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Abstract

This paper addresses the problem of autonomously maneuvering a
miniature air vehicle (MAV) to follow a road using computer vision as the
primary guidance sensor. We focus on low altitude flight with the objec-
tive of maximizing the pixel density of the road in the image. The airframe
is assumed to be a bank-to-turn fixed-wing MAV with a downward-looking
strap-down camera. The road is identified in the image using HSV clas-
sification, flood-fill operations, and connected component analysis. The
main contribution of the paper is the derivation of explicit roll-angle and
altitude-above-ground-level (AGL) constraints that guarantee that the
road will remain in the footprint of the camera, assuming a flat earth.
The effectiveness of our approach is demonstrated through high fidelity
simulation and through flight results.

1 Introduction

This paper addresses the problem of tracking a visually distinct connected struc-
ture on the ground using a miniature air vehicle equipped with a strap down
camera. Potential structures include roads, pipelines, and perimeters of forest
fires. To be specific, we will focus our attention in this paper on road following.

A potential road-following application of interest to the military is convoy
support where the objective is to detect roadside bombs and ambushes along
the anticipated route of the convoy. Surveillance and reconnaissance of these
routes can be accomplished using low-altitude miniature air vehicles (MAVs)
which relay video data to human operators associated with the convoy. Passive
sensing devices like video cameras are covert and are therefore essential for this
type of military operation. The GPS position of a road may not be available, and
even if it is, the MAV’s GPS receiver may be jammed by an adversary. Vision-
based control using automated road tracking can meet the reconnaissance needs
for convoy support while accommodating for potential GPS jamming without
revealing the MAV’s presence and position.
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There are many applications where borders are not well defined or ade-
quately mapped. Fire fighters confront situations where the extent of a fire
may be unknown and changing in time. High-altitude aircraft and satellites
are often requested for overhead imagery but these resources are not always
available. Surveillance of fire perimeters using manned helicopters and aerial
vehicles are limited because updrafts resulting from the fire create dangerous
flying conditions. For safety reasons, manned aircraft are not used at night to
survey forest fires. MAVs are an attractive alternative because they are rela-
tively inexpensive to manufacture and replace, and because they can be used to
obtain high-resolution imagery of the fire and its perimeter.

Studies that specifically address border and road following using cameras
on-board unmanned ground vehicles (UGVs) have appeared in the literature
for more than a decade [1], [2], [3]. Each of these studies presents a method to
effectively extract the road from the video stream, project the estimated road
position onto the inertial frame, and maneuver the vehicle to follow the road.
A vanishing point in the image is used to simplify computer-vision algorithms
and provide improved road-directional bearings. A vanishing point is the point
in the image where the road merges with the horizon. In [1], an edge-detection
algorithm is used to extract the road edges. By analyzing a smaller image win-
dow, the algorithm processes more complex calculations in real-time including
estimating the road location. In [2], the road is registered onto a virtual map.
Using this virtual map, sophisticated path corrections and intersection analysis
improve the UGVs estimated path as it travels. The ability for a UGV to adjust
to non-ideal road conditions is demonstrated in [3], where two assumptions are
used to ensure that the road is effectively classified by processing the on-board
video. The first assumption is that the vehicle begins operation on the road
and generally remains there while the guidance algorithm is active. Secondly,
ground-vehicle movement and general road structure are estimated using the
vanishing point of the road. These assumptions significantly ease computation
and decision complexity in the guidance loop.

Overhead views obtained by MAVs provide an alternate perspective to strate-
gically important areas that cannot be obtained by ground vehicles. Researchers
have only recently begun to address the specific guidance issues associated with
road following using video cameras on fixed-wing MAVs. Earlier studies have ad-
dressed some problems associated with vision-based guidance of UAVs. Vision-
based landing of an unmanned helicopter has been demonstrated in [4] and [5].
Low-altitude path planning has been proposed where a virtual map is updated
based on the data captured from an onboard camera in [6] and a path is planned
to avoid terrain obstacles. In [7], a ground-based object is localized using a
fixed-wing MAV, and errors and difficulties associated with vision analysis are
discussed.

Studies addressing the guidance issues associated with fixed-wing MAV road
following have been reported in [8], [9], [10]. Flight navigation based solely on
captured images from an onboard strap-down camera has been demonstrated
in [9], where the camera is pointed toward the center of the earth. In [10], it
has been shown that MAVs can follow various locally linear structures using
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visual feedback from a strap-down camera pointed downward with a specified
look-ahead distance. The look-ahead distance is selected heuristically using
simulation studies. By looking ahead, the UAV can curve onto the road segment
in front of the vehicle. References [9] and [10] assume that the air vehicle can
perform skid-to-turn which significantly simplifies the problem of maintaining
the road in the footprint of the camera.

While [9] and [10] demonstrate vision-based path following using a fixed-wing
MAV, they do not address the problem of maintaining the road in the camera
footprint using bank-to-turn maneuvers. The primary contribution of this paper
is to develop altitude-above-ground-level (AGL) and roll-angle constraints that
ensure that the road remains in the camera footprint for bank-to-turn MAVs.
Forcing a bank-to-turn MAV to follow a road is difficult because the image
footprint and road are not physically linked. Consider the scenario where a
MAV is flying parallel to a road with a ground track that is offset a fixed
distance to the left of the road. In order to maneuver so that its ground track
is directly over the road, the MAV must bank to the right. However, when it
banks right, the camera footprint moves to the left and if the bank angle is steep
enough, the road may leave the footprint of the camera. Because the ground
track is initially offset to the left of the road, it will be imaged on the right
side of the camera footprint and the distance from the center of the image is
a monotonic function of the AGL. Therefore, the allowable bank angles that
maintain the road in the camera footprint is also a function of AGL. Similar
to [10], these constraints apply to any locally-linear structure including roads,
fire perimeters, and pipelines.

While a gimballed camera would resolve some of the issues described above,
size and weight constraints limit the use of gimbals on MAVs. A gimballed
camera is able to adjust the camera angle during flight to obtain the preferred
camera view. Alternatively, a strap-down camera limits MAV maneuverability
during road tracking. Real-time computer vision and control strategies must
be implemented to maintain the proper flight trajectory for the MAV so that
the road remains in the camera field-of-view. The maneuverability limits are
a function of the camera’s horizontal field of view η̄, road width wroad, the
expected turn angle of the road µ, and the MAV’s AGL h.

