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Fixed Wing UAV Path Following in Wind with

Input Constraints
Randal W. Beard, Jeff Ferrin, Jeff Humpherys.

Abstract

This paper considers the problem of fixed wing unmanned air vehicles following straight lines and orbits. To

account for ambient winds, we use a path following approach as opposed to trajectory tracking. The unique feature of

this paper is that we explicitly account for roll angle constraints and flight path angle constraints. The guidance laws

are derived using the theory of nested saturations, and explicit flight conditions are derived that guarantee convergence

to the path. The method is validated by simulation and flight tests.

I. INTRODUCTION

Many applications of small and miniature UAVs require that the vehicle traverse an inertially defined path. For

example, the UAV may be required to survey a series of geographic features where the objective is to record images

of the features. In these applications, it is important that the UAV be on the path, but the time parameterization of

the path may not be critical. One approach to this problem is to impose a time parameterization of the path and to

pose the associated trajectory tracking problem. However, this approach is not well suited to small and miniature

fixed wing UAVs since the ambient wind can be a significant percentage of the airspeed of the vehicle.

Fixed wing vehicles are typically designed to fly at a particular airspeed to maximize fuel efficiency. However

flying at a constant airspeed is not compatible with trajectory tracking in wind. For example, consider the case

where the desired path is a circular orbit and there is a strong ambient wind. If the time parameterization calls for

a constant speed with respect to the ground, then airspeed will need to increase significantly when the vehicle is

heading into the wind, and will need to decrease significantly when the vehicle is heading downwind. Not only do

these large variations in the airspeed reduce the fuel efficiency, they can also cause the vehicle to stall in downwind

conditions.

An alternative to trajectory tracking is path following where the vehicle attempts to regulate its distance from

the geometrically defined path, as opposed to regulate the error from a time varying trajectory. The path-following

approach is studied in [1], [2], where performance limits for reference-tracking and path-following controllers are

investigated and the difference between them is highlighted. It is shown that there is not a fundamental performance
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limitation for path following for systems with unstable zero dynamics as there is for reference tracking. Building

on the work presented in [3] on maneuver modified trajectory tracking, [4] develops an approach that combines the

features of trajectory tracking and path following for marine vehicles. Similarly, [5] develops an output maneuver

method composed of two tasks: forcing the output to converge to the desired path and then satisfying a desired speed

assignment along the path. The method is demonstrated using a marine vessel simulation. Reference [6] presents a

path following method for UAVs that provides a constant line of sight between the UAV and an observation target.

A path following strategy for UAVs that is becoming increasingly popular is the the notion of a vector field [7],

[8], [9]. The basic idea is to calculate a desired heading based on the distance from the path. A nice extension

of [8] is given in [10] which derives general stability conditions for vector-field based methods. The focus in [10]

is circular orbits. An extension to general paths that are diffeomorphic to a circle is reported in [11], including

three dimensional paths. However, the vehicle model used in [10], [11] is a single integrator and does not explicitly

consider the nonholonomic kinematic model of the vehicle or input constraints. In [12] the vector field concept is

extended to velocity following in n-dimensional spaces. The path to be followed is specified as the intersection

of the level set of n − 1 scalar functions. The control law is composed of a stabilizing term that renders the

path attractive, and a circulation term that forces the system to progress along the path. Similar to [10], [11], the

formulation in [12] does not explicitly consider nonholonomic kinematics or input constraints.

Another related method is reported in [13] which uses adaptive backstepping to estimate the direction of the wind

and to track a straight-line path. The techniques in [13] are only applied to 2D vehicles following a straight-line

path, and assume skid-to-turn dynamics without actuator constraints.

In [14], a pure pursuit missile guidance law is adapted and used for UAV path following. The basic idea is to

command the UAV to follow a reference point on the desired path that is a fixed distance in front of the vehicle.

Similar to the missile guidance literature, an acceleration command is generated to align the velocity vector with

the line-of-sight vector to the target point. The full nonlinear guidance strategy is analyzed using set invariance

and Lyapunov theory. There is also an analysis when the acceleration command is saturated and it is shown that

the region of stability decreases. The method is demonstrated in flight with two vehicles in a leader follower

configuration. While the acceleration command is explicitly saturated, for the control strategy to be implemented

on the autopilot, the acceleration constraints need to be converted to roll angle constraints, flight path constraints, and

airspeed constraints. The analytic relationship between acceleration and roll angle, flight angle, and airspeed depends

on aerodynamic models of the aircraft and may not be available, especially for small UAVs. As an alternative, in

the current paper, we develop a path following strategy that directly constrains the roll angle and the flight path

angle, and where the airspeed is fixed at a constant value.

The main analytical tool that we use in this paper is the theory of nested saturation, which was introduced

in [15] to control a cascade of integrators with input and state constraints. The technique was extended in [16] to

systems with nonlinearities in the input channels, and was applied to the control of a planar vertical take-off and

landing aircraft with bounded thrust and torque. In [17], nonlinear control strategies based on nested saturation are

developed for the roll and pitch axis of a quadrotor, and experimental results are reported. The strategy that we

November 29, 2012 DRAFT



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, SUBMITTED FOR REVIEW DECEMBER, 2012. 3

develop in this paper is motivated by the results reported in [16], [17], and the need to constrain the roll angle

and the flight path angle for small scale UAVs. However, the equations of motion of fixed wing UAVs differs from

the systems considered in [16], [17] in the sense that rather than working with second order dynamic systems, we

look at controlling the kinematic equations of motion where there are nonlinearities between the first and second

integrators of the system. In particular, the theory of nested saturations is applied to an extended Dubins airplane

model [18]. It turns out that this extension is not trivial.

The objective of this paper is to develop path following strategies that explicitly account for roll angle and flight

path constraints. Previous work has primarily addressed constant altitude maneuvers whereas in this paper we also

consider climb maneuvers. The paper focuses on following straight-line segments and circular orbits. Our motivation

for limiting the focus to these maneuvers is based on the approach described in [7] where straight-line and circular

orbits are concatenated to create more complicated paths.

