therefore we have
Pφ =

√
QφRφ, (75)

and the Kalman gain becomes

Lφ = PφR
−1
φ =

√
Qφ
Rφ

. (76)
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We can calculate Lθ using similar reasoning. Therefore, the steady state Kalman filters
for roll and pitch angles, which fuse rate gyro and accelerometer data, are given by

˙̂
φ = p+

√
Qφ
Rφ

(
φ̂accel − φ̂

)
(77)

˙̂
θ = q +

√
Qθ
Rθ

(
θ̂accel − θ̂

)
. (78)

4.3 Inertial position and heading
This section describes an estimation scheme for the inertial position and heading using
GPS as an input. GPS signals have an inertial position bias due to timing and other
errors that will not not be corrected by the techniques discussed in this section. We
assume that position, heading, and groundspeed are directly measured by the GPS unit.

The simplest technique for estimating position and heading is to simply low-pass
filter the GPS signals. However, since the GPS update rate is on the order of one
second, we desire to estimate the states in between GPS updates.

The kinematic equations of motion for inertial position and heading are given by


ṗn
ṗn
χ̇


 =




Vg cosχ
Vg sinχ

q sinφ
cos θ + r cosφ

cos θ


+ ξ (79)

where Vg is the ground speed of the UAS and ξ is a zero mean Gaussian process with
covariance Q. Obviously Equation (79) has problems as θ approaches ±π/2, and as
such the scheme described in this section assumes relatively small pitch angles. If we
let x = (pn, pe, χ)T and u = (Vg, q, r, φ, θ)T , then we have

ẋ = f(x, u) + ξ. (80)

GPS returns measurements of pn, pe, and χ directly. Therefore the output model is

ygps =



pn
pe
χ


+ η, (81)

where η ∼ N (0, R) and C = I . To implement the Kalman filter we need the Jacobian
of f which can be calculated as

∂f

∂x
=




0 0 −Vg sinχ
0 0 Vg cosχ
0 0 0


 . (82)

The resulting Kalman filter is listed in Algorithm 1.
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Algorithm 1 Kalman Filter for pn, pe and χ
1: Initialize: x̂ = 0.
2: Pick an output sample rate Tout which is much less than the sample rates of the

sensors.
3: At each sample time Tout:
4: for i = 1 to N do {Propagate the equations.}
5: x̂ = x̂+

(
Tout
N

)
f(x̂, u)

6: A = ∂f
∂x (x̂, u)

7: P = P +
(
Tout
N

) (
AP + PAT +Q

)

8: end for
9: if GPS measurement received, then {Measurement Update}

10: L = P (R+ P )−1

11: P = (I − L)P
12: x̂ = x̂+ L (ygps − x̂).
13: end if

5 GPS Navigation
In this section we will describe guidance laws for tracking straight-line paths and or-
bits. The primary challenge in tracking straight line segments and circular orbits is
the constant winds, which are almost always present. For small UAS, wind speeds
are commonly 20 to 60 percent of the desired airspeed. Effective path tracking strate-
gies must overcome the effect of this ever present disturbance. For most fixed-wing
small UAS, the minimum turn radius is in the range of 10 to 50 m, which places a
fundamental limit on the spatial frequency of paths that can be tracked.

Implicit in the notion of trajectory tracking is that the vehicle is commanded to be
at a particular location at a specific time. For fixed-wing UAS, the desired position
is constantly moving (at the desired ground speed), which can result in significant
problems if wind disturbances are not accounted for properly. If the UAS is flying
into a strong wind (relative to its commanded groundspeed), the progression of the
trajectory point must be slowed accordingly. Similarly, if the UAS is flying down
wind, the speed of the tracking point must be increased to keep it from overrunning the
desired position. Given that wind disturbances vary and are often not easily predicted,
trajectory tracking can be challenging in anything other than calm conditions.

Rather than using a trajectory tracking approach, this section focuses on path fol-
lowing where the objective is to be on the path rather than at a certain point at a par-
ticular time. With path following, the time dependence of the problem is removed. A
key insight is to use groundspeed and heading as opposed to airspeed and yaw angle.
By using groundspeed instead of airspeed and heading instead of yaw, asymptotic path
following can be guaranteed, even in the presence of constant wind disturbances. The
path following approach is discussed in more detail in [13, 14, 15, 16, 17].