Computer vision algorithms are used to extract the road from the video
stream and estimate its location and heading in world coordinates. To be suc-
cessful, computer vision classification algorithms rely upon certain assumptions
which are often derived from training sets or object characteristics. A training
set is a collection of images used to teach the model the object’s characteris-
tics. Computer vision techniques for road following largely derive from ground
vehicle applications. Reference [11] uses several previous images to adaptively
classify the road using reverse optical flow to estimate the evolution of its struc-
ture. In [12], two approaches are introduced to deal with spatial and temporal
changes in the road. Two cameras with different iris settings are used to filter
out illumination differences. In [13], dominant orientations are extracted from
the image. Using the vanishing point and dominant structural orientations al-
lows the algorithm to extract an estimate of the road. The algorithm in [13] can
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determine if it is off-road and estimate a new direction toward the lost road.
In [14], a method to correctly adjust to lighting conditions for effective road
classification is presented. A training image is used to establish the road’s color
bounds and these color bounds are updated as the vehicle travels to adjust to
gradual road changes. In [15], a computer-vision approach is presented for a
MAV that removes video noise as well as classifying objects like roads, trees,
and sky.

Several papers not associated with unmanned vehicles proved useful in devel-
oping an effective road-classification algorithm for MAVs. In [16], the authors
produce a region-based query system that allows objects in the image to be
classified more correctly. An adaptive-classification approach using a statis-
tical threshold is presented in [17]. Methods to increase processing speed of
connected-component and histogram analysis are presented in [18]. Effective
color spaces for road extraction are discussed in [19], [3], and [2]. Hue-based
color models (hue-saturation-intensity HSI and hue-saturation-value HSV) are
more effective color spaces for extracting asphalt roads. In this paper, the
strategies presented in [14] are implemented using HSV as the color space. The
image-analysis strategy will be discussed in further detail in Section 3.

The paper is organized as follows. In Section 2 we give an overview of the
system architecture. The computer vision algorithms used to classify and ex-
tract the road from the video stream are discussed in Section 3. In Section 4
we derive roll-angle and AGL constraints that guarantee that the road will
remain in the camera footprint. Results for tracking a road whose world coor-
dinates are unknown a priori, but whose geometry is known, are discussed in
Section 4.3. Tracking a road whose world coordinates are known a priori from
digital-elevation map (DEM) data, is discussed in Section 4.5. In Section 5
we present simulation and experimental results to demonstrate the validity of
the derived constraints. Conclusions and future directions are discussed in Sec-
tion 6. A preliminary version of the results contained in this paper, but without
flight validations, were presented in [20]

2 Architecture

The high level tasks for road following are separated into two categories: com-
puter vision, and guidance and control. The block diagram in Figure 1 illustrates
the information flow of the road-following algorithm. The Road Classifier uses
the method developed in [17] to segment road and non-road pixels and cre-
ates a binary-image representation. Noise is removed during this process using
flood-fill and erosion techniques. The Road Direction Finder uses component
orientation and geometry to determine a road direction, and outputs a road po-
sition and heading angle in camera-frame coordinates. The Localizer transforms
the road position and heading angle into world coordinates. Using the localized
coordinates and telemetry information of the MAV, the Constraints Governor
outputs acceptable world heading and tracking-error data to the Path Following
algorithm which computes a desired heading for the MAV using the technique
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described in [21]. The autopilot converts the desired heading to control-surface
commands.

Road Classifier

Road Direction Finder

Localizer

Constraint Governor

Path Following

MAV and Autopilot

Camera

Telemetry

Video Stream

Computer Vision

Guidance

Figure 1: This figure illustrates the guidance loop architecture for road following.
The video stream is processed in the Computer Vision block to find the location
and direction of the road with respect to the MAV. Geometric analysis is used to
derive constraints on roll angle and AGL. These constraints help maintain the
road in the camera footprint. A path following guidance algorithm maneuvers
the MAV to follow the road.

Several failsafes are implemented by the Constraints Governor to minimize
road-estimation error and smooth the captured video. If the road leaves the
camera footprint, the computer-vision algorithm is bypassed and the MAV is
commanded to follow the predicted path derived from the last successful pass
through the guidance loop. When the estimated path reenters the camera foot-
print, the computer-vision algorithm resumes operation. To smooth the video,
the gain on the roll rate is reduced to limit chatter. As explained in Section 4,
the roll angle is also limited according to the calculations of the expected geom-
etry of the road. The previous road estimate is also used if the Road Classifier
is unable to obtain a connected component of a certain size.

The architecture shown in Figure 1 allows the processor on the MAV to
perform the essential operations for stable flight. The road-following guidance
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loop requires knowledge of the MAV position and orientation to localize the
road. The GPS provides the MAV’s inertial position but is not necessary for
the guidance loop because the relative tracking error between the MAV and the
road is obtained from pitch, roll, and yaw estimates which are independent of
absolute world coordinates.

3 Road Classification and Directional Analysis

In this section we discuss the Computer Vision block of the architecture shown
in Figure 1. Image analysis requires the majority of the computational resources
and must be carefully considered in the design of the guidance-loop design. The
first step is to segment the image into road and non-road components. Once the
road location in the image has been determined, the Road Direction Finder and
Localizer calculate the road’s relative inertial position and the corresponding
desired heading for the MAV.

Real-time requirements for road following limit the potential computer-vision
algorithms available to classify the road. The Road Classifier and Direction
Finder may produce a bottleneck in the guidance loop causing delays in the
commands sent to the MAV. Because of this, using a computationally efficient
Road Classifier and Road Direction Finder will improve the stability of the
guidance loop. Computing data using several threads for computer vision and
MAV control provide even greater efficiency. The studies cited in Section 1
concerning computer-vision techniques were used to create an effective road-
classification system and accelerate the algorithm.

Our road-classification algorithm uses the hue-saturation-value (HSV) color
space to extract road pixels. The red-green-blue (RGB) color space is inadequate
because the green value contributes little to asphalt detection as explained in [2]
and the red and blue values provide weaker discriminating power. In [19], HSV
is shown to provide excellent discrimination power for asphalt roads. The H
and V values suffice for effective road-pixel classification. We are encouraged to
disregard the S value because it is the noisiest. By disregarding the S value, the
classification can be simplified to two dimensions, the H and V values. The Road
Classifier classifies each pixel and maps it from the H-V domain to a statistical
value λ using the mean and covariance of the road pixels derived from a training
set. A threshold determined from the training set assigns the pixel as road or
non-road to create a binary image. Unfortunately, both HSV and RGB lack
reliable methods to classify road pixels in shadowed areas. Other color spaces
can be useful depending on the characteristics of the road. Color spaces that are
better for extracting road pixels in shadowed areas or changing cloud cover are
suggested in [3] and [1]. In the case that the MAV is tracking a fire perimeter,
an infrared or near-infrared camera can be used to extract pixels representing
hot regions.