The specific contributions of this paper are as follows. First, roll angle and flight path angle constraints, which

are absolutely necessary for small UAV flight, are explicitly satisfied using the theory of nested saturation. Second,

the nested saturation technique is extended to the problem of path following, which is a guidance task as opposed to

previous work that considers dynamic stabilization. This is a non-trivial extension since we are required to work with

kinematic expressions instead of dynamic equations of motion. The kinematic expressions contain nonlinearities

between the integrators and therefore pose additional challenges to the use of nested saturation. Third, we explicitly

account for wind and derive conditions on the magnitude of the wind such that path following is still guaranteed

in the presence of roll angle and flight path angle constraints. Fourth, the control strategy for orbit following is

complicated by the fact that the nested saturation controller is not guaranteed to converge in a region around the

center of the orbit. To account for this, we have introduced a switching strategy and have derived stability conditions

that show that asymptotic path following is achieved from any initial configuration (subject to wind constraints).

Finally, we have implemented the proposed guidance strategies on a small UAV and demonstrated their effectiveness

in flight.

The remainder of the paper is organized as follows. The kinematic equations of motion for a fixed wing UAV

are listed in Section II. A guidance strategy for straight-line path following is derived in Section III together with

six DOF simulation results that illustrate the effect of the parameters used in the guidance law. A guidance strategy

for orbit following, as well as similar simulation studies, is given in Section IV. Flight test results using a small

Zagi style model aircraft are given in Section V, and some concluding remarks are given in Section VI.
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II. EQUATIONS OF MOTION

If pn and pe are the inertial North and East position of the vehicle, and h is the altitude, then the kinematic

model of a fixed wing unmanned air vehicle in wind can be given by [7]

ṗn = V cosψ cos γ + wn (1)

ṗe = V sinψ cos γ + we (2)

ḣ = V sin γ + wh, (3)

where V is the airspeed, ψ is the heading angle measured from North, γ is the air mass referenced flight path

angle, and wn, we, and wh are the North, East, and altitude components of the wind. We will assume that the

wind vector is constant. We will assume throughout the paper the existence of a low level autopilot that maintains

a constant airspeed. We also assume the existence of a suitable state estimation scheme that estimates the position

(pn, pe, h), the heading ψ, the airspeed V , and the wind vector (wn, we, wh) [7].

If we assume coordinated turn conditions, then the kinematic equation of motion for the heading angle is given

by

ψ̇ =
g

V
tanφ, (4)

where g is the magnitude of gravity at sea level. We assume in this paper that the roll and pitch dynamics are much

faster than the heading and altitude dynamics respectively, which implies that the roll and flight path angles can be

considered as the control variables. Therefore Equations (3) and (4) become

ḣ = V sin γc + wh, (5)

ψ̇ =
g

V
tanφc, (6)

where we will assume that the commanded roll angle is limited by |φc| ≤ φmax < π/2 and that the commanded

flight path angle is limited by |γc| ≤ γmax < π/2.

III. STRAIGHT-LINE PATH FOLLOWING

For a straight line path, we will assume that the path is described by two vectors in R3, namely

Pline(s, q̂) =
{
r ∈ R3 : r = s + αq̂, α ∈ R

}
,

where s = (sn, se, sd)
T is the inertially referenced origin of the path, and q̂ = (qn, qe, qd)

T is a unit vector whose

direction indicates the desired direction of travel referenced to the inertial frame. The desired course angle of the

path is defined by

χq̂
4
= tan−1

(
qe
qn

)
,

and the desired flight path angle of the path is defined by

γq̂
4
= tan−1

(
−qd√
q2
n + q2

e

)
.
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Fig. 1. This figure shows the configuration of the UAV indicated by (p, χ), and the configuration of the UAV relative to Pline indicated by

(p̃, χ̃).

Figure 1 shows the straight line path Pline(s, q̂), and the position of the UAV p. The position of the UAV relative

to Pline is given by p̃
4
= p− s. The heading of the UAV relative to Pline is given by ψ̃ = ψ − χq̂, where χq̂ is the

inertial heading of q̂ relative to North. To simplify the notation, we express the lateral dynamics in the path frame,

by defining 
p̃x
p̃y


 =


 cosχq̂ sinχq̂

− sinχq̂ cosχq̂




pn − sn
pe − se


 .

Differentiating we get

˙̃px = V cos ψ̃ cos γ + wx (7)

˙̃py = V sin ψ̃ cos γ + wy, (8)

where p̃x is the projected distance along the path, p̃y is the cross-track error, wx is the wind along the path, and

wy is the wind in the cross-track direction. We assume throughout the paper that the wind vector is known.

A. Lateral Guidance Law for Path Following

We will derive the guidance law for following a straight path by decoupling the lateral and longitudinal motion.

For the lateral motion we assume that γ is a constant. The lateral error dynamics are given by Equations (8) and (6).

Our approach is derived using the theory of nested saturations [15], [16]. The objective is to drive p̃y and ψ̃ to

zero while simultaneously satisfying the constraint that |φc| ≤ φmax. The first step in deriving the control strategy

is to differentiate Equation (8) to obtain

¨̃py = g cos ψ̃ cos γ tanφc.

