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Abstract

A well known path-planning technique for mobile robots or planar
aerial vehicles is to use Dubins paths, which are minimum-distance paths
between two configurations subject to the constraints of the Dubins car
model. An extension of this method to a three-dimensional Dubins air-
plane model has recently been proposed. This chapter builds on that work
showing a complete architecture for implementing Dubins airplane paths
on small fixed-wing UAVs. The existing Dubins airplane model is mod-
ified to be more consistent with the kinematics of a fixed-wing aircraft.
The chapter then shows how a recently proposed vector-field method can
be used to design a guidance law that causes the Dubins airplane model
to follow straight-line and helical paths. Dubins airplane paths are move
complicated than Dubins car paths because of the altitude component.
Based on the difference between the altitude of the start and end config-
urations, Dubins airplane paths can be classified as low, medium, or high
altitude gain. While for medium and high altitude gain there are many dif-
ferent Dubins airplane paths, this chapter proposes selecting the path that
maximizes the average altitude throughout the maneuver. The proposed
architecture is implemented on a six degree-of-freedom Matlab/Simulink
simulation of an Aerosonde UAV, and results from this simulation demon-
strate the effectiveness of the technique.

1 Introduction

Unmanned aerial vehicles (UAVs) are used for a wide variety of tasks that re-
quire the UAV to be flown from one particular pose (position and attitude)
to another. Most commonly, UAVs are flown from their current position and
heading angle to a new desired position and heading angle. The ability to fly
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from one pose (or waypoint) to another is the fundamental building block upon
which more sophisticated UAV navigation capabilities are built. For UAV mis-
sions involving sensors, the ability to position and orient the sensor over time
is critically important. Example applications include wildlife observation and
tracking, infrastructure monitoring [Rathinam et al., 2005, Few et al., 2004,
Egbert and Beard, 2011], communication relays [Frew et al., 2009], meteorolog-
ical measurements [Elston et al., 2010], and aerial surveillance [Rahmani et al.,
2010, Elston and Frew, 2008, Spry et al., 2005]. Positioning and orienting the
sensor is accomplished in part by planning and following paths through or above
the sensing domain. Two-dimensional (2D) path planning and following at a
constant altitude through unobstructed airspace is common, but as mission sce-
narios become increasingly sophisticated by requiring flight in three-dimensional
(3D) terrain, the need for full 3D planning and guidance algorithms is becoming
increasingly important.

For a vehicle that moves in a 2D plane at constant forward speed with a
finite turn-rate constraint, the minimum distance path between two configura-
tions is termed a Dubins path. The initial and final configurations are defined
by a 2D position in the plane of motion and an orientation. It has been shown
that the optimal Dubins path in the absence of wind is composed of a constant
radius turn, followed by a straight-line path, followed by another constant ra-
dius turn [Dubins, 1957]. A vehicle that follows Dubins paths is often termed
a Dubins car. There have been a wide variety of path planning techniques pro-
posed for mobile robots based on the Dubins car model [Hanson et al., 2011,
Balluchi et al., 1996, Anderson and Milutinovic, 2011, Karaman and Frazzoli,
2010, Cowlagi and Tsiotras, 2009, Yong and Barth, 2006]. The Dubins car
model has also been used extensively for UAV applications by constraining the
air vehicle to fly at a constant altitude [Yu and Beard, 2013, Sujit et al., 2007,
Yang and Kapila, 2002, Shima et al., 2007].

The Dubins car model was recently extended to three dimensions to cre-
ate the Dubins airplane model, where in addition to turn-rate constraints, a
climb-rate constraint was added [Hosak and Ghose, 2010, Chitsaz and LaValle,
2007, Rahmani et al., 2010]. Minimum distance paths for the Dubins airplane
were also derived in [Chitsaz and LaValle, 2007], using the Pontryagin minimum
principle [Lewis, 1986]. However, in [Chitsaz and LaValle, 2007] some practical
considerations were not considered, leaving a gap between the theory and im-
plementation on actual UAVs. The purpose of this chapter is to fill that gap. In
particular, alternative equations of motion for the Dubins airplane model that
include airspeed, flight-path angle, and bank angle are given. The kinematic
equations of motion presented in this chapter are standard in the aerospace
literature. The chapter also describe how to implement Dubins airplane paths
using low-level autopilot loops, vector-field guidance laws for following straight
lines and helices, and mode switching between the guidance laws.