Pixel-wise analysis and classification of the image cause holes and noise in the
resulting binary image that are removed using a flood-fill operation. Flood filling
allows the Road Classifier to include larger sections of the road normally outside
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the classification threshold. Vehicles or other objects that are on the road are
filled and included in the directional analysis. The image is also eroded to reduce
erroneous road-pixel classification at the road edges and speckle noise. Finally,
the largest component is assumed to be the road while all other components are
removed from the image. The H-V histogram information of the resulting road
component is stored and used to classify future frames. The resulting binary
image is composed of pixels classified as road and non-road.

Figure 2 illustrates the process used by the Road Classifier and Road Di-
rection Finder in extracting the road and determining its direction. Note that
the order of operation can have a significant impact on the classification results.
Figure 2 shows that by filling the components first, a solid road component can
be extracted from the image for analysis. Noise is removed after the filled road
component is extracted.

(a) (b)

(c) (d)

Figure 2: This figure illustrates the steps used to extract the road from the
image. Figure (a) shows the image captured by the camera. Figure (b) shows
the results of classifying using the H-V color space to find the road. Figure (c)
shows the results of the flood-fill operation. In Figure (d) the noise components
are removed by eliminating smaller connected components and eroding the large
road component.

The binary image along with its component histogram (i.e. histogram of
the black and white pixels along horizontal and vertical directions of the image)
is passed to the Road Direction Finder. The position of the road is found by
calculating the mean of the component histogram as

mx =
∑
xf(x)∑
f(x)

, (1)

my =
∑
yf(y)∑
f(x)

, (2)

where f(x) is the horizontal histogram of the road component and f(y) is the
vertical histogram of the road component. The orientation Θ of the road is
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found by using the variance

σij =

∑
x

∑
y(x−mx)i(y −my)jf(x, y)∑

f(x, y)
, (3)

where f(x, y) is the histogram associated with the particular image directions
represented by i and j. These directions are horizontal (i, j) = (2, 0), vertical
(0, 2), or diagonal (1, 1). The variances are calculated to derive the orientation
Θ of the road in the image plane given as

Θ =
1
2

tan−1 2σ11

σ20σ02
. (4)

In urban terrain, roads possess frequent intersections. When two possible
road directions appear, the algorithms described above does not always yield a
correct solution. Therefore, an intersection-analysis algorithm was developed to
account for these situations. Intersections are detected by searching the image
edges for branches in the road. Directions are estimated using the edges of the
image until the intersection leaves the camera footprint. This method allows
the MAV to select which branch of the intersection it will follow depending on
a human supervisor’s preference.

4 Roll-Angle and AGL Constraints Imposed by
Road Following

If the road stays within the camera field-of-view, the computer vision algorithm
described in Section 3 will extract the road and determine its direction in the
inertial frame. The objective of this section is to derive roll angle and AGL
constraints that guarantee that the road will remain in the camera footprint,
given certain assumptions on the flight path and on the geometry of the road.

We consider three general classes of roads. The first class of roads will those
that are composed of straight line segments where the angle between subsequent
line segments is bounded by 0 < µ ≤ π/2. The second class of roads will be
curved roads with bounded curvature. For both of these classes of roads, we
assume that the the bound on the angle µ and the bound on the curvature
of the road is known to the guidance algorithm. However, we do not assume
that the specific geometry and inertial position of the road is known. The third
class of roads are those where the geometry and position of the road is known
a priori from, for example, a DEM map. Since the world coordinates of the road
are known, a feedforward term can be added to the guidance loop and thereby
significantly relax the roll angle and AGL constraints necessary to keep the road
in the camera field-of-view.

To simplify the analysis, we assume that the optical axis of the camera is
pointed out of the belly of the MAV and that the MAV maneuvers at constant
altitude. In other words, the flight path angle is γ = 0, and the gimbal azimuth
angle measured from the body-frame x-axis, which points out the nose of the
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aircraft, is αaz = 0, and the gimbal elevation angle measured from the body x−y
plane, where the y-axis points out the right wing of the MAV, is αel = −π/2.
We will assume a flat-earth model and that the MAV is flying in zero-wind
conditions. The limit on the camera’s horizontal field-of-view is denoted by η̄,
and we assume that the autopilot maintains a constant AGL h and MAV speed
v.

4.1 Camera-Frame to Inertial-Frame Projection

The relevant reference frames include the inertial frame, the body frame, the
gimbal frame, and the camera frame. The inertial frame whose axes are denoted
by (Xi, Y i, Zi), is a fixed frame with Xi directed North, Y i directed East, and
Zi directed toward the center of the earth. The orientation of the body frame
whose axes are denoted by (Xb, Y b, Zb) is obtained from the inertial frame by
first rotating about Zi by the yaw angle ψ, then rotating about the transformed
y-axis by the pitch angle θ, and then rotating about the transformed x-axis by
the roll angle φ. The body frame is centered at the MAV center of mass. The
gimbal frame is obtained by rotating the body frame about Zb by the azimuth
angle αaz, and then rotating the resulting frame about Y g by the elevation angle
αel. The orientation of the camera frame, denoted (Xc, Y c, Zc), originates at
the optical center with Xc pointing right in the image, Y c pointing down in the
image, and Zc directed along the optical axis.

The camera geometry is shown in Figure 3. During road following, the road
will be primarily oriented from top to bottom in the image. We will therefore
focus on the position of the road relative to the camera axis Xc. If εx is the pixel
associated with the point where the road crosses the camera axis Xc, and if f
is the focal length of the camera measured in pixels, then define the associated
angle as ηx = tan−1(εx/f), as shown in Figure 3. Define η̄ to be the angle
associated with the right-most pixel along the x-axis in the camera frame. The
objective in this section is to find the world coordinates (qN , qE) associated with
the pixel εx.