Define W1 = 1
2

˙̃p2
y and differentiate to obtain

Ẇ1 = ˙̃pyg cos ψ̃ cos γ tanφc, (9)
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and choose

tanφc = −σM1

(
k1

˙̃py + σM2
(ζ)

g cos ψ̃ cos γ

)
, (10)

where σMi
is the saturation function

σMi(u)
4
=





Mi, if u > Mi

−Mi, if u < −Mi

u, otherwise

,

k1 > 0, and M1, M2, and ζ will be selected in the discussion that follows. Substituting (10) into (9) gives

Ẇ1 = − ˙̃pyg cos ψ̃ cos γσM1

(
k1

˙̃py + σM2
(ζ)

g cos ψ̃ cos γ

)
,

which is negative when
∣∣∣ψ̃
∣∣∣ ≤ ψ̃max < π/2, |γ| ≤ γmax < π/2, and

∣∣ ˙̃py
∣∣ > M2/k1. Therefore, if we guarantee

that
∣∣∣ψ̃
∣∣∣ ≤ ψ̃max and |γ| ≤ γmax, then by the ultimate boundedness theorem [19], there exists a time T1 such that

for all t ≥ T1 we have that
∣∣ ˙̃py
∣∣ ≤M2/k1. If we also select M1 and M2 to satisfy

M1 ≥
2M2

g cos ψ̃ cos γ
, (11)

then for all t ≥ T1, the signal in σM1(·) is not in saturation and

Ẇ1 = −k1
˙̃p2
y − ˙̃pyσM2

(ζ). (12)

Define z
4
= k1p̃y + ˙̃py , and W2 = 1

2z
2, and differentiate W2 to obtain

Ẇ2 = k1z ˙̃py − zg cos ψ̃ cos γσM1

(
k1

˙̃py + σM2
(ζ)

g cos ψ̃ cos γ

)
.

If we let ζ = k2z where k2 > 0, then for all t ≥ T1 we have

Ẇ2 = k1z ˙̃py − k1z ˙̃py − zσM2
(k2z)

= −zσM2
(k2z),

which is negative definite. Therefore we are guaranteed that z = k1p̃y + ˙̃py → 0. Using the standard result on

input-to-state stability [19], Equation (12) guarantees that ˙̃py → 0. Since both z = k1p̃y + ˙̃py and ˙̃py converge to

zero, we can conclude that p̃y → 0.

To ensure that |φ|c ≤ φmax, set M1 = tanφmax. To satisfy Equation (11) we also need to constrain ψ̃ and γ.

The constraint on γ will be discussed in Section III-B. For ψ̃ note that if φc = φmax, then ˙̃
ψ = g/V tanφmax

and ψ̃ increases monotonically. Similarly, if φc = −φmax, then ψ̃ decreases monotonically. Therefore, if we can

find ψ̃max < π/2 such that the set Bψ̃max

4
= {
∣∣∣ψ̃
∣∣∣ ≤ ψ̃max} is positively invariant, then we could use the following

strategy for straight line tracking:

φc =





φmax if ψ̃ < −ψ̃max

−φmax if ψ̃ > ψ̃max

−σM1

(
k1 ˙̃py+σM2(k2(k1p̃y+ ˙̃py))

g cos ψ̃ cos γ

)
otherwise

. (13)
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To find ψ̃max, let W3 = 1
2 ψ̃

2 and differentiate to obtain

Ẇ3 =
g

V
ψ̃ tanφc

= − g
V
ψ̃ tan

(
σM1

(
k1(V sin ψ̃ cos γ + wy) + σM2(k2z)

g cos ψ̃ cos γ

))
. (14)

Equation (14) is negative if
∣∣∣k1V sin ψ̃ cos γ

∣∣∣ > k1wy,max+M2, where wy,max is the maximum expected cross-track

wind speed. Assuming that cos γ > 0, this expression is true if

sin ψ̃max =
wy,max + M2

k1

V cos γmax
, (15)

where γmax is a parameter that will be specified in the next section.

Since M1 = tanφmax, Equation (11) implies that M2 must be selected so that

M2 ≤
g

2
tanφmax cos ψ̃ cos γ.

Therefore, we select M2 as

M2 =
g

2
tanφmax cos ψ̃max cos γmax.

Substituting into Equation (15) and rearranging gives
(

g

2k1
tanφmax cos γmax

)
cos ψ̃max + (V cos γmax) sin ψ̃max = wy,max. (16)

Using the trigonometric identity

A cosλ+B sinλ = C ⇒ λ = − tan−1 A

B
+ sin−1 C√

A2 +B2

we get

ψ̃max = tan−1

(
g

2k1V
tanφmax

)
+ sin−1




wy,max

cos γmax

√(
g

2k1
tanφmax

)2

+ V 2


 (17)

Therefore we have the following theorem.

Theorem 3.1: Suppose that k1 > 0, V , φmax, γmax, and wy,max are such that ψ̃max in Equation (17) is strictly

less than π/2, and suppose that k2, M1 and M2 are selected as

• k2 > 0,

• M1 = tanφmax,

• M2 = g
2 tanφmax cos χ̃max cos γmax,

then the commanded roll angle given by Equation (13), results in system trajectories such that |p̃y(t)|+
∣∣ ˙̃p(t)

∣∣→ 0,

and |φc(t)| ≤ φmax.

Note that the constraint that ψ̃max < π/2 essentially limits the maximum size of the wind that can be asymptotically

rejected using (13). From Equation (16) we see that the upper bound on the wind is given by

w̄y,max = V cos γmax,

which represents the projection of the velocity vector onto the horizontal plane, and therefore makes complete

intuitive sense.
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B. Longitudinal Guidance Law for Path Following

In this section we develop a longitudinal guidance law for tracking the altitude portion of the waypoint path,

where the longitudinal kinematics are given by Equation (5).

The desired altitude for the UAV is found by projecting its current position relative to the waypoint path onto

the North-East plane, as shown in Figure 2 and finding the distance to this point which is given by

L =
√
p̃2
x + p̃2

y.

The position on the waypoint path that, when projected onto the North-East plane, also results in a distance L is

Fig. 2. The desired altitude along the waypoint path is found by projecting the position error of the UAV onto the North-East plane. The

length of the projection L is used to find the point on the waypoint path that also projects onto the North-East plane a distance L from s and

using the altitude at that point.

given by

z = s + q̂L tan γq̂.

The down component of this vector is used to obtain the desired altitude as

hd = −sd − qdL tan γq̂. (18)

The time derivative of hd is given by

ḣd = −qd tan γq̂V
p̃x cosχ cos γ + p̃y sinχ cos γ√

p̃2
x + p̃2

y

− qd tan γq̂
p̃xwx + p̃ywy√

p̃2
x + p̃2

y

. (19)

Define W4 = 1
2 (h− hd)2 and differentiate to obtain

Ẇ4 = (h− hd)(ḣ− ḣd)

= (h− hd)(V sin γc + wh − ḣd).

