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Estimating vehicle motion using vision sensors in real time has been greatly explored
in the past few years due to speed improvements and advances in computer hardware.
Six degree of freedom motion estimation using vision information is desirable due to a
vision sensors low cost, low power requirements and light weight and for the quality of the
solutions that can be obtained using few assumptions about the environment. However,
cameras have the downside of not providing good estimates when visual features are sparse
or not available. Also, there are problems with changes in lighting and when light is low or
unavailable. Laser scanners have been shown to be robust in these situations. We view an
RGB-D sensor as providing three complimentary modalities that are useful for providing
motion estimation solutions: a monocular camera, a 3D point cloud and the combination
providing RGB-D information. Obviously motion estimates produced using the combined
sensor information are best. However, there are times when information from both sensors
is not available. The monocular camera remains useful when depth information is absent or
insufficient, like in a large room, down a long hallway or outdoors. The 3D point cloud may
still be available when there is insufficient light to utilize the RGB image. The approach
described in this work seeks to take advantage of all three of these sensor modalities to
provide a more robust motion estimation solution.

I. Introduction

Estimating vehicle motion using vision sensors in real time has been greatly explored in the past few years
due to speed improvements and advances in computer hardware. Six degree of freedom (6DOF) motion

estimation using vision information is desirable due to a vision sensors low cost, low power requirements
and light weight and for the quality of the solutions that can be obtained using few assumptions about the
environment. Motion estimates using vision1,2 can be obtained with monocular cameras, stereo rigs, and
recently, RGB-D cameras, which provide many of the benefits of vision and laser scanners combined in a
synchronized package.

We are interested in developing vision-based autonomy specifically for small quadrotor vehicles that op-
erate primarily in indoor environments. Motion estimation is a critical element for this autonomy, especially
as GPS is typically unavailable. These small aerial vehicles present challenging constraints such as stringent
payload limitations and fast vehicle dynamics. Consequently, motion estimation solutions that are robust and
fast are especially important to the long term autonomy and flexibility in mission roles of these autonomous
aerial systems.

A monocular camera is lightweight and inexpensive. It has been shown to provide valid solutions for
motion estimation,3,4 even on quadrotors.5 However, challenges with scale and being in environments with
few features make robust motion estimation difficult with only a monocular camera.

Stereo vision provides the advantage of depth information at close ranges and can be used to provide highly
accurate motion estimates.6,7 However, additional processing time to compute depth and required synchro-
nization for the images are obstacles which have proven difficult for implementation onboard a quadrotor.8,9

Environments with few features also degrade or eliminate motion estimation with stereo.10

Camera information in general has the downside of not providing good estimates when visual features
are sparse or not available, i.e. when viewing blank walls or outdoor terrain. Also, there are problems with
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changes in lighting and when light is low or unavailable. Laser scanners or ICP algorithms using RGB-D
sensors have been shown to be robust in these situations.

RGB-D has the benefits of stereo in indoor environments and has recently been used for visual motion
estimation,11,12 with successful implementations onboard aerial vehicles.13,? Solutions developed without
aerial implementations in mind generally use an iterative closest point (ICP) algorithm14 on the 3D point
cloud for further refinement of the estimated motion.11,12 However, an ICP algorithm is too computationally
expensive for the fast motion estimation solutions that are required by an aerial platform.

Some researchers have worked to combine the benefits of vison and laser by utilizing both sensors.15,9

These researchers seek to bring the benefits of both to provide more robust solutions. However, utilizing
more than one sensor incurs additional processing, complexity and weight.

More robust approaches are proposed with RGB-D cameras for ground vehicle motion.16,? A visual
odometry17 (VO) technique is paired with an ICP algorithm, as is typically done. However, three different
outcomes are possible. When error is low, the VO solution is used. When there is too much error in the
VO but an approximate solution is available, the VO solution initializes an ICP solution. Finally, when
insufficient features are detected on the image, the ICP algorithm generates a solution using only the point
cloud data. Essentially two modalities of the RGB-D sensor are used to provide a more robust solution.