In addition to the complexity of a third dimension of motion, Dubins airplane
paths are more complicated than Dubins car paths. In particular, when the
altitude component of the path falls within a specific range, there are an infinite
number of paths that satisfy the minimum-distance objective. This chapter

2



also proposes specific choices for paths that make practical sense for many UAV
mission scenarios. Specifically, the path that also maximizes the average altitude
of the path is selected.

The software architecture proposed in this chapter is similar to that discussed
in [Beard and McLain, 2012] and is shown in Figure 1. At the lowest level is the
fixed-wing UAV. A state estimator processes sensors and produces the estimates
of the state required for each of the higher levels. A low-level autopilot accepts
airspeed, flight-path angle, and bank angle commands. The commands for the
low-level autopilot are produced by a vector-field guidance law for following ei-
ther straight-line paths or helical paths. The minimum distance Dubins airplane
path between two configurations is computed by the path manager, which also
switches between commanding straight-line paths and helical paths.

Dubins Path Manager 

Vector Field Guidance 

Unmanned Aircraft 

Configuration Waypoints: 
(position, heading) 

Sensors 

Position error 

Tracking error 

Throttle 
Control Surfaces 

State Estimator 

Path definition: 
straight-line, or 

helix 

Airspeed 
Flight path angle 

Bank angle 
 Low Level Autopilot 

Figure 1: Flight control architecture proposed in this chapter.

This chapter will not discuss state estimation using the available sensors,
but the interested reader is refered to [Beard and McLain, 2012] and other pub-
lications on state estimation for UAVs (see for example [Mahony et al., 2008,
Misawa and Hedrick, 1989, Brunke and Campbell, 2004]). Section 2 briefly de-
scribes assumptions on the unmanned aircraft and how the low-level autopilot
is configured to produce the Dubins airplane kinematic model. Section 3 de-
scribes the vector-field guidance strategy used in this chapter for following both
straight lines and helices. The Dubins airplane paths and the path manager used
to follow them are discussed in Section 4. Section 5 offer concluding remarks.

2 Equations of Motion for the Dubins Airplane

Unmanned aircraft, particularly smaller systems, fly at relatively low airspeeds
causing wind to have a significant effect on their performance. Since wind
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effects are not known prior to the moment they act on an aircraft, they are
typically treated as a disturbance to be rejected in real time by the flight control
system, rather than being considered during the path planning. It has been
shown that vector-field-based path following methods, such as those employed
in this chapter, are particularly effective at rejecting wind disturbances [Nelson
et al., 2007]. Treating wind as a disturbance also allows paths to be planned
relative to the inertial environment, which is important as UAVs are flown in
complex 3D terrain. Accordingly, when the Dubins airplane model is used for
path planning, the effects of wind are not accounted for when formulating the
equations of motion. In this case, the airspeed V is the same as the groundspeed,
the heading angle ψ is the same as the course angle (assuming zero sideslip
angle), and the flight-path angle γ is the same as the air-mass-referenced flight-
path angle [Beard and McLain, 2012].

Figure 2 depicts a UAV flying with airspeed V , heading angle ψ and flight-
path angle γ. Denoting the inertial position of the UAV as (rn, re, rd)

>, the
kinematic relationship between the inertial velocity, v = (ṙn, ṙe, ṙd)

>, and the
airspeed, heading angle, and flight-path angle can be easily visualized asṙnṙe

ṙd

 =

V cosψ cos γ
V sinψ cos γ
−V sin γ

 ,

where V = ‖v‖.
This chapter assumes that a low-level autopilot regulates the airspeed V to

a constant commanded value V c, the flight-path angle γ to the commanded
flight-path angle γc, and the bank angle φ to the commanded bank angle φc.
In addition, the dynamics of the flight-path angle and bank angle loops are
assumed to be sufficiently fast that they can be ignored for the purpose of path
following. The relationship between the heading angle ψ and the bank angle φ
is given by the coordinated turn condition [Beard and McLain, 2012]