If we select γc so that

V sin γc − ḣd − wh = −σM3

(
k3(h− hd)

)
,

or in other words

γc = sin−1

(
ḣd + wh − σM3

(
k3(h− hd)

)

V

)
, (20)
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then Ẇ4 = −(h− hd)σM3

(
k3(h− hd)

)
is negative definite.

To ensure that |γc| ≤ γmax, note that

∣∣∣ḣd
∣∣∣ =

∣∣∣∣∣∣
−qd tan γq̂V

p̃x cosχ cos γ + p̃y sinχ cos γ√
p̃2
x + p̃2

y

∣∣∣∣∣∣
+

∣∣∣∣∣∣
−qd tan γq̂

p̃xwx + p̃ywy√
p̃2
x + p̃2

y

∣∣∣∣∣∣

≤ V |qd tan γq̂|
|p̃x|+ |p̃y|√
p̃2
x + p̃2

y

+ |qd tan γq̂|

√
p̃2
x + p̃2

y

√
w2
x + w2

y
√
p̃2
x + p̃2

y

=
√

2V |qd tan γq̂|+ |qd tan γq̂|
√
w2
x + w2

y,

where we have used the fact that ‖·‖1 ≤
√

2 ‖·‖2. Therefore
∣∣∣∣∣
ḣd + wh − σM3

(
k3(h− hd)

)

V

∣∣∣∣∣ ≤

∣∣∣ḣd
∣∣∣

V
+
|wh|
V

+
M3

V

≤
√

2 |qd tan γq̂|+
|qd tan γq̂|

√
w2
x + w2

y + |wh|
V

+
M3

V
.

If M3 is selected as

M3 = V sin γmax −
√

2V |qd tan γq̂| −
(
|qd tan γq̂|

√
w2
x + w2

y + |wh|
)
, (21)

then from Equation (20) we have that |γc| ≤ γmax. To ensure that M3 > 0 we require that γmax and γq̂ satisfy

sin γmax >
√

2 |qd tan γq̂|+
|qd tan γq̂|

√
w2
x + w2

y + |wh|
V

. (22)

Theorem 3.2 summarizes the results.

Theorem 3.2: Suppose that γq̂, V , and the wind vector are such that γmax can be selected to satisfy both (22)

and γmax < π/2, then if the commanded flight path angle is given by Equation (20), where k3 > 0, ḣd is given by

Equation (19), and M3 is given by Equation (21), then h→ hd and |γc(t)| ≤ γmax, for all t ≥ 0.

C. Simulation Results for Path Following

The simulation results are obtained using a 6 DOF nonlinear dynamic simulation as explained in [7]. The effects

of the different control parameters on the system response were tested by systematically increasing one parameter

through ten equally spaced values between the minimum and the maximum value while holding the other parameters

constant. The results are then plotted for each value of the changing variable. The parameters of interest for the

straight line path following are k1, k2, φmax, γmax, and k3. The guidance law is tested using an inclined line starting

at the origin. The parameters for the simulation are shown in Table I.

1) Effects of Changing k1: The gain k1 effects the commanded roll angle φc through multiplying the error term

p̃y and also the error rate term ˙̃py . The effect of k1 is dependent on the function σM1 . When this function is not in

saturation, the numerator in the σM1
function becomes (k1 + k2)( ˙̃py + p̃y) which shows that the gain k1 has equal

weight on both the error and the error rate and will increase the command which will increase the oscillations of
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TABLE I

SIMULATION PARAMETERS USED FOR LATERAL PATH FOLLOWING.

Parameter Value Range

Line origin r (0, 0, 100)T m -

Line direction q̂ (1.00, 1.00,−0.06)T m -

Line velocity 13 m/s -

UAV initial position (50, 0, 0)T m -

Simulation time 30 s -

k1 0.30 0.10 - 1.45

k2 1.00 0.10 - 1.45

φmax 45◦ 25◦ − 70◦

γmax 35◦ 20◦ − 65◦

k3 1.50 1.50 - 3.75

wy,max 3 m/s Constant

the response. When the function σM1 is in saturation then k1 can have a larger effect on the error rate which can

add damping to the lateral response of the vehicle. The effect of k1 on φc of the UAV is shown in Figure 3. The

response time is decreased as k1 increases but this comes with large oscillations in φc.
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Fig. 3. (a) Effect of changing the control gain k1 on the commanded roll.; (b) Effect of changing the control gain k1 on the path error. For

both figures the dashed line corresponds to k1 = 0.10 and the dotted line corresponds to k1 = 1.45.

2) Effects of Changing k2: The gain k2 enters into the commanded roll equation through the term k2(k1
˙̃py+ p̃y)

which is inside the function σM2
. Thus the overall effect of k2 is limited in part to the saturation value of M2.

The overall effect of k2 on the lateral response is also dependent on the value of k1 because if k1 < 0 then k2 will

have a larger effect on the error rate and will have an increased damping effect as k2 is increased. If k1 > 0 then

k2 has a larger effect on the lateral error but will have less effect on oscillations due to the saturation term M2.
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The effects of changing k2 on commanded roll and path error are shown in Figure 4.
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Fig. 4. (a) Effect of changing the control gain k2 on the commanded roll.; (b) Effect of changing the control gain k2 on the path error. For

both figures the dashed line corresponds to k2 = 0.10 and the dotted line corresponds to k2 = 1.45.