We view an RGB-D sensor as providing three modalities that are useful for providing motion estima-
tion solutions: a monocular camera, a 3D point cloud and the combination providing RGB-D information.
Obviously motion estimates produced using the combined sensor information are best. However, there are
times when information from both sensors is not available. The monocular camera remains useful when
depth information is absent or insufficient, like in a large room, down a long hallway or outdoors. The 3D
point cloud may still be available when there is insufficient light to utilize the RGB image. The approach
described in this work seeks to take advantage of all three of these sensor modalities to provide a robust
motion estimation solution.

The remainder of the article is outlined as follows. We provide additional details on the robust motion
estimation approach in Section II. A 3D view matching algorithm is described in Section III. The 2D version
of the view matching is presented in Section IV. We detail a 2D scan matching approach in Section V.
Hardware results are presented in Section VI. We finish with conclusions and recommendations for future
work in Section VII.

II. Robust Motion Estimation

An RGB-D sensor essentially provides three separate modalities useful for motion estimation. The
proposed algorithm completes view matching using the images and scan matching with the point cloud.
View matching? is similar to VO, where the current image is compared to another image to find the relative
6DOF change in pose. However in visual odometry, consecutive images are compared. We compare each
current image to a reference image, called a keyframe. Once the overlap between the current image and the
keyframe becomes too small and the accuracy of the pose estimates is reduced, we declare a new keyframe
and continue. We utilize view matching for both 3D-to-3D and 2D-to-2D point correspondences.

The scan matcher we utilize provides a 3DOF change in pose between a current scan and a local map of
scans, where the local map is based on the keyframe image. Currently the scan matching uses only a band
of the 3D point cloud as a 2D scan.

The algorithm is able to adapt and focus priority on the sensor modality that is likely to provide the best
information. The percentage of the RGB image with valid depth information is measured on each current
image. When there is a significant portion of the image without depth, like in a hallway, monocular view
matching is used alongside 3D view matching. When a large majority of the image does not have depth
available, monocular view matching replaces the 3D view matching until depth information is restored.
When an insufficient number of features are detected on the image yet depth information is available, the
scan matcher provides the pose estimates. This allows the motion estimation to maximize the information
available and continue providing estimates where a single sensor would fail. It also reduces the complexity
and weight that accompany the use of multiple sensors.

We implement the algorithm using OpenCVa and ROSb open source tools. The algorithm is capable of
running at about 28Hz, which is near the frame rate of the ASUS Xtion Pro Live, however we usually run
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it at 15Hz as it provides a sufficient amount of information to obtain good pose estimates and this saves
computation time for other processes.

II.A. Sensor Fusion

Currently, the output measurements from the motion estimation algorithm are fused with altimeter and IMU
measurements to provide state estimates for a hexacopter aerial vehicle. This vehicle has fast dynamics and
consequently requires quality, fast estimates to maintain flight and to avoid obstacles.

The sensor fusion is provided by a multiplicative extended Kalman filter (MEKF) CITE MEKF that has
been designed specifically to function with a unique relative navigation approach CITE ICUAS. We update
the filter using altimeter, accelerometer, motion-estimation position, and motion-estimation orientation mea-
surements. The motion estimation measurements can come from the 3D view matching, 2D view matching
and/or scan matching.

III. 3D View Matching

3D view matching is the process of estimating the 6DOF change in pose between a current image and a
reference image with the associated depth information. We provide a brief summary of the algorithm here.

Sets of color and depth images are sent to the algorithm. The first image set sent is designated as the
keyframe image pair and all following image pairs are compared to this set until a new keyframe image is
assigned. This occurs once the camera has moved 0.25 meters or 10 degrees in yaw from the location where
the keyframe image was taken.