ψ̇ =
g

V
tanφ,

where g is the acceleration due to gravity.
Under the assumption that the autopilot is well tuned and the airspeed,

flight-path angle, and bank angle states converge with the desired response to
their commanded values, then the following kinematic model is a good descrip-
tion of the UAV motion

ṙn = V cosψ cos γc

ṙe = V sinψ cos γc (1)

ṙd = −V sin γc

ψ̇ =
g

V
tanφc.

Physical capabilities of the aircraft place limits on the achievable bank and
flight-path angles that can be commanded. These physical limits on the aircraft
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Figure 2: Graphical representation of aircraft kinematic model.

are represented by the following constraints

|φc| ≤ φ̄ (2)

|γc| ≤ γ̄. (3)

The kinematic model given by (1) with the input constraints (2) and (3)
will be referred to as the Dubins airplane. This model builds upon the model
originally proposed for the Dubins airplane in [Chitsaz and LaValle, 2007], which
is given by

ṙn = V cosψ

ṙe = V sinψ (4)

ṙd = u1 |u1| ≤ 1

ψ̇ = u2 |u2| ≤ 1.

Although (1) is similar to (4), it captures the aircraft kinematics with greater
accuracy and provides greater insight into the aircraft behavior, and is more
consistent with commonly used aircraft guidance models. Note however, that (1)
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is only a kinematic model that does not include aerodynamics, wind effects, or
engine/thrust limits. While it is not sufficiently accurate for low-level autopilot
design, it is well suited for for high level path planning and path following
control design. In-depth discussions of aircraft dynamic models can be found
in [Phillips, 2004, Stevens and Lewis, 2003, Nelson, 1998, Yechout et al., 2003].

3 3D Vector-field Path Following

This section shows how to develop guidance laws to ensure that the kinematic
model (1) follows straight-line and helical paths. Section 4 shows how straight-
line and helical paths are combined to produce minimum-distance paths between
start and end configurations.

3.1 Vector-field Methology

The guidance strategy will use the vector-field methodology proposed in [Goncalves
et al., 2010], and this section provides a brief overview. The path to be followed
in R3 is specified as the intersection of two two-dimensional manifolds given by
α1(r) = 0 and α2(r) = 0 where α1 and α2 have bounded second partial deriva-
tives, and where r ∈ R3. An underlying assumption is that the path given by
the intersection is connected and one-dimensional. Defining the function

V (r) =
1

2
α2

1(r) +
1

2
α2

2(r),

gives
∂V

∂r
= α1(r)

∂α1

∂r
(r) + α2(r)

∂α2

∂r
(r).

Note that−∂V∂r is a vector that points toward the path. Therefore following−∂V∂r
will transition the Dubins airplane onto the path. However simply following
−∂V∂r is insufficient since the gradient is zero on the path. When the Dubins
airplane is on the path, its direction of motion should be perpendicular to both
∂α1

∂r and ∂α2

∂r . Following [Goncalves et al., 2010] the desired velocity vector
u′ ∈ R3 can be chosen as

u′ = −K1
∂V

∂r
+K2

∂α1

∂r
× ∂α2

∂r
, (5)

where K1 and K2 are symmetric tuning matrices. It is shown in [Goncalves
et al., 2010] that the dynamics ṙ = u′ where u′ is given by Equation (5), results
in r asymptotically converging to a trajectory that follows the intersection of α1

and α2 if K1 is positive definite, and where the definiteness of K2 determines
the direction of travel along the trajectory.

The problem with Equation (5) is that the magnitude of the desired veloc-
ity u′ may not equal V , the velocity of the Dubin’s airplane. Therefore u′ is
normalized as

u = V
u′

‖u′‖ . (6)
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Fortunately, the stability proof in [Goncalves et al., 2010] is still valid when u′

is normalized as in Equation (6).
Setting the NED components of the velocity of the Dubins airplane model

given in Equation (1) to u = (u1, u2, u3)> gives

V cosψd cos γc = u1

V sinψd cos γc = u2

−V sin γc = u3.