Let
ŵc = [ sin ηx, 0, cos ηx ]T (5)

be the unit vector from the center of mass to the inertial point (qN , qE , 0)T on
the ground, expressed in camera coordinates. Note that ŵc is measured from
camera coordinates. The vector ŵc is transformed into inertial coordinates using
the transformation

ŵi = RibR
b
gR

g
c ŵ

c, (6)

where

Rib =

cψ −sψ 0
sψ cψ 0
0 0 1


 cθ 0 sθ

0 1 0
−sθ 0 cθ


1 0 0

0 cφ −sφ
0 sφ cφ

 (7)

is the transformation from body to inertial coordinates and sϕ
4
= sinϕ and
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Figure 3: This figure depicts the camera geometry. The MAV is located at posi-
tion (pN , pE ,−h). The world coordinates of the road are denoted by (qN , qE , 0).

cϕ
4
= cosϕ, and where

Rbg =

0 0 −1
0 1 0
1 0 0

 (8)

is the transformation from the gimbal to the body frame, and where

Rgc =

0 0 1
1 0 0
0 1 0

 (9)

is the transformation from the camera to the gimbal frame. We include here a
gimbal frame because the nominal orientation for the camera is out the nose of
the aircraft, and in this paper the camera is assumed to point along the body
frame z-axis. The fixed rotation Rgc reorders the axes accordingly. Therefore
assuming that θ ≈ γ = 0 we get

ŵi =

−sψcφsηx + sψsφcηx

cψcφsηx − cψsφcηx
sφsηx + cφcηx

 .

Normalizing the z-component results in the vector

d̂i =


−sψcφsηx+sψsφcηx

sφsηx+cφcηx
cψcφsηx−cψsφcηx
sφsηx+cφcηx

1

 .
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Therefore, the inertial position of the road associated with pixel location (εx, 0)
is given by qNqE

0

 =

pNpE
−h

+ hd̂i. (10)

4.2 Roads composed of straight lines

In this section we assume that the road is composed of straight line segments
and that the angle between subsequent segments is µ ∈ [−π/2, π/2], as shown
in Figure 4. We will not address acute angles where |µ| > π

2 , because for acute
angles, the future path of the road will be seen in the camera footprint before
the turn, and will therefore enable predictive methods, which will be described
in Section 4.5. Our objective is to derive roll-angle and AGL constraints so
that, when the MAV encounters the turn in the road and maneuvers to track
it, the road will be maintained in the camera footprint throughout the bank-
to-turn maneuver. The location of the bend in the road is not known to the
MAV a priori, and is estimated by the computer vision algorithm from the video
stream.

(a) (b)

Figure 4: A depiction of the MAV following a road with a turn of angle µ ∈
[−π/2, π/2]. Figure (a) depicts the MAV positioned where the tracking error
is maximum. Figure (b) characterizes the geometric relationship between roll
angle φ, AGL h, and the horizontal field of view η̄.

Figure 4 depicts the MAV following a turn of magnitude µ. It is assumed
that the flight path of the MAV is aligned with the road before it encounters
the turn, and that the MAV is in trimmed flight. We also assume that the
MAV maintains the same commanded roll angle φ throughout the turn, and
that the change from a zero degree roll angle to the commanded roll angle is
achieved instantaneously at the corner of the road. Assuming coordinated turn
conditions, the radius of the flight path when the MAV maintains a constant
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angle φ is given by

r(φ)
4
=

v2

g tanφ
. (11)

We ignore several factors that may impact the roll and AGL constraints includ-
ing wind, initial tracking error, and roll rate constraints.

In Figure 4, the MAV is at the point of maximum deviation from the road
while maintaining a constant commanded roll angle φ. Assuming without loss
of generality, that the initial road segment is headed North, and choosing the
center of the inertial coordinate system as the center of the turning circle, the
position where the MAV’s tracking error is maximum is given by

pN = r(φ) sinµ, (12)
pE = −r(φ) cosµ.

Denote the road coordinates closest to the MAV position as (lN , lE), as shown
in Figure 4(a). The equation for the road after the turn is

y =
x

tanµ
+
r(φ)
tanµ

, (13)

where y is the East coordinate and x is the North coordinate of the road. The
distance between the road and the coordinates of the MAV (pN , pE) are given
by

d2 = (x− pE)2 + (y − pN )2 = (x− pE)2 + (
x

tanµ
+
r(φ)
tanµ

− pN )2. (14)

Maximizing (14) produces the closest road coordinates

lN = r(φ) sinµ cosµ, (15)

lE = −r(φ) cos2 µ.

With reference to Figure 4, the distance between the MAV and (lN , lE) is
r(φ)(1−cosµ). Also, the distance between the MAV and the edge of the camera
field of view is given by h tan( η̄2 − φ) where η̄ is the field-of-view of the camera.
Therefore, the road will remain in the camera field of view if

r(φ)(1− cosµ) ≤ h tan(
η̄

2
− φ). (16)

Solving (16) for the AGL constraint gives

h(φ, µ) ≥ v2(1− cosµ)
g tanφ tan( η̄2 − φ)

, (17)

where g is the gravity constant. To derive a minimum AGL constraint, we first
minimize the right-hand-side of Equation (17) with respect to φ, resulting in
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the optimal roll angle φ∗ = η̄
4 . The ground AGL constraint is therefore given

by

h∗(µ) =
v2(1− cosµ)
g tan2( η̄2 )

. (18)

The AGL constraint increases monotonically from h∗(µ = 0) = 0 for a straight
road, to the maximum AGL constraint h∗(µ = π

2 ) = v2/g tan2(η̄/2).
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Figure 5: Simulation results for two subsequent turns of µ = π/2. Figure (a)
shows the MAV flight path, road pathway, and the region captured by the
horizontal camera footprint through two turns of µ = π/2. Figure (b)plots the
MAV tracking error in relation to the actual road throughout the maneuver.
Figure (c) shows a closeup of the footprint edge during the first turn.

To illustrate, Figure 5 depicts the flight path and camera footprint of a
MAV flying at the the AGL and roll angle constraints when µ = π/2. The
groundspeed of the MAV is v = 13 m/s, and the field-of-view of the camera is
η̄ = π

3 , resulting in a roll angle constraint of φ∗ = π
12 and an AGL constraint of

h∗ = 240 m. As seen in Figure 5, the MAV successfully maintains the road in
the camera throughout the two turns of µ = π/2. In Figure 5 the shaded area is
the locus of points swept out by the projection of the horizontal axis or x-axis
of the camera frame onto the inertial frame.

To maintain the entire road in the camera footprint we must account for the
road width. In this case, Equation (16) becomes

r(φ)(1− cosµ) +
wroad

2
≤ h tan(

η̄

2
− φ), (19)

where wroad is the (known) width of the road. The lower bound on AGL is
therefore

h(φ, µ) ≥ v2(1− cosµ)± g tanφ(wroad/2)
g tanφ tan( η̄2 − φ)

. (20)

The minimum turn angle, and AGL constraints are therefore given by

φ∗ = arg min
0≤|φ|≤φ̄

h(φ, µ).

h∗(µ) = h(φ∗, µ). (21)
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For this case, a closed form solution does not exist, and must be determined
numerically. To solve this problem we have used the Matlab Optimization
Toolbox.