This section is limited to constant altitude motion. The corresponding equations of

20



motion are given by

ṗn = V cosχ+ wn (83)
ṗe = V sinχ+ we, (84)

where we will assume that the input to the guidance law is the heading angle χ, and
where (wn, we) are the magnitude of the wind vector in North-East coordinates. The
objective is to develop a method for accurate path following in the presence of wind.
For a given airframe, there is an optimal airspeed for which the airframe is the most
aerodynamically efficient. Therefore, to conserve fuel, it is desirable that the UAS
maintain a constant airspeed. Accordingly, in this section we will assume a constant
airspeed V . The relationship between airspeed, windspeed, and groundspeed are shown
in Figure 14. The equations of motion for the North and East directions can be written

Yaw, 

Heading, 

Wind Direction, 

Ground Track 

Vw

V

Vg

ψ
χ

χw

Figure 14: This figure shows the relationship between the airspeed V , the windspeed
Vw, and ground speed Vg , as well as the relationship between yaw ψ, heading χ, and
wind direction χw. The crab angle is defined as heading minus yaw.

in terms of the heading and groundspeed as

ṗn = V cosψ + Vw cosχw = Vg cosχ (85)
ṗe = V sinψ + Vw sinχw = Vg sinχ, (86)

where the groundspeed Vg is given by

Vg =
√
V 2 + V 2

w + 2V Vw cos(ψ − χw), (87)

and the heading angle χ is given by

χ = tan−1

(
V sinψ + Vw sinχw
V cosψ + Vw cosχw

)
. (88)

Section 5.1 will develop a guidance strategy for following straight line paths, and
Section 5.2 will develop a guidance strategy for following constant altitude orbits.
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5.1 Straight-Line Path Following
A straight line path is described by two vectors in R2, namely

Pstraight(r, ~q) =
{
x ∈ R2 : x = r + α~q, α ∈ R

}
, (89)

where r ∈ R2 is the origin of the path, and ~q ∈ R2 is a unit vector whose direction indi-
cates the desired direction of travel. Figure 15 shows a top down view of Pstraight(r, ~q).
The heading of Pstraight(r, q̂), as measured from North is given by

Pstraight(r,�q)

z = r + �q�qT p̃

p̃ = p− r

χ�q

r

χ

Figure 15: This figure shows the configuration of the UAS indicated by (p, χ), and the
configuration of the UAS relative to Pstraight indicated by (p̃, χ̃).

χ~q
4
= tan−1 qe

qn
. (90)

The path following problem is most easily solved in a frame relative to the straight-
line path. Let

RPi
4
=
(

cosχ~q sinχ~q
− sinχ~q cosχ~q

)
, (91)

be the transformation from the inertial frame to the path frame, and let

p̃ =
(
p̃x
p̃y

)
4
= RP

i (p− r) (92)

be the relative path error in the path frame. Therefore, the relative dynamics in the path
frame are given by

( ˙̃px
˙̃py

)
= RPi (ṗi − ṙi) (93)

=
(

cosχ~q sinχ~q
− sinχ~q cosχ~q

)(
Vg cosχ
Vg sinχ

)
(94)

=
(
Vg cos(χ− χ~q)
Vg sin(χ− χ~q)

)
. (95)
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Our strategy is to construct a desired heading angle at every point relative to the
straight-line path that results in the UAS moving toward the path. The set of desired
heading angles at every point will be called a vector field because the desired heading
angle specifies a vector (relative to the straight line) with a magnitude of unity. Fig-
ure 16 is an example of a vector field for straight-line path following. The objective is

χ̃

p̃y

Vg

χ∞

Pstraight(r,�q)

Figure 16: Vector field for straight-line path following. Far away from the waypoint
path, the vector field is directed with an angle χ∞ from the perpendicular to the path.

to construct the vector field so that when p̃y is large the UAS is directed to approach the

path with heading angle χ∞, and so that as p̃y approaches zero, the heading χ̃
4
= χ−χ~q

also approaches zero. Toward that end, define the commanded heading of the UAS as

χc(p̃y) = χ~q − χ∞
2
π

tan−1(kp̃y), (96)

where k is a positive constant that influences the rate of the transition from χ∞ to zero.
Figure 17 shows how the choice of k affects the rate of transition. Large values of k
result in short, abrupt transitions, while small values of k cause long, smooth transitions
in the desired heading.