Solving for the commanded flight-path angle γc, and the desired heading angle
ψd results in the expressions

γc = −satγ̄

[
sin−1

(u3

V

)]
(7)

ψd = atan2(u2, u1),

where atan2 is the four quadrant inverse tangent, and where the saturation
function is defined as

sata[x] =


a if x ≥ a
−a if x ≤ −a
x otherwise

.

Assuming the inner-loop lateral-directional dynamics are accurately modeled
by the coordinated-turn equation, roll-angle commands yielding desirable turn
performance can be obtained from the expression

φc = satφ̄
[
kφ(ψd − ψ)

]
, (8)

where kφ is a positive constant.
Sections 3.2 and 3.3 applies the framework described in this section to

straight-line following and helix following, respectively.

3.2 Straight-line Paths

A straight-line path is described by the direction of the line and a point on the
line. Let c` = (cn, ce, cd)

> be an arbitrary point on the line, and let the direction
of the line be given by the desired heading angle from north ψ`, and the desired
flight-path angle γ` measured from the inertial north-east plane. Therefore

q` =

qnqe
qd

 4=
cosψ` cos γ`

sinψ` cos γ`
− sin γ`


is a unit vector that points in the direction of the desired line. The straight-line
path is given by

Pline(c`, ψ`, γ`) =
{
r ∈ R3 : r = c` + σq`, σ ∈ R

}
. (9)
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A unit vector that is perpendicular to the longitudinal plane defined by q`
is given by

nlon
4
=

− sinψ`
cosψ`

0

 .

Similarly, a unit vector that is perpendicular to the lateral plane defined by q`
is given by

nlat
4
= nlon × q` =

− cosψ` sin γ`
− sinψ` sin γ`
− cos γ`

 .

It follows that Pline is given by the intersection of the surfaces defined by

αlon(r)
4
= n>lon(r− c`) = 0 (10)

αlat(r)
4
= n>lat(r− c`) = 0. (11)

Figure 3 shows q`, c`, and the surfaces defined by αlon(r) = 0 and αlat(r) = 0.

nlon

nlat

c` q`

↵lon(r) = 0

↵lat(r) = 0

Pline(r,q`)

Figure 3: This figure shows how the straight-line path Pline(c`, ψ`, γ`) is defined
by the intersection of the two surfaces given by αlon(r) = 0 and αlat(r) = 0.

The gradients of αlon and αlat are given by

∂αlon

∂r
= nlon

∂αlat

∂r
= nlat.

Therefore, before normalization, the desired velocity vector is given by

u′line = K1

(
nlonn

>
lon + nlatn

>
lat

)
(r− c`) +K2 (nlon × nlat) . (12)
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3.3 Helical Paths

A time parameterized helical path is given by

r(t) = ch +

Rh cos(λht+ ψh)
Rh sin(λht+ ψh)
−tRh tan γh

 , (13)

where r(t) =

rnre
rd

 (t) is the position along the path, ch = (cn, ce, cd)
> is the

center of the helix, and the initial position of the helix is

r(0) = ch +

Rh cosψh
Rh sinψh

0

 ,

and where Rh is the radius, λh = +1 denotes a clockwise helix (N→E→S→W),
and λh = −1 denotes a counter-clockwise helix (N→W→S→E), and where γh
is the desired flight-path angle along the helix.

To find two surfaces that define the helical path, the time parameterization
in (13) needs to be eliminated. Equation (13) gives

(rn − cn)2 + (re − ce)2 = R2
h.

In addition, divide the east component of r− ch by the north component to get

tan(λht+ ψh) =
re − ce
rn − cn

Solving for t and plugging into the third component of (13) gives

rd − cd = −Rh tan γh
λh

(
tan−1

(
re − ce
rn − cn

)
− ψh

)
.