4.3 Flying below the AGL constraint

Suppose that we select the commanded altitude based on an expected turn
angles of µ, and then unexpectedly encounter sharper turns. Alternatively, if
our primary objective is to image the road, the AGL constraint derived in the
previous section may be too large to allow the desired level of camera resolution.
Therefore, we may choose to fly below the AGL constraint resulting in the road
leaving the footprint of the camera, requiring the road to be visually recaptured.

An obvious method for recapturing the road is to bank at the maximum
bank angle ±φ̄ until the road reenters the field of view. While this scheme
results in a minimum time recapture, the resulting video will likely be erratic.
In addition, the camera footprint may significantly deviate from the road, which
may result in the vision system identifying a nearby road or structure as the
path that needs to be followed.

As an alternative, we propose the introduction of a roll angle constraint
that minimizes the distance between the camera footprint and the road while
the road is not in the image. By doing so overhead imagery closest to the
road, that may still contain useful information, will be obtained. The roll-angle
constraint also provides a smoother viewing experience for the operator.

The minimum distance between the camera footprint and the road is deter-
mined from the closest road coordinates and the closest projected-pixel coordi-
nates to the road. The projected-pixel location is obtained from Equation (10)
as

qN = pN + h(
−sµcφs η̄

2
+ sµsφc η̄

2

sφs η̄
2

+ cφc η̄
2

), (22)

qE = pE + h(
cµcφs η̄

2
− cµsφc η̄

2

sφs η̄
2

+ cφc η̄
2

),

where the MAV coordinates are given in Equation (12), and the road coor-
dinates corresponding to the maximum deviation from the road are given in
Equation (15). The roll angle that minimizes the distance between the camera
footprint and the road for a specified AGL is found by finding the minimum dis-
tance between the closest road location given by Equation (15) and the closest
localized pixel given by Equation (22) with respect to φ as

φ∗ = arg min
0≤|φ|≤φ̄

((qN − lN )2 + (qE − lE)2), (23)

where φ̄ is the maximum roll angle allowed by the autopilot. The solution to
Equation (23) is not necessarily φ̄. An aggressive roll angle will reduce the MAV
turning radius but the camera footprint will sweep out less distance from the
MAV. Equation (23) resolves the conflict between the MAV turn radius and
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the footprint limit which are both functions of φ. The desired roll angle is
solved numerically from Equation (23) and used as the roll-angle constraint in
situations where the MAV operates below the AGL constraint.

Assuming a MAV speed of v = 13 m/s, a camera field of view η̄ = π
3 , and

a road width wroad = 10 m, the corresponding AGL and roll-angle constraint
are shown in Figure 6. For situations where the MAV operates at the AGL
constraint, the roll-angle constraint is set to η̄

4 , which guarantees the capture of
the road. As shown in Figure 6(b), for turn angles between 0 and 55 degrees the
MAV operates above the AGL constraint allowing it to conduct more aggressive
turn maneuvers. For turn angles above 55 degrees the roll-angle constraint
minimizes the distance between the road and the camera footprint.
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Figure 6: Figure (a) shows the relationship between the turn angle µ and the
AGL constraint for a MAV speed of 13 m/s, and a horizontal field of view η̄ = π

3 .
Figure (b) shows the relationship between µ and the roll-angle constraint when
the MAV is at an AGL of 100 m. For turn angles less than 55 degrees, the MAV
operates above the AGL constraint which allows more aggressive roll-angles.
For turn angles greater than 55 degrees, the roll angle constraint minimizes the
distance between the footprint and the road.

4.4 Curved Roads

This section considers visual tracking of curved roads with bounded spatial
frequency. Without loss of generality we assume that the road is sinusoidally
shaped, as shown in Figure 7, with a constant East coordinate and a North
coordinate given by α cos(βω), where α is the amplitude and β is the spatial
frequency.

As depicted in Figure 4(b), when the MAV is in wings-level flight, the far-
thest distance the camera footprint captures to the right or left of the MAV is
qE(φ = 0) = h tan η̄

2 . Therefore, the road will remain in the camera footprint
during straight, wings-level flight if the AGL and the amplitude of the deviation
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Footprint of the camera

FoV

Road

Figure 7: This figure depicts a MAV following a sinusoidal road. At the AGL
derived in Equation (24), the camera footprint may cover the road without
manuevering.

satisfy
h ≥ α

tan η̄
2

. (24)

Maintaining the road in the footprint of the camera is most difficult at the
points of maximum curvature which occur when βω = nπ, where n is an inte-
ger. By commanding a constant roll angle while tracking one of the periods of
the sinusoidal road, a worst-case design can be obtained by approximating the
MAV’s flight path as a circle. The commanded roll angle will change during
observation of the sinusoidal path to follow the road more tightly. Therefore,
the roll-angle constraint that we will derive is conservative. Because the com-
manded roll angle is approximated as a constant, the camera observation limit
of the footprint will also trace out a circular path as shown in Figure 8. For a
righthanded orbit, the observation limit of the footprint is the inertial position
of the rightmost pixel along the x-axis in the image.

For a dead-end, the MAV will need to turn 180 degrees without losing the
road. Setting µ = π/2 in Equation (18) gives the AGL constraint necessary
to maintain the road through a quarter orbit. If the footprint is twice as large
in the inertial frame, the MAV will successfully track the road through a half
orbit. Therefore, the AGL constraint needed to maintain any inertial coordinate
or road in the camera footprint is twice the AGL constraint for µ = π/2:

h∗ =
2v2

g tan( η̄4 )2
. (25)

Flying at or above this AGL guarantees that any sinusoidally varying road will
be in the camera footprint regardless of the road’s curvature. Above this AGL,
any continuous road can be maintained in the camera footprint by limiting the
roll-angle constraint to φ ≤ η̄

4 .
When flying below the AGL constraint (25), the roll-angle constraint φ∗ is

calculated using an approach similar to that used in Section 4.3. The road
location with the greatest curvature (βω = nπ) will dictate the maneuverability
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Figure 8: This figure depicts the MAV flight path, road path, and observation
limit (the inertial position of the rightmost pixel). The maximum distance the
MAV deviates from the road occurs at the locations of greatest curvature.

constraints, as shown in Figure 8. The road will be in the camera footprint if
the curvature of the observation limit is greater than the curvature of the road.
The observation circle is given by

y = (qN (φ)2 − x2)
1
2 , (26)

where x and y are the North and East coordinates of the observation limit, and
where

qN (φ) =
v2

g tanφ
+ h(

−cφs η̄
2

+ sφc η̄
2

sφs η̄
2

+ cφc η̄
2

), (27)

is the North location of the far right coordinate of the footprint.
Comparing the curvature of the road path and the observation limit yields