3) Effects of Changing φmax: The parameter φmax affects the value of the saturation term M1 through the term

tanφmax. As φmax is increased, M1 is also increased which allows the commanded roll to increase also. This

allows for more aggressive turning to get back on the path. The effects of φmax on the response of the UAV are

shown in Figure 5.
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Fig. 5. (a) Effect of changing φmax on the commanded roll.; (b) Effect of changing φmax on the path error. For both figures the dashed line

corresponds to φmax = 25◦ and the dotted line corresponds to φmax = 70◦.
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4) Effects of Changing γmax: The term γmax enters into the commanded roll equation in the saturation terms

M2 through the term cos γmax. As γmax increases, the saturation term M2 also increases. This will add damping

to the system if the gains k1 < 1 and k2 < 1 because the effect of p̃y will be decreased and the effect of ˙̃py will be

increased. γmax also affects the longitudinal control. It affects the saturation term M3 through the term V sin γmax.

As γmax increases so does M3. This causes γc to decrease. So increasing γmax will decrease the response of the

longitudinal control. The effects of γmax on the lateral response of the UAV are shown in Figure 6 and the effects

of γmax on the longitudinal response are shown in Figure 7.
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Fig. 6. (a) Effect of changing γmax on the commanded roll.; (b) Effect of changing γmax on the lateral path error. For both figures the dashed

line corresponds to γmax = 20◦ and the dotted line corresponds to γmax = 65◦.

5) Effects of Changing k3: The gain k3 affects the commanded flight path angle by multiplying the term h−hd

as seen in Equation 20. As k3 increases this will cause the commanded flight path angle to increase and the response

will become oscillatory. The response of the longitudinal control as the gain k3 changes can be seen in Figures 8

If the wind vector is not known, or if we incorrectly estimate the wind, then the result will be a steady state

tracking error. Figure 9 shows the tracking error when the wind is incorrectly estimated to be zero. For this particular

example, the steady-state lateral error is 6.5 meters. Obviously, an integrator could be added to the guidance law

to remove the steady state tracking error, when the wind vector is not known.

IV. ORBIT FOLLOWING

In this section we derive a guidance law to ensure asymptotic tracking of a circular orbit in wind. An orbital

path is described by an inertially referenced center c = (cn, ce, cd)
T , a radius ρ ∈ R, and a direction λ ∈ {−1, 1},

as

Porbit(c, ρ, λ) =

{
r ∈ R3 : r = c + λρ

(
cosϕ, sinϕ 0

)T
, ϕ ∈ [0, 2π)

}
,

where λ = 1 signifies a clockwise orbit and λ = −1 signifies a counterclockwise orbit.
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Fig. 7. (a) Effect of changing γmax on the commanded flight path angle.; (b) Effect of changing γmax on the altitude error. For both figures

the dashed line corresponds to γmax = 20◦ and the dotted line corresponds to γmax = 65◦.
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Fig. 8. (a) Effect of changing k3 on the commanded flight path angle.; (b) Effect of changing k3 on the altitude error. For both figures the

dashed line corresponds to k3 = 0.05 and the dotted line corresponds to k3 = 0.95.

The guidance strategy for orbit following is best derived in polar coordinates. Let

d
4
=
√

(pn − cn)2 + (pe − ce)2

be the lateral distance from the desired center of the orbit to the UAV, and let

ϕ
4
= tan−1

(
pe − ce
pn − cn

)
(23)

be the phase angle of the relative position, as shown in Figure 10. Differentiating d and using Equations (1) and (2)
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Fig. 9. (a) Roll response with no wind used in the control strategy.; (b) Lateral error with no wind used in the control strategy.

 

Fig. 10. Conversion from rectangular coordinates to polar coordinates for orbit following.

gives

ḋ =
(pn − cn)ṗn + (pe − ce)ṗe

d

=
(pn − cn)V cosψ cos γ + (pe − ce)V sinψ cos γ

d
+

(pn − cn)wn + (pe − ce)we
d

.

Defining the wind speed W and wind direction ψw so that

W


cosψw

sinψw


 4=


wn
we


 ,

November 29, 2012 DRAFT



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, SUBMITTED FOR REVIEW DECEMBER, 2012. 15

and using Equation (23) gives

ḋ = V cos γ
(pn − cn) cosψ + (pe − ce) sinψ

d
+W

(pn − cn) cosψw + (pe − ce) sinψw
d

= V cos γ

(
pn − cn

d

)
(cosψ + sinψ tanϕ) +W

(
pn − cn

d

)
(cosψw + sinψw tanϕ)

= V cos γ cosϕ (cosψ + sinψ tanϕ) +W cosϕ (cosψw + sinψw tanϕ)

= V cos γ (cosψ cosϕ+ sinψ sinϕ) +W (cosψw cosϕ+ sinψw sinϕ)

= V cos γ cos(ψ − ϕ) +W cos(ψw − ϕ).

Similarly, differentiating Equation (23) and simplifying gives

ϕ̇ =
V cos γ

d
sin(ψ − ϕ) +

W

d
sin(ψw − ϕ).

The orbital kinematics in polar coordinates are therefore given by

ḋ = V cos(ψ − ϕ) cos γ +W cos(ψw − ϕ)

ϕ̇ =
V

d
sin(ψ − ϕ) cos γ +

W

d
sin(ψw − ϕ)

ψ̇ =
g

V
tanφc.

As shown in Figure 11, for a clockwise orbit, the desired course angle when the UAV is located on the orbit

is given by ψd = ϕ + π/2. Similarly, for a counterclockwise orbit, the desired angle is given by ψd = ϕ − π/2.

 d

Fig. 11. The desired angle when the UAV is on the orbit is given by χd.

Therefore, in general we have

ψd = ϕ+ λ
π

2
.
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Defining the error variables d̃
4
= d− ρ and ψ̃

4
= ψ − ψd, the orbital kinematics can be restated as

˙̃
d = −λV sin ψ̃ cos γ +W cos(ψ − ψw) (24)

˙̃
ψ =

g

V
tanφc − λV

d
cos ψ̃ cos γ − W

d
sin(ψ − ψw). (25)

The control objective is to force d̃(t)→ 0 while satisfying the input constraint |φc(t)| ≤ φmax.

Our approach to the orbit following guidance strategy is similar to the method followed in Section III-A with

the added complication that we must deal with the inside of the orbit.