Therefore, normalizing these equations by Rh results in

αcyl(r) =

(
rn − cn
Rh

)2

+

(
re − ce
Rh

)2

− 1

αpl(r) =

(
rd − cd
Rh

)
+

tan γh
λh

(
tan−1

(
re − ce
rn − cn

)
− ψh

)
.

Normalization by Rh makes the gains on the resulting control strategy invariant
to the size of the orbit.

A helical path is then defined as

Phelix(ch, ψh, λh, Rh, γh) = {r ∈ R3 : αcyl(r) = 0 and αpl(r) = 0}. (14)

The two surfaces αcyl(r) = 0 and αpl(r) = 0 are shown in Figure 4 for parameters
ch = (0, 0, 0)>, Rh = 30 m, γh = 15π

180 rad, and λh = +1. The associated helical
path is the intersection of the two surfaces.
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Figure 4: A helical path for parameters ch = (0, 0, 0)>, Rh = 30 m, γh =
15π
180 rad, and λh = +1.

The gradients of αcyl and αpl are given by

∂αcyl

∂r
=
(
2 rn−cnRh

, 2 re−ceRh
, 0

)>
∂αpl

∂r
=
(

tan γh
λh

−(re−ce)
(rn−cn)2+(re−ce)2 ,

tan γh
λh

(rn−ce)
(rn−cn)2+(re−ce)2 ,

1
Rh

)>
.

Before normalization, the desired velocity vector is given by

u′helix = K1

(
αcyl

∂αcyl

∂r
+ αpl

∂αpl

∂r

)
+ λK2

(
∂αcyl

∂r
× ∂αpl

∂r

)
, (15)

where
∂αcyl

∂r
× ∂αpl

∂r
=

2

Rh

( re−ce
Rh

, − rn−cnRh
, λh tan γh

)>
.

4 Minimum Distance Airplane Paths

This section describes how to concatenate straight-line and helix paths to pro-
duce minimum-distance paths between two configurations for the Dubins air-
plane model. A configuration is defined as the tuple (zn, ze, zd, ψ), where
(zn, ze, zd)

> is a north-east-down position referenced to an inertial frame, and ψ
is a heading angle measured from north. Given the kinematic model (1) subject
to the constraints (2) and (3), a Dubins airplane path refers to a minimum-
distance path between a start configuration (zns, zes, zds, ψs) and an end config-
uration (zne, zee, zde, ψe). Minimum-distance paths for the Dubins airplane are
derived in [Chitsaz and LaValle, 2007] using the Pontryagin Maximum Principle
for the dynamics given in (4) with constraints γ̄ = 1 and φ̄ = 1. This section
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recasts the results from [Chitsaz and LaValle, 2007] using the standard aircraft
kinematic model given in (1) using the constraints (2) and (3).

4.1 Dubins Car Paths

Minimum-distance paths for the Dubins airplane are closely related to minimum-
distance paths for the Dubins car. This section briefly reviews Dubins car
paths, which were originally developed in [Dubins, 1957] using the notation and
methods defined in [Beard and McLain, 2012].

The Dubins car model is a subset of (4) given by

ṙn = V cosψ

ṙe = V sinψ (16)

ψ̇ = u,

where |u| ≤ ū. For the Dubins car, the minimum turn radius is given by

Rmin = V/ū. (17)

The Dubins car path is defined as the minimum-distance path from the start
configuration (zns, zes, ψs) to the end configuration (zne, zee, ψe). As shown
in [Dubins, 1957], the minimum-distance path between two different configura-
tions consists of a circular arc of radius Rmin that starts at the initial configu-
ration, followed by a straight line, and concluding with another circular arc of
radius Rmin that ends at the final configuration.

As shown in Figure 5, for any given start and end configurations, there are
four possible paths consisting of an arc, followed by a straight line, followed
by an arc. RSR is a right-handed arc followed by a straight line followed by
another right-handed arc. RSL is a right-handed arc followed by a straight line
followed by a left-handed arc. LSR is a left-handed arc followed by a straight
line followed by a right-handed arc. LSL is a left-handed arc followed by a
straight line followed by another left-handed arc. The Dubins path is defined
as the case with the shortest path length.