∂2

∂ω2
α cos(βω) =

∂2

∂x2
(qN (φ)2 − x2)

1
2 . (28)

where ω and x are both in units of meters. Evaluating the partial derivatives at
βω = nπ and x = 0 we obtain β2α = 1

qN (φ∗) . Therefore, the road will remain in
the camera footprint if β2α ≤ 1

qN (φ∗) . The road width can be easily accounted
for by adjusting the amplitude α to αw = α+ wroad which gives

qN (φ∗) ≤ 1
β2αw

. (29)

Figure 9 shows the relationship between the roll-angle constraint and the
AGL h, the road amplitude α, and the horizontal field-of-view η̄. The road is
a circle with curvature β = π

2α m−1. Figure 9(a) plots the minimum roll-angle
constraint as a function of AGL when the curvature amplitude is α = 140 m
and the field-of-view limit is η̄ = 60 degrees. Figure 9(b) plots the minimum
roll-angle constraint as a function of curvature amplitude when the AGL is
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h = 100 m and the field-of-view limit is η̄ = 60 degrees. Figure 9(c) plots the
minimum roll-angle constraint as a function of field-of-view limit when the AGL
is h = 100 m and the curvature amplitude is α = 140 m.
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Figure 9: Minimum roll-angle constraint relationships for curved roads. These
graphs show how the AGL h, the road curvature α, and the field-of-view con-
straint η̄ influence the minimum roll-angle constraint. The MAV airspeed is
13 m/s and a road width wroad = 0 m.

In Figure 10 the road is constructed with circles of approximately 140 m
radius. The MAV follows the road at an AGL of 100 m and a speed of 13 m/s.
With these values, α = 140 m and β = π

2α m−1. Solving for the minimum
roll angle constraint we get φ∗ = 10.6 degrees. The MAV follows the simulated
curved road over 3000 m with an average tracking error of 7.49 m. The roll-
angle constraint was set to 15 degrees to allow feedback control to track the
road. Figure 10(a) shows the MAV flight path, path of the road, the estimated
path of the road, and the horizontal footprint as it tracks the simulated road.
The tracking error is shown in Figure 10(b), and the road-estimation error is
shown in Figure 10(c).
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Figure 10: This figure presents the results of simulation of a MAV following a
road consisting of ∼ 140 m radius circles at an AGL h of 100 m and a roll-angle
constraint φ∗ set at 15 degrees over a distance of 3000 m.
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4.5 Tracking roads whose position is known a priori

Knowledge of the road location and geometry may be available before flight
using, for example, digital elevation maps obtained from Google Earth. Since
the geometry of the path and the location of the turn is known, the MAV is
able to anticipate the turn and, as shown in Figure 11, bank so that the road
remains in the image. The known road scenario is significantly easier than than
the unknown road scenario since banking on the inside of the turn pushes the
road into the camera footprint, whereas banking on the outside of the turn
pushes the road out of the camera footprint.

Figure 11: This figure depicts a MAV tracking a road whose turn angle µ and
the inertial position of the turn are known a priori. In this scenario, the MAV
is able to anticipate the turn and bank on the inside of the angle.

Figure 11 depicts the proposed MAV flight path. If our objective is simply to
maintain the road in the camera field-of-view, it is not necessary to command
a roll angle beyond the angle where the camera footprint captures the world
horizon, which for a right-turn angle is a roll angle φ = π

2 −
η̄
2 . If we desire to

maintain the roll angle within the bound |φ| ≤ φ̄, then the roll angle contraint
will be given by

φ∗ = min
{(π

2
− η̄

2

)
, φ̄
}
.

Using Equation (17), AGL constraint is given by

h∗(µ) =
v2(1− cosµ)

g tanφ∗ tan( η̄2 + φ∗)
.

Even for an aggressive turn like µ = π
2 , the minimum AGL condition is

trivial to achieve because the MAV maneuvers in a way to point the camera
toward the road while it turns. The AGL required to track the road is only a
few meters above the ground for a wide range of horizontal fields of view. With
a horizontal field-of-view of η̄ = 1 degree, a maximum roll angle φ̄ = 30 degrees,
and a MAV speed v = 13 m/s, the minimum AGL constraint would be 3.9 m.
Larger horizontal fields-of-view will result in an AGL constraint even closer to
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the ground. Since the MAV will never approach the minimum AGL constraint,
only a few meters above the ground, this constraint does not play a major role
in the guidance algorithm.

However, for a fixed AGL, a roll-angle constraint can still be used to aid
the road-following guidance loop. The roll angle constraint will depend on the
desired flight path. The remainder of this section will derive three roll-angle
constraints. The first constraint will center the bend of the road in the camera
footprint. The second constraint will minimize distance between the MAV flight
path and the road. The third constraint will minimize the tracking error between
the road and the center of the camera footprint throughout the bank-to-turn
maneuver. We will assume that constant control commands are provided to the
MAV while it turns to ensure steady video imaging.

4.5.1 Roll Angle Constraint that Centers the Footprint on the Bend
in the Road

This section derives a roll-angle constraints that centers the camera footprint on
the bend in the road. The AGL is fixed at h. Figure 11 depicts the maximum
distance the MAV travels from the road, where the MAV location is

pN = r(φ) sin(
µ

2
) (30)

pE = −r(φ) cos(
µ

2
),

and the heading angle is ψ = µ
2 , where r(φ) is given in Equation (11)

Image coordinates are calculated by using the transformation from the cam-
era frame to the inertial frame. The case of centering the camera footprint
precisely on the bend is mathematically equivalent to setting the horizontal
field-of-view η̄ equal to zero and minimizing the distance between the camera
path and the bend coordinates. For a given AGL h, the inertial coordinates
that correspond to the center of the camera footprint are

qN = pN + h sin
µ

2
tanφ, (31)

qE = pE − h cos
µ

2
tanφ.

The position of the bend in the road is given by

lN =
−r(φ)
tanµ

+
r(φ)
sinµ

(32)

lE = −r(φ).