Following the exposition in Section III-A, differentiate Equation (24) to obtain

¨̃
d = −λV cos ψ̃ cos γ

˙̃
ψ +W sin(ψ − ψw)ψ̇

= −λV cos γ cos ψ̃

(
g

V
tanφc − λV

d
cos γ cos ψ̃ − W

d
sin(ψ − ψw)

)
+W sin(ψ − ψw)

( g
V

tanφc
)

= −
(
λg cos ψ̃ cos γ + g

W

V
sin(ψ − ψw)

)(
tanφc − λV

2

gd
cos ψ̃ cos γ

)
.

Define W5 = 1
2

˙̃
d 2 and differentiate to obtain

Ẇ5 = − ˙̃
d

(
λg cos ψ̃ cos γ + g

W

V
sin(ψ − ψw)

)(
tanφc − λV

2

gd
cos ψ̃ cos γ

)
, (26)

and choose φc as

φc = tan−1

[
λ
V 2

gd
cos γ cos ψ̃ + σM4

(
k4

˙̃
d+ σM5

(ζ)

λg cos ψ̃ cos γ + gWV sin(ψ − ψw)

)]
, (27)

where k4 > 0 is a control gain, and M4, M5, and ζ will be selected in the following discussion. Substituting

Equation (27) into Equation (26) gives

Ẇ5 = − ˙̃
d

(
λg cos ψ̃ cos γ + g

W

V
sin(ψ − ψw)

)
σM4

(
k4

˙̃
d+ σM5(ζ)

λg cos ψ̃ cos γ + gWV sin(ψ − ψw)

)
,

which is negative when
∣∣∣ ˙̃
d
∣∣∣ > M5/k4. Therefore, by the ultimate boundedness theorem [19] there exists a time T3

such that for all t ≥ T3, we have
∣∣∣ ˙̃
d
∣∣∣ ≤M5/k4. If we select M4 and M5 to satisfy

M4 ≥
∣∣∣∣∣

2M5

λg cos ψ̃ cos γ + gWV sin(ψ − ψw)

∣∣∣∣∣ , (28)

then for all t ≥ T3, the signal σM4 is not in saturation and

Ẇ5 = −k4
˙̃
d2 − ˙̃

dσM5
(ζ). (29)

Define z2 = k4d̃+
˙̃
d and W6 = 1

2z
2
2 , and differentiate W6 to obtain

Ẇ6 = z2k4
˙̃
d− z2

(
λg cos ψ̃ cos γ + g

W

V
sin(ψ − ψw)

)
σM4

(
k4

˙̃
d+ σM5(ζ)

λg cos ψ̃ cos γ + gWV sin(ψ − ψw)

)
. (30)

If we let ζ = k5z2, where k5 > 0 is a control gain, then for all t ≥ T3 we have

Ẇ6 = −z2σM5(k5z2), (31)

November 29, 2012 DRAFT



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, SUBMITTED FOR REVIEW DECEMBER, 2012. 17

which is negative definite. Therefore we are guaranteed that z2 = k4d̃ +
˙̃
d → 0. Using the standard result on

input-to-state stability [19], Equation (29) guarantees that ˙̃
d→ 0. We can therefore conclude that d̃→ 0.

To satisfy the input saturation constraint, from Equation (27) we require that

tanφmax ≥
V 2

dg
|cos γ|

∣∣∣cos ψ̃
∣∣∣+M4.

If we ensure that when Equation (27) holds, that d ≥ dmin and that
∣∣∣ψ̃
∣∣∣ ≤ ψ̃max, then a sufficient condition to

avoid input saturation is that

tanφmax ≥
V 2

dming
cos γmax cos ψ̃max +M4.

Therefore, select

M4 = tanφmax −
V 2

dming
cos γmax cos ψ̃max, (32)

where, to ensure that M4 > 0 we require that φmax, dmin, ψ̃max be selected so that

tanφmax >
V 2

dming
cos γmax cos ψ̃max. (33)

To satisfy constraint (28) select M5 as

M5 =
1

2
M4g

∣∣∣∣cos ψ̃max cos γmax −
W

V

∣∣∣∣ , (34)

where the windspeed is required to satisfy

W < V cos ψ̃max cos γmax. (35)

From Equation (33) we see that the roll command (27) can only be active when
∣∣∣ψ̃
∣∣∣ ≤ ψ̃max and d ≥ dmin. The

basic strategy will be to command a zero roll angle when d < dmin and to saturate the roll angle at ±φmax when∣∣∣ψ̃
∣∣∣ > ψ̃max in the direction that reduces

∣∣∣ψ̃
∣∣∣. Therefore, let

φc =





0 if d < dmin

−λφmax if (d ≥ dmin) and (λψ̃ ≥ ψ̃max)

λφmax if (d ≥ dmin) and (−λψ̃ ≥ ψ̃max)

[Equation (27)] otherwise

. (36)

The convergence result is summarized in the following theorem.

Theorem 4.1: If the commanded roll angle is given by Equation (36) where

• k4 > 0,

• φmax, γmax, and ψ̃max are positive and strictly less than π/2,

• dmin and ρ satisfy
V 2 + VW

g tanφmax
< dmin < ρ (37)

• The magnitude of the wind satisfies Equation (35)

• M4 is given by Equation (32)
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• M5 is given by Equation (34)

then |φc(t)| ≤ φmax, and (d, ḋ)→ (ρ, 0).

Proof:

The orbital dynamics of the system can be written as

ḋ = −V sin(λψ̃) cos γ +W cos(ψ − ψw) (38)

λ
˙̃
ψ =

g

V
tan(λφc)− V

d
cos ψ̃ cos γ − λW

d
sin(ψ − ψw), (39)

where φc is given by Equation (36). We will trace the trajectories of the system using the state variables (d, λψ̃)

because the control action is explicitly defined with respect to these variables in (36). Note however, that the

equilibrium is at (d, ḋ)> = (ρ, 0)>. Therefore in the state variable (d, λψ̃) the equilibrium is actually time varying.