As explained in [Beard and McLain, 2012], the guidance algorithm for fol-
lowing a Dubins car path consists of switching between orbit following and
straight-line following. Figure 6 shows the parameters that are required by
the guidance algorithm to follow a Dubins car path. Given that the vehicle
configuration is close to the start configuration (zs, ψs), the vehicle is initially
commanded to follow an orbit with center cs and orbit direction λs. The orbit is
followed until the vehicle crosses half-plane Hs(ws,qs), or in other words until
its position r satisfies

(r−ws)
>qs ≥ 0,

where ws is a position on the half-plane and qs is a unit vector orthogonal to
the half-plane. The vehicle then follows the straight line defined by (ws,qs)
until it crosses half-plane H`(w`,q`). It then follows the orbit with center ce
and direction λe until it crosses half-plane He(we,qe) and completes the Dubins
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Figure 5: Given a start configuration (zns, zes, ψs), an end configuration
(zne, zee, ψe), and a radius R, there are four possible paths consisting of an
arc, a straight line, and an arc. The Dubins path is defined as the case that
results in the shortest path length, which for this scenario is RSR.
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Figure 6: The parameters that are required by the guidance algorithm to follow
a Dubins car path.
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car path. Accordingly the parameters that define a Dubins car path are given
by

Dcar = (R, cs, λs,ws,qs,w`,q`, ce, λe,we,qe). (18)

The length of the Dubins car path depends explicitly on the turning radius
R and will be denoted as Lcar(R). Details of how to compute Lcar(R) as well
as the parameters Dcar are given in [Beard and McLain, 2012].

4.2 Dubins Airplane Paths

Dubins airplane paths are more complicated than Dubins car paths because
of the altitude component. As described in [Chitsaz and LaValle, 2007] there
are three different cases for Dubins airplane paths that depend on the altitude
difference between the start and end configuration, the length of the Dubins car
path, and the flight-path limit γ̄. The three cases are defined in [Chitsaz and
LaValle, 2007] to be low altitude, medium altitude, and high altitude. In contrast
to (17), the minimum turn radius for a Dubins airplane is given by

Rmin =
V 2

g
tan φ̄. (19)

The altitude gain between the start and end configuration is said to be low
altitude if

|zde − zds| ≤ Lcar(Rmin) tan γ̄,

where the term on the right is the maximum altitude gain that can be obtained
by flying at flight-path angle ±γ̄ for a distance of Lcar(Rmin). The altitude gain
is said to be medium altitude if

Lcar(Rmin) tan γ̄ < |zde − zds| ≤ [Lcar(Rmin) + 2πRmin] tan γ̄,

where the addition of the term 2πRmin accounts for adding one orbit at radius
Rmin to the path length. The altitude gain is said to be high altitude if

|zde − zds| > [Lcar(Rmin) + 2πRmin] tan γ̄.

The following three sections describe how Dubins car paths are modified to
produce Dubins airplane paths for low, high, and medium-altitude cases.

4.2.1 Low-altitude Dubins Paths

In the low-altitude case, the altitude gain between the start and end configu-
rations can be achieved by flying the Dubins car path with a flight-path angle
satisfying constaint (3). Therefore, the optimal flight-path angle can be com-
puted by

γ∗ = tan−1

( |zde − zds|
Lcar(Rmin)

)
.
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The length of the Dubins airplane path is given by

Lair(Rmin, γ
∗) =

Lcar(Rmin)

cos γ∗
.

The parameters required to define a low altitude Dubins airplane path, are
the same parameters for the Dubins car given in (18) with the addition of the
optimal flight-path angle γ∗, and the angles of the start and end helices ψs and
ψe. Note that for the Dubins car path ψs and ψe are not required since the
orbit is flat and does not have a starting location. However, as described in
Section 3.3, to follow a helix, the start angle is required. Figure 7 shows several
Dubins airplane paths for the low-altitude case where the altitude difference is
25 meters over a typical Dubins car path length of 180 meters.
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Figure 7: Dubins airplane paths for the low-altitude case.