The roll angle φ∗ is found by minimizing the distance between the world location
corresponding to the center of the camera and the coordinates in the bend in
the road as

φ∗ = arg min
0≤|φ|≤φ̄

((qN − lN )2 + (qE − lE)2). (33)
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The angle φ∗ is used to obtain the coordinates where the MAV must begin
its maneuver to capture the center of the bend. The MAV must begin its
maneuver at a distance of −r(φ

∗)
tanµ + r(φ∗)

sinµ from the bend in the road. Using this
path-planning scheme, the camera footprint will deviate from the road at the
beginning and end of the maneuver, and at these points the road may leave the
image depending on the field-of-view. The maneuver will center the road bend
in the footprint at the midpoint of the maneuver. The road width does not effect
the design of this constraint. Figure 12(a) shows the flight path and footprint
following a 70 degree turn when the center of the footprint of the camera is
constrained to pass through the center of the bend.
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Figure 12: This figure shows simulation results of a MAV tracking a road whose
position is known a priori with a 70 degree turn at 100 m AGL, airspeed v =
13 m/s, and horizontal field-of-view η̄ = π

3 , using the three constraints discussed
in this section. In Figure (a) the MAV executes a 11.04 degree roll angle 61.88
m before the road turn, centering the footprint on the bend in the road. In
Figure (b) the MAV executes a 33.31 degree roll angle 18.37 m before the road
turn, minimizing the distance between the road and the MAV. In Figure (c) the
MAV executes a 7.4 degree roll angle 92.97 m before the road turn, minimizing
the distance between the road and the center of the camera footprint throughout
the maneuver.

4.5.2 Roll Angle Constraint that Minimizes the Distance Between
MAV Flight Path and Road

As an alternative to centering the camera on the bend in the road, minimizing
the distance between the MAV flight path and the road provides several benefits.
For example, estimation errors from camera-to-world projection can be reduced
by decreasing the MAV proximity to the road. Another benefit is that the
pixel density of the road in the image will be maximized, thus helping the Road
Classifier more effectively segment the road.

The position of the bend in the road is again given by Equation (32). As
shown in Figure 11, for a right hand turn, the rightmost pixel constrains the
MAV’s ability to follow the road. For a road that bends to the right, the
constraining pixel is located at ηx = η̄

2 . Using the result of Section 4.1, the
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North and East inertial position corresponding to the rightmost pixel ( η̄2 , 0) is

qN = pN + h(
−sµcφs η̄

2
+ sµsφc η̄

2

sφs η̄
2

+ cφc η̄
2

), (34)

qE = pE + h(
cµcφs η̄

2
− cµsφc η̄

2

sφs η̄
2

+ cφc η̄
2

).

The coordinates from Equation (34) can be inserted into Equation (33) and the
minimum roll angle φ∗ can be found. A roll-angle constraint of φ = φ∗+ε, where
|ε| is less than the accepted roll-angle deviation, will allow the guidance loop to
adjust to the path errors detected by the vision system. Figure 12(b) shows the
flight path and sensor footprint when the MAV follows a 70 degree turn and the
roll angle is constrained to minimize the distance to the road. Because the road
is barely captured in the camera footprint at the center of the turn and it may
initially be lost when the MAV begins the maneuver, this roll constraint should
be the maximum limit for a given turn angle µ.

4.5.3 Roll Angle Constraint that Minimizes the Footprint Tracking
Error over the Entire Road

Using a constraint that minimizes the tracking error between the entire road
and the camera footprint helps the MAV capture the most area surrounding
the road. This constraint is preferred if surveillance of the entire road is the
desired objective. The constraints discussed in the preceding paragraphs focus
on imaging the bend in the road, which may result in losing track of the road
at the point where the MAV begins its maneuver. The inertial position cor-
responding with the center pixel of the camera is found using Equation (10)
with η̄ = 0. From Figure 11, the area between the footprint center and the road
during the maneuver can be used to determine the optimal roll-angle constraint.
By considering the first half of the maneuver, we can find the tracking error by
calculating the area between the East coordinates of the center of the footprint
qE = −r(φ)cos(ψ)− h cos µ2 tanφ, and the road before the bend lE = −r(φ) as

φ∗ = arg min
0≤|φ|≤φmax

∫ ψ=µ
2

ψ=0

(−r(φ) cosψ − h cos
µ

2
tanφ+ r(φ)) δψ, (35)

where φmax is the maximum roll angle. Figure 12(c) shows the flight path
and footprint following a 70 degree turn where the roll angle is constrained to
minimize the tracking area between the footprint and the road.

5 Simulation and Flight Results

5.1 Simulation Environment

The road-following algorithm was tested extensively in simulation in order to
improve the guidance loop’s robustness. The simulations tested the constraint
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results as well as the entire implementation of the road-following algorithm. Sim-
ulation results were obtained using the Aviones simulator that was developed at
BYU for small UAV research. The environment allows all flight algorithms to
be tested in the lab before use in the field. Aviones incorporates a full physics
model with six degrees of freedom. Aviones renders the MAV for display and
provides a video stream to the Virtual Cockpit of the simulated environment
captured from the onboard camera. BYU’s Virtual Cockpit software interfaces
directly with Aviones, mimicking the hardware. The simulation software emu-
lates the Kestrel autopilot by converting Rabbit processor code into standard
C.

Figure 13 shows the relationship between the simulation environment and
the flight test environment. In simulation, Aviones simulates the flight dynamics
and the sensors, and produces synthetic images from the camera. In addition,
the emulated Rabbit processor is used to estimate the states and control the
MAV. The advantage of our framework is that the autopilot code, the virtual
cockpit, and the frame processor are identical for both simulation and during
the flight test.

Synthetically Rendered Image

Image from Camera / Frame Grabber

Figure 13: This diagram shows the relationship between software and hardware
features in the MAV testbed. The Virtual Cockpit serves as the central hub
to the flight system. Captured video is processed in the Frame Processor DLL.
Through the Virtual Cockpit, the interpreted image data is sent to the controller
located on the Autopilot.

5.2 Testbed Description

Figure 14 shows the key components of the testbed used by the Brigham Young
University (BYU) Multiple AGent Intelligent Coordination and Control (MAG-
ICC) Lab. Figure 14(a) shows the Procerus [22] Kestrel autopilot equipped
with a Rabbit 3400 29 MHz processor, rate gyros, accelerometers, and absolute-
pressure and differential-pressure sensors. The autopilot measures 2x1.37x0.47
inches and weighs 16.7 grams. Figure 14(b) shows the airframe used for the
flight tests. The airframe is a 5 foot wingspan XS EPP foam flying wing se-
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lected for its durability, ease of component installation, and flying character-
istics. Embedded in the airframe are the Kestrel autopilot, batteries, a 1000
mW 900 MHz radio modem, a GPS receiver, a video transmitter, and an analog
camera. Figure 14(c) shows the ground-station components. A laptop runs the
Virtual Cockpit and the Frame Processor and interfaces with the MAV through
a communication box. Video is transmitted to ground via a 2.4 GHz analog
transmitter and captured on the laptop using an Imperx VCE-PRO PCMCIA
frame grabber, which provides 640x480 images at 30 frames per second. An RC
transmitter is used as a stand-by fail-safe mechanism to facilitate safe opera-
tions.