In particular, from Equation (31) we note that the manifold define by z0 = 0 is positively invariant, and that on the

manifold ˙̃
d = −k4d̃ which implies that d̃→ 0, which implies that

−V sin(λψ̃) cos γ +W cos(ψ − ψw) + k4(d− ρ) = 0.

Solving for λψ̃ on the interval λψ̃ ∈ [−ψ̃max, ψ̃max] and noting that ψ̃max < π/2 gives

λψ̃ = sin−1

(
k4(d− ρ) +W cos(ψ − ψw)

V cos γ

)
. (40)

Therefore, in equilibrium, i.e., when d = ρ, we have

λψ̃∗(t) = sin−1

(
W cos(ψ(t)− ψw)

V cos γ

)
. (41)

Of course this makes sense physically because the UAV must continuously change its crab angle as it transitions

around the orbit to adjust for the wind.

Letting d = dmin in Equation (40) gives

λψ̃†(t)
4
= sin−1

(
k4(dmin − ρ) +W cos(ψ − ψw)

V cos γ

)
. (42)

Divide the state space into six regions as shown in Figure 12, where Ri denotes open regions of the state space,

and Bi denote boundaries between regions. We denote the closure of Ri as R̄i.

The proof amounts to a careful accounting of all possible trajectories of the system by showing the following

statements:

Fact 1. All trajectories starting in R̄1, enter R2

⋃
R3

⋃
R6 in finite time.

Fact 2. All trajectories starting in, or entering R2 through boundary B2, exit R4 through B5 in finite time, where

B2, B4, and B5 intersect at (dmin, λψ̃
∗).

Fact 3. All trajectories starting in, or entering R3, either converge to (ρ, 0), or enter R2 in finite time.

Fact 4. All trajectories starting in, or entering R5, enter R6 in finite time.

Fact 5. All trajectories starting in, or entering R6, converge to (ρ, 0).

Therefore, all trajectories in the system, converge to the equilibrium (d, ḋ)> = (ρ, 0)>.
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Fig. 12. The state space for orbit following. Regions discussed in the proof are labeled Ri, and boundaries between regions are labeled Bi.

Proof of Fact 1. In R̄1 we have

λ
˙̃
ψ = − g

V
tanφmax −

V

d
cos(λψ̃) cos γ − λW

d
sin(ψ − ψw).

Maximizing λ ˙̃
ψ on R̄1 over all possible values for γ ∈ (−π/2, π/2) and ψ − ψw ∈ (−π, π] gives

max
R̄1

λ
˙̃
ψ = − g

V
tanφmax +

V

dmin
+

W

dmin
.

Condition 37 ensures that maxR̄1
λ

˙̃
ψ is bounded above by a negative constant. Therefore all trajectories starting in

R̄1 leave R̄1 in finite time.

Proof of Fact 2. In R2 and R4 the roll command is φc = 0 which implies that the heading rate is zero. The drift

angle due to wind is given by Equation (41). The geometry is shown in Figure 13, where it can be seen that when

the vehicle enters dmin, we have ϕ + ψ̃(t1) = π/2, and when it exits dmin, we have ϕ + λψ̃∗ − λψ̃(t2) = π/2,

therefore

λψ̃(t2) = −λψ̃(t1) + λψ̃∗.

This implies that trajectories in R2 and R4 are symmetric about boundary B4, and therefore all trajectories entering

or starting in R3 enter R4 and then leave R4 through B5 in finite time.

Proof of Fact 3. In R3, the trajectories of the system are given by Equations (38) and (30). Using the argument

immediately following Equation (30), we know that trajectories that stay in R3 will eventually converge to (d, ḋ)> =

(ρ, 0)>. Therefore, trajectories either converge to (ρ, 0)> or leave R3 in finite time. Since by the proof of Fact 1

trajectories that leave R3 cannot enter R1, and by the proof of Fact 2 they cannot enter R4, and since the invariance

of B7 prevents trajectories entering into R6, all trajectories that do not converge to (ρ, 0)> must enter R2 in finite

time.

Proof of Fact 4. Similar to the proof of Fact 1.

Proof of Fact 5. The argument is similar to the proof of Fact 2 with the exception that trajectories cannot leave

R6 through B3 (proof of Fact 1), B5 (proof of Fact 2), or B6 (proof of Fact 4). Therefore, all trajectories in R6
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Fig. 13. In Regions R2 and R4 the roll angle is zero and the vehicle drifts in the wind at a constant rate.

converge to (ρ, 0).

A. Simulation Results for Orbit Following

The effects of the different control parameters for orbit following are tested similar to straight-line following

discussed in Section III. The plots are not shown here because of the similarity of effects with the parameters used

in the line following. A short discussion follows for clarity. The parameters of interest are k4, k5, ψ̃max, φmax and

dmin. If we choose φmax and ψ̃max as parameters then dmin must be chosen such that Equation (33) is satisfied. The

value of dmin is chosen as a percentage of the orbit radius while still satisfying the inequality. Table II shows the

orbit parameters and the nominal control parameters used in the simulation. The orbit is a flat orbit with constant

desired velocity. The simulation parameters are shown in Table II.

TABLE II

SIMULATION PARAMETERS USED FOR LATERAL PATH FOLLOWING.

Parameter Value Range

Orbit origin c (0, 0, 100)T m -

Orbit direction λ 1 -

Orbit radius 125 m -

Orbit velocity 15 m/s -

UAV initial position (50, 0, 0)T m -

Simulation time 15 s -

k4 0.5 0.1 - 1.0

k5 0.4 0.1 - 1.0

φmax 45◦ 25 - 70

γmax 30◦ 10 - 55

ψ̃max 45◦ 25 - 70

dmin 50% 40 - 100
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1) Effects of changing parameters: The effects of changing the parameters for the orbit control have similar

effects on the UAV response as those of the parameters for the line control as explained above in Section III-C.