4.2.2 High-altitude Dubins Paths

In the high-altitude case, the altitude gain cannot be achieved by flying the
Dubins car path within the flight-path angle constraints. As shown in [Chitsaz
and LaValle, 2007], the minimum distance path is achieved when the flight-path
angle is set at its limit of ±γ̄, and the Dubins car path is extended to facilitate
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the altitude gain. While there are many different ways to extend the Dubins
car path, this chapter extends the path by spiraling a certain number of turns
at the beginning or end of the path, and then by increasing the turn radius by
the appropriate amount.

For UAV scenarios, the most judicious strategy is typically to spend most
of the trajectory at as high an altitude as possible. Therefore, if the altitude at
the end configuration is higher than the altitude at the start configuration, then
the path will be extended by a climbing helix at the beginning of the path, as
shown in the RSR and RSL cases in Figure 8. If on the other hand, the altitude
at the start configuration is higher than the end configuration, then the path
will be extended by a descending helix at the end of the path, as shown in the
LSR and LSL cases in Figure 8. If multiple turns around the helix are required,
then the turns could be split between the start and end helices and still result
in the same path length. For high altitude Dubins paths, the required number
of turns in the helix will be the smallest integer k such that

(Lcar(Rmin) + 2πkRmin) tan γ̄ ≤ |zde − zds| < (Lcar(Rmin) + 2π(k + 1)Rmin) tan γ̄,

or in other words

k =

⌊
1

2πRmin

( |zde − zds|
tan γ̄

− Lcar(Rmin)

)⌋
,

where bxc is the floor function that rounds x down to the nearest integer. The
radius of the start and end helices is then increased to R∗ so that

(Lcar(R
∗) + 2πkR∗) tan γ̄ = |zde − zds| . (20)

A bisection search is used to find R∗ satisfying (20). The resulting path is a
minimum distance Dubins airplane path with path length

Lair(R
∗, γ̄) =

Lcar(R
∗)

cos γ̄
.

The parameters required to define a high altitude Dubins airplane path, are the
same parameters for the Dubins car given in (18) with Rmin replaced by R∗,
the addition of the optimal flight-path angle ±γ̄, the additions of the start and
end angles ψs and ψe, and the addition of the required number of turns at the
start helix ks and the required number of turns at the end helix ke. Figure 8
shows several Dubins airplane paths for the high-altitude case where the altitude
difference is 300 meters over a typical Dubins car path length of 180 meters.

4.2.3 Medium-altitude Dubins Paths

In the medium-altitude case, the altitude difference between the start and end
configurations is too large to obtain by flying the Dubins car path at the flight-
path angle constraint, but small enough that adding a full turn on the helix
at the beginning or end of the path and flying so that γ = ±γ̄ results in more
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Figure 8: Dubins airplane paths for the high-altitude case.
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altitude gain than is needed. As shown in [Chitsaz and LaValle, 2007], the min-
imum distance path is achieved by setting γ = sign (zde − zds) γ̄ and inserting
an extra maneuver in the Dubins car path that extends the path length so that
the altitude gain when γ = ±γ̄ is exactly zde − zds. While there are numerous
possible ways to extend the path length, the method proposed in this chapter
is to add an additional intermediate arc to the start or end of the path, as
shown in Figure 9. If the start altitude is lower than the end altitude, then the
intermediate arc is inserted immediately after the start helix, as shown for cases
RLSR and RLSL in Figure 11. If on the other hand, the start altitude is higher
than the end altitude, then the intermediate arc is inserted immediately before
the end helix, as shown for cases LSLR and LSRL in Figure 11.

To find the Dubins path in the medium-altitude case, the position of the
intermediate arc is parameterized by ϕ as shown in Figure 9, where

zi = cs +R(ϕ)(zs − cs).

A standard Dubins car path is planned from configuration (zi, ψs + ϕ) to the
end configuration, and the new path length is given by

L(ϕ) = ϕRmin + Lcar(zi, ψs + ϕ, ze, ψe).

A bisection search algorithm is used to find the angle ϕ∗ so that

L(ϕ∗) tan γ̄ = |zde − zds| .

