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1 Introduction

The objective of these notes is to describe a reactive approach to motion plan-
ning for mobile robots. In a reactive approach, trajectories are not planned
explicitly. Rather, robot interactions are defined explicitly and the robot
motion is said to “emerge.” The drawback of reactive methods is that it
is sometimes difficult to get the robot to do exactly what you want. The
reactive approach that will be described in these notes is called the “virtual
fields” method and is commonly used in robotics.

The basic idea is to set up a virtual potential or force field which is
defined by the location of objects, walls, other robots, the robot of interest,
etc.. The robot then responds locally to the field. Accordingly, there are two
key elements:

• Definition of the force or potential field.

• Specification of the robot response to the field.
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In Section 2 we will discuss several common potential fields and how
they might be used in robot soccer. In addition we will discuss a possible
implementation using a global state variable. In Section 3 we discuss possible
robot response to potential fields.

2 Potential Fields

In this section we will describe several possible potential fields.
A potential field will be described a function E : IR2 → IR. For example

the function
E(x) = c (1)

where c is a constant defines a constant potential field. A constant potential
field is not very useful, since there is no gradient to follow. A linear potential
field is can be defined by the function

E(x) = aTx + c, (2)

where a is a constant vector, and c is a constant. The gradient of this
potential field is given by

∂E

∂x
(x) = a.

Therefore the gradient is constant and points in the direction of a. If the
robot is programmed to follow the negative gradient of E, then a linear
potential field would cause the robot to move in the direction of a.

Another common potential field is a quadratic potential:

E(x) =
1

2
(x − c)T (x − c), (3)

where c is a constant vector. A plot of constant potential lines for (3) is
shown in Figure 1. The gradient of the potential field defined in (3) is

∂E

∂x
(x) = x − c,

which always points away from c. If the robot is programmed to follow
the negative gradient of E, the quadratic potential will cause the robot to
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Figure 1: Constant potential lines for quadratic potential field.

move in the direction of c. Equation (3) defines an attractive potential for
c. Accordingly, c is called an attractor. Alternatively, if E is defined as

E(x) = −
1

2
(x − c)T (x − c), (4)

then c is a repulsor, since following the negative gradient of E will cause the
robot to move away from c.

As an extension of (3) and (4) the following potential field might be
defined:

E(x) =
∑

a∈A

1

2
(x − a)T (x − a) −

∑

r∈R

1

2
(x − r)T (x − r)

where A is a set of attractors and R is a set of repulsors. The gradient of E
is given by

∂E

∂x
(x) =

∑

a∈A

(x − a) −
∑

r∈R

(x − r)

= (|A| − |R|)x −

(

∑

a∈A

a −
∑

r∈R

r

)

,

where |A| is the number of elements in A. In other words, the robot will
be attracted (or repulsed from) the center of mass of the attractors and
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repulsors. A potential field with five attractors and three repulsors is shown
in Figure 2.
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Figure 2: Quadratic potential field with five attractors (+) and three repul-
sors (*).

Suppose that we would like the robot to move toward near-by attractors
and move away from near-by repulsors, then we could define the potential
field as

E(x) = −
∑

a∈A

αae
− γa

2
‖x−a‖2

+
∑

r∈R

βre
− γr

2
‖x−r‖2

, (5)

where the constants αa, γa, βr, and γr can be used to specify the strength of
the attractor or repulsor. The gradient of (5) is given by

∂E

∂x
(x) = +

∑

a∈A

αaγa(x − a)e−
γa

2
‖x−a‖2

−
∑

r∈R

βrγr(x − r)e−
γr

2
‖x−r‖2

.

The potential field with the same attractors and repulsors as Figure 2, but
with potential field (5) is shown in Figure 3

It may also be desirable to include a potential field that repulses the robot
from the walls. A simple potential field that does the job is

E(r) = αe−
γ

2
(ry−YMAX)2 + αe−

γ

2
r2
y + αe−

γ

2
(rx−XMAX)2 + αe−

γ

2
r2
x , (6)
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Figure 3: Exponential potential field with five attractors (+) and three re-
pulsors (*).

with gradient given by

∂E

∂r
(r) = −γα(ry − YMAX)e−

γ

2
(ry−YMAX)2 − γαrye

− γ

2
r2
y

− γα(rx − XMAX)e−
γ

2
(rx−XMAX)2 − γαrxe

− γ

2
r2
x .

The potential field established by (6) is shown in Figure 4.
Combining the potential fields from (5) and (6) results in the potential

field shown in Figure 5.
One possible implementation would be to define a list of attractors and

repulsors in the global data structure as shown in myrobot.h, and then to
write a skill that computes the gradient of the potential field at the current
robot location, given the current positions of the attractors and repulsors.
Interesting tactics could be constructed by “guiding” the robot around the
field by dynamically changing the positions of the attractors and repulsors.

3 Robot Response

The second important aspect of the potential fields method is to define the
response of the robot to the potential field. In the previous section we de-
veloped the potential fields under the assumption that the robot would be
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Figure 4: Potential field for avoiding the walls.

following the negative gradient of the field. Unfortunately, this is not possible
to execute exactly due to the nonholonomic nature of the robot.

As an alternative one might attempt to orient the robot in the direction of
the negative gradient, while simultaneously moving at velocity which is pro-
portional to the projection of the velocity vector onto the negative gradient.
The desired orientation of the robot is given by

ψd = atan2(−
∂E

∂ry

,−
∂E

∂rx

).

Therefore using a proportional control we set

ωd = −kp(ψ − ψd).

The desired velocity is obtained by projecting the direction vector onto the
negative gradient:

vd = −
∂E

∂rx

cos(ψ) −
∂E

∂ry

sin(ψ).

If we have implemented a utility that moves the robot at linear speed vd and
angular speed ωd, then we can invoke this utility to synthesize the desired
motion.
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Figure 5: Potential field with attractors and repulsors and wall avoidance.
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