If χ∞ is restricted to be in the range χ∞ ∈ (0, π2 ] then clearly

−π
2
< χ∞

2
π

tan−1(kp̃y) <
π

2
(97)

for all values of p̃y . Therefore, since tan−1(·) is an odd function and sin(·) is odd
over (−π2 , π2 ), we can use the Lyapunov function W1(p̃y) = 1

2 p̃
2
y to argue that if χ =

χc(p̃y), then p̃y → 0 asymptotically. Evaluating the Lie derivative of W1 under the
assumption that χ = χc(p̃y) gives

Ẇ1 = −Vgp̃y sin
(
χ̃∞

2
π

tan−1(kp̃y)
)
, (98)

which is less than zero for p̃y 6= 0. Asymptotic convergence of this scheme in the
presence of yaw and roll dynamics is shown in [13].
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Lateral error p̃y in meters.

Figure 17: Vector fields for various values of k. Large values of k yield abrupt transi-
tions from χ∞ to zero, while small values of k give smooth transitions.

5.2 Orbit Following
An orbit is described by a center c ∈ R2, a radius R ∈ R, and a direction λ ∈ {−1, 1},
as

Porbit(c, R, λ) =
{
r ∈ R2 : r = c + λR

(
cosϕ, sinϕ

)T
, ϕ ∈ [0, 2π)

}
, (99)

where λ = 1 signifies a clockwise orbit and λ = −1 signifies a counterclockwise orbit.
Figure 18 shows a top down view of an orbital path. The guidance strategy for orbit

R

Porbit(c, R,λ)

Figure 18: Orbital path with center (cn, ce), and radius R. The distance from the orbit
center to the UAS is d, and the angular position of the UAS relative to the orbit is ϕ.

following is best derived in polar coordinates. Let

d
4
=
√

(pn − cn)2 + (pe − ce)2 (100)
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be the lateral distance from the desired center of the orbit to the UAS, and let

ϕ
4
= tan−1

(
pe − ce
pn − cn

)
(101)

be the phase angle of the relative position, as shown in Figure 18. Differentiating d and
using Equations (85) and (86) gives

ḋ =
(pn − cn)ṗn + (pe − ce)ṗe

d
(102)

=
(pn − cn)Vg cosχ+ (pe − ce)Vg sinχ

d
. (103)

Using Equation (101) gives

ḋ = Vg
(pn − cn) cosχ+ (pe − ce) sinχ

d
(104)

= Vg

(
pn − cn

d

)
(cosχ+ sinχ tanϕ) (105)

= Vg cosϕ (cosχ+ sinχ tanϕ) (106)
= Vg (cosχ cosϕ+ sinχ sinϕ) (107)
= Vg cos(χ− ϕ). (108)

As shown in Figure 18, for a clockwise orbit, the desired heading angle when the
UAS is located on the orbit is given by χo = ϕ+π/2. Similarly, for a counterclockwise
orbit, the desired angle is given by χo = ϕ− π/2. Therefore, in general we have

χo = ϕ+ λ
π

2
. (109)

The control objective is to drive d(t) to the orbit radius R. Defining the error variable

d̃
4
= d−R, the orbital kinematics can be restated as

˙̃
d = −λVg sin(χ− χo). (110)

Our approach to orbit following is similar to the ideas developed in Section 5.1.
The strategy is to construct a desired heading field that moves the UAS onto the orbit
Porbit(c, R, λ). When the distance between the UAS and the center of the orbit is large,
it is desirable for the UAS to fly toward the orbit center. In other words, when d̃ >> R
the desired heading is

χ̃d ≈ χo + λ
π

2
, (111)

and when d̃ = 0 the desired heading is χo. The proposed guidance law is given by

χc(d̃) = χo + λ tan−1
(
kd̃
)
, (112)

where k > 0 is a constant that specifies the rate of transition from λπ/2 to zero. This
expression for χc(d̃) is valid for all values of d̃ ≥ −R.
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Consider the Lyapunov function W1 = 1
2 d̃

2. When χ = χc(d̃), the Lie derivative
of W1 is

Ẇ1 = −λVgd̃ sin
(
λ tan−1(kd̃)

)
(113)

= −Vgd̃ sin
(

tan−1(kd̃)
)
, (114)

which is negative definite since the argument of sin is in the set (−π/2, π/2) for all
d̃, implying that d̃ → 0 asymptotically. Asymptotic convergence of this scheme in the
presence of yaw and roll dynamics is shown in [13].

6 Summary
The objective of this article was to present basic principles in the design of autopilots
for small UAS. We presented a basic architecture that is common to commercially
available autopilots for small UAS. We discussed in detail the design of the feedback
loops and how those loops are structured to control the lateral and longitudinal modes
of the aircraft. Small UAS have a limited sensor suite. Common sensors were discussed
and simple techniques for extracting the state of the system were described. We also
presented a method for tracking waypoint paths and circular orbits.
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