The length of the corresponding Dubins airplane path is given by

Lair =
L(ϕ∗)

cos γ̄
.

The parameters needed to describe the Dubins airplane path for the medium-
altitude case are shown in Figure 10. The introduction of an intermediate arc
requires the additional parameters ci, ψi, λi, wi, and qi. Therefore, in analogy
to (18), the parameters that define a Dubins airplane path are

Dair = (R, γ, cs, ψs, λs,ws,qs, ci, ψi, λi,wi,qi,w`,q`, ce, ψe, λe,we,qe). (21)

Figure 11 shows several Dubins airplane paths for the medium-altitude case
where the altitude difference is 100 meters over a typical Dubins car path length
of 180 meters.

4.3 Path Manager for Dubins Airplane

The path manager for the Dubins airplane is shown in Figure 12. With refer-
ence to (14), the start helix is defined as Phelix(cs, ψs, λs, R, γ). Similarly, the
intermediate arc, if it exists, is defined by Phelix(ci, ψi, λi, R, γ), and the end
helix is given by Phelix(ce, ψe, λe, R, γ). With reference to (9), the straight-line
path is given by Pline(w`,q`).
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4.4 Simulation Results

This section provides some simulation results where Dubins airplane paths are
flown on a full six-degree-of-freedom UAV simulator. The aircraft used for the
simulation is the Aerosonde model described in [Beard and McLain, 2012]. A
low-level autopilot is implemented to regulate the commanded airspeed, bank
angle, and flight-path angle. The windspeed in the simulation is set to zero.
The simulation is implemented in Matlab/Simulink as described in [Beard and
McLain, 2012].

The simulation results for a low altitude gain maneuver are shown in Fig-
ure 13, where the planned trajectory is shown in green, and the actual trajectory
is shown in black. The difference between the actual and planned trajectories
is due to fact that the actual dynamics are much more complicated than the
kinematic model given in (1). Simulation results for a medium altitude gain
maneuver are shown in Figure 14, and simulation results for a high altitude
gain maneuver are shown in Figure 15.
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Figure 13: Simulation results for Dubins path with low altitude gain.

5 Conclusion

This chapter describes how to plan and implement Dubins airplane paths for
small fixed-wing UAVs. In particular, the Dubins airplane model has been re-
fined to be more consistent with standard aeronautics notation. A complete
architecture for following Dubins airplane paths has been defined and imple-
mented and is shown in Figure 1. Dubins airplane paths consists of switch-
ing between helical and straight-line paths. The vector-field method described
in [Goncalves et al., 2010] has been used to develop guidance laws that regulate
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Figure 14: Simulation results for Dubins path with medium altitude gain.
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Figure 15: Simulation results for Dubins path with high altitude gain.
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the Dubins airplane to follow the associated helical and straight-line paths. For
medium and high altitude gain scenarios, there are many possible Dubins paths.
This chapter suggests selecting the path that maximizes the average altitude of
the aircraft during the maneuver.

There are many possible extensions that warrant future work. First, there is
a need to extend these methods to windy environments, including both constant
wind as well as heavy gusts. Second, the assumed fast inner loops on airspeed,
roll angle, and flight-path angle is often violated, especially for flight-path angle.
There may be some advantage, for path optimality in particular, to factoring
the time constants of the inner loops into the planning procedure. Third, this
chapter assumes a decoupling between flight-path angle and airspeed. Except for
highly overpowered vehicles, however, achieving a positive flight-path angle will
reduce the airspeed, and achieving a negative flight-path angle will increase the
airspeed. Taking these effects into account will obviously change the optimality
of the paths. Finally, there are a variety of methods that have been proposed
for achieving vector-field following (see [Lawrence et al., 2008, Park et al., 2007,
Nelson et al., 2007]). The method used in this chapter is only one possibility,
that in fact, proved challenging to tune. One of the issues is that the method
assumes single integrator dynamics in each direction of motion. More robust 3D
vector-field following techniques that account for the nonholonomic kinematic
model of the Dubins airplane need to be developed.
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