(a) (b) (c)

Figure 14: The figure shows the (a) Kestrel autopilot, (b) Kevlar-covered air-
frame, and (c) Ground-station components.

Telemetry information is recorded on the ground station, and guidance com-
mands are sent to the MAV at 10 Hz. Since video is processed on the ground,
the vision algorithm is only required to run at the modem-connection speed
because road directions obtained from the image are localized to the inertial
frame using the telemetry data. Therefore, the computer vision algorithm is
designed to return data at 10 Hz. The inner loops that use accelerometers, rate
gyros, and pressure sensors to control attitude, altitude, and airspeed run at
approximately 100 Hz.

The road-following algorithm is based on the vector field method described
in [23]. The MAV follows GPS waypoints until it reaches the road, switching
to a road-following waypoint specified by the computer vision Road Direction
Finder and Localizer shown in Figure 1. The road-following algorithm then
follows the road continually updating the road waypoint using vision.

5.3 Flight Results

The road-following guidance strategy developed in this paper was used to suc-
cessfully track over a mile of Goshen Canyon Road in Mona, Utah. The map
of the road is shown in Figure 15. The aircraft flew at an altitude of 30 meters
and at a velocity of 13 m/s.

The road was segmented from the image using the methods discussed in
Section 3. The auto-gain on the camera was disenabled so that the Image
Classifier received consistent image hues from one frame to the next. A camera
frame along with the corresponding classification result is shown in Figure 16.
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Figure 15: This figure is a map of Goshen Canyon Road in Mona, UT. The
curvature of the road has a maximum amplitude α = 400 m so that the roll-
angle constraint cannot be set below 5 degrees in order to follow the road at
70 m AGL.

As explained in Section 3, the original image is classified according to its H and
V values. The resulting binary image is flood filled and then eroded. Finally,
the smallest components are removed to obtain the classification. Using the
telemetry information from the autopilot, the road location and its heading are
estimated in the inertial frame.

(a) (b)

Figure 16: This figure shows one camera frame captured during the road follow-
ing demonstration and the corresponding result of the classification algorithm.

Figure 17 shows the path taken by the MAV with the estimation of the road
position and overlays of the camera horizontal footprint. The estimation of the
road position is less accurate when the MAV is banking because of estimation
error in the roll angle. The MAV is able to successfully follow the road over
long stretches and detailed imagery of the road is obtained throughout the
flight. Wind causes the MAV to fly at a slight crab angle. The road possesses
a curvature of amplitude α = 400 m. With this curvature the MAV’s roll-angle
constraint cannot be set below 5 degrees.
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Figure 17: This figure shows the MAV flight path over Goshen Canyon Road, the
estimation of the road path, and the overlay of the horizontal camera footprint.
The overlay shows that the MAV was able to maintain the camera footprint
over the road during the flight.

Figure 18 shows the road tracking error and the estimate of the road orienta-
tion during repeated road following experiments. To facilitate experimentation
from a fixed ground station, the MAV is aligned with the road using GPS coor-
dinates. When the road is in the camera footprint, the road following guidance
loop is enabled. When the operator begins to loose visual line-of-sight to the
MAV, a ”turn around” signal is sent to the autopilot. Upon receiving this signal,
the road following loop is disabled, and a 180 degree turn maneuver is executed
using GPS guidance. After the turn, the road following loop is automatically
re-enabled and road following resumes. The grey areas in Figure 18 correspond
to turn-around maneuvers.

Figure 18(a) shows that the road tracking error consistently converges to a
steady state error that is within a few meters of the road despite the presence
of wind, road classification errors, camera-pointing errors, and communication
latency. Figure 18(b) shows the estimate of the heading of the road produced
by the vision system. The estimated heading is roughly 180 degrees when the
MAV is tracking the road Southbound and approximately zero degrees when it
is tracking the road Northbound.

Wind does cause some road-estimation error during flight. The Kestrel au-
topilot estimates steady state wind and MAV heading angle over the period of
the flight by observing multiple samples of airspeed from the differential pres-
sure sensor, groundspeed from GPS, and course angle from GPS. However, gusts
and unsteady wind will cause errors in the heading angle used to localize the
road. The MAV guidance loop will then follow the erroneous road direction.
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Figure 18: These figure show the tracking error and estimated heading direction
of Goshen Canyon Road. The shaded regions correspond to turn-around maneu-
vers where the road following guidance loop was not active. Figure (a) shows the
estimated tracking error which consistently converges to a small steady error.
Figure (b) shows the estimated heading direction of Goshen Canyon road.

Additional errors are caused by estimation errors in the roll and pitch angles
which are obtained by correcting rate gyro information with accelerometer mea-
surements. However, despite these issues, the system operates reasonably well
in windy conditions. Direct image based servoing may result in reduced tracking
error and is the subject of another paper [24].

6 Conclusions and Future Work

This paper provides roll-angle and AGL constraints for a bank-to-turn MAV
using a strap-down camera. Constraint derivations are derived for roads with
sharp turns and roads with bounded curvature. Roll angle constraints are neces-
sary for bank-to-turn MAVs because the roll-angle directly influences the shape
and position of the camera footprint. The AGL determines the size of the foot-
print. The roll-angle and AGL constraints are derived to prevent the MAV from
maneuvering in such a way that the road leaves the footprint of the camera.

The road-following guidance loop was shown to work in both simulation and
flight tests. The road is successfully extracted from the image using statistical
classification techniques in the HSV color space. The guidance loop can be
altered to follow other visually distinct boundaries. For example, with forest
fires, the Road Classifier can be adjusted to follow hot/cold perimeters rather
than roads. In these other cases, the constraints derived in this paper are
directly applicable.

The AGL and roll-angle constraints derived in this paper can be improved
by considering the entire footprint and turn angles greater than 90 degrees.
The pixels at the top of the image will relax the imposed constraints. These
pixels provide a prediction element to the constraint problem which adjusts
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the heading direction and increases the AGL limit. Turn angles greater than
90 degrees will also allow the MAV to predict future turns, thus relaxing the
constraints. The current AGL and roll-angle solutions can also be relaxed by
considering variable flight paths. Processing delay and tracking error between
the MAV and the road will tighten the constraints.

The road-following guidance loop can be used in the development of other
useful algorithms and mission planning. For example, autonomous vision based
landing on a road is an obvious application. The guidance loop can also work
in conjunction with tracking algorithms, where the MAV follows a road until it
locates a target on the road and then switches to tracking the target.
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