The effects of changing gain k4 for the orbit control is similar to the effect of k1 for line control, k5 is similar

to k2 and the angles also have similar effects (φmax and γmax) The parameter ψ̃max has the same effect on the

response as the parameter γmax. However, the parameter dmin is not used in the straigh-line path control so this

parameter will be discussed in more detail here.

The parameter dmin affects the commanded roll in two ways. First, the commanded roll is zero if the UAV is

inside dmin. Therefore, if dmin is increased closer and closer to the actual orbit radius ρ the UAV will not start to

turn until it is closer and closer to the orbit and will therfore overshoot the orbit. The second way that dmin enters

into the commanded roll equation is through the saturation term M4 as in Equation 32. As dmin is increased it will

decrease the saturation term M4 and will decrease the overall commanded roll and decrease the rate of convergence

to the path. The effects of dmin on the response of the UAV are shown in Figure 14.
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Fig. 14. (a) Effect of changing dmin on the commanded roll.; (b) Effect of changing dmin on the path error. For both figures the dashed line

corresponds to dmin = 40 and the dotted line corresponds to dmin = 100.

V. EXPERIMENTAL RESULTS

The nested saturation control law was tested on the UAV shown in Figure 15a. The UAV is equipped with a

Procerus Technologies Kestrel autopilot shown in Figure 15b, a uBlox GPS receiver and another separate processor

which contains the control algorithm that communicates with the autopilot. The on-board autopilot communicates

with a ground station computer using Virtual Cockpit 3D. The desired velocity, altitude and other path information

is controlled by the user at the ground station and is transmitted to the UAV during flight. The autopilot uses the

GPS signal and the onboard inertial measurement unit to calculate the position and orientation of the vehicle. The

state information along with the desired path information is passed to the processor running the control algorithm.
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The nested saturation control law is then used to calculate the desired velocity, desired roll angle and the desired

altitude. These commanded values are then sent to the autopilot which performs the low-level control.

(a) (b)

Fig. 15. (a) The small UAV used for testing.; (b) The autopilot used for control.

The controller was tested on the hardware for both straight line paths and circular orbits. All of the paths tested

were a constant altitude of 100 m above ground level while the desired velocity was a constant 15 m/s. A variety

of initial conditions were tested in order to evaluate the response of the proposed control method.

A. Path Following Results

The properties of the straight-line path and the control parameters used for the flight are given in Table III. For

the experimental results, the wind speed was assumed to be W = 0, which will result in steady state tracking

errors.

TABLE III

PROPERTIES OF THE STRAIGHT-LINE PATH AND CONTROL PARAMETERS USED FOR EXPERIMENTAL TESTS.

Parameter Value

Line origin r (−100,−200, 100)T m

Line direction q̂ (1, 1, 0)T m

Line velocity 15 m/s

k1 0.3

k2 0.3

φmax 35◦

γmax 35◦

Figures 16 and 17 show the results from the UAV flying the along the straight line. The vehicle was initially

flying along the line in the positive north and east direction. The commanded direction along the same line was

then reversed and the vehicle had to switch directions and return to the desired line.

B. Orbit Following Results

The orbit properties and corresponding control parameters used to fly the orbit are given in Table IV.
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Fig. 16. (a) Desired versus actual path of the UAV. The desired path is dashed.; (b) Actual wind during flight. North wind is dashed and east

wind is solid.
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Fig. 17. (a) Desired versus actual roll angles of the UAV. The desired roll is dashed.; (b) Path error of the UAV during flight.

Two different initial conditions were used in the experiments for orbit following. These are:

• Starting outside the orbit.

• Starting inside the orbit and inside dmin.

The results for the first case are shown in Figures 18 and 19. The UAV starts outside of the path and is also

traveling in the opposite direction of the desired orbit direction.

The results of the second case are shown in Figures 20 and 21. The UAV starts inside the radius of dmin and

flies straight until it reaches dmin at which point φc = φmax until the course angle of the UAV is closer to the

desired course angle of the orbit. The UAV then converges nicely onto the orbit.
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TABLE IV

PROPERTIES OF THE ORBIT AND CONTROL PARAMETERS USED FOR EXPERIMENTAL TESTS.

Parameter Value

Orbit origin c (125,−50, 100)T m

Orbit direction λ 1

Orbit radius 125 m

Orbit velocity 15 m/s

k4 0.5

k5 0.4

φmax 45◦

γmax 30◦

χ̃max 45◦

dmin 50%
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Fig. 18. (a) Desired versus actual path of the UAV. The desired path is dashed and the actual path is solid.; (b) Actual wind during flight.

North wind is dashed and east wind is solid.

VI. CONCLUSIONS

This paper has considered the problem of following straight-lines and orbits in wind using fixed wing unmanned

air vehicles where the roll angle and flight path constraints are explicitly taken into account. The guidance strategies

are derived using a kinematic model of the aircraft and using the theory of nested saturations. The resulting strategies

are continuous and computationally simple. The contributions of this paper include the following. The guidance

laws represented by Equations (13), (20), and (36) explicitly constrain the roll angle and the flight path angle

constraints, and specific conditions on the wind are derived where the guidance laws guarantee asymptotic tracking.

In Sections III-A and IV the nested saturation technique is extended to the problem of path following. This is a

non-trivial extension due to the nonlinearities between the integrators. The control strategy for orbit following is
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Fig. 19. (a) Desired versus actual roll angles of the UAV. The desired roll is dashed and the actual roll is solid; (b) Path error of the UAV

during flight.
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Fig. 20. (a) Desired versus actual path of the UAV. The desired path is dashed and the actual path is solid.; (b) Actual wind during flight.

North wind is dashed and east wind is solid.

complicated by the fact that the nested saturation controller is not guaranteed to converge in a region around the

center of the orbit. In Theorem 4.1 we have derived specific conditions for when a simple switching strategy can

be used to guaranteed global asymptotic convergence to the orbit. Finally, we have demonstrated the effectiveness

of the proposed strategies through numerous simulation and flight tests results.
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