On each image FAST features CITE? and BRIEF descriptors CITE? are extracted and the feature
positions corrected using the distortion information of the camera. A mask is used so that features may
only be found in areas with valid depth information. The image is also binned to allow an even dispersion
of features across the image. The number of features is currently capped at 750 features. The 3D point
location p = (X Y Z)> for the 2D image feature p̄ = ()x y)top is found by looking up the depth Z in the
depth image and using the projection equations

X =
(x− cx)Z

fx
(1)

Y =
(y − cy)Z

fy
, (2)

where cx, cy, fx, and fy are the intrinsic camera calibration parameters for the image center and focal points.
Next, correspondence between the current image features and the keyframe features are estimated using

forward and backward constrained brute-force searches in a mutual consistency check.1 The corresponding
features are passed into RANSAC,18 which is then employed to find a pose motion estimate while eliminating
outliers. We use a three point singular value decomposition (SVD) algorithm based on19 as the motion model
in RANSAC. The solution estimate provides the 6DOF rotation and translation between the keyframe and
the current coordinate frames and is of the form

pc = Rc
keyp

key + Tc.

Where pc and pkey are the current and keyframe 3D feature position vectors, Rc
key rotates points expressed in

the keyframe coordinate frame into the current image coordinate frame, and T c is the origin of the keyframe
coordinate frame expressed in the current image coordinate frame.

Inliers are found for the sample solution by re-projecting the 3D keyframe features onto the current image
using the sample solution and the intrinsic calibration parameters. To be considered a valid inlier, the pixel
error distance between the locations of current image feature and the reprojected keyframe feature must
be smaller than some threshold. Checking the error on the image provides improved results over solutions
evaluated by error in 3D positions.

The solution estimate with the highest inlier count is returned by the RANSAC algorithm. Note that
we do not use the inlier points to calculate a least-squares solution. We have found by comparing estimates
to truth from a motion capture system that using the best solution typically provides more accurate results
than a least squares solution.

3 of 8

American Institute of Aeronautics and Astronautics



III.A. Covariance Estimate

An estimate of the covariance of the relative pose change is required for the sensor fusion step. Currently we
use a fixed covariance that we found experimentally using truth information from a motion capture system.
We do scale up the covariance when the number of inliers falls below a threshold. Not only is this method
quite fast, we have also been able to obtain quality estimates from the sensor fustion algorithm using this
approach CITEMEKF.

IV. 2D View Matching

View matching with 2D points is the process of estimating the 6DOF transformation between the current
and keyframe images without using the depth information. This process is similar to that of the 3D view
matching.

FAST features and BRIEF descriptors are also extracted from each image and the feature locations are
undistorted. But the mask that is used only allows features to be found on portions of the image without
depth information. Unlike the 3D method, we require normalized calibrated image coordinates for the
features. The same brute-force searches with a mutual consistency check are employed to find estimates of
the matching features between the keyframe and current images.

RANSAC is also employed to find the best solution and eliminate outliers. The motion model employed
in RANSAC is the five-point algorithm.20 We acquired a basic open source implementation of this methodc

and modified it to work with RANSAC. The five-point algorithm uses a minimal subset of five corresponding
points to estimate the essential matrix Ê. Additional details on the properties of the essential matrix can be
found in CITEMULTIPLEVIEWGEOMETRY. For further refinement, we use the closest actual essential
matrix Eclosest, by the L2 norm, to Ê using

Eclosest = U


1 0 0

0 1 0

0 0 0

V>, (3)

where U and V are from the SVD of Ê, as detailed in Ref. 21.
We use Sampson’s error to find inliers in the RANSAC routine for each sample solution. The error for a

keyframe feature x and a current image feature x′ and the current sample solution E, based on (3), is

err((x,x′),E) =
x′>Ex√

(x′>E)
2
0 + (x′>E)

2
1 + (Ex)

2
0 + (Ex)

2
1

. (4)

Where the subscripts 0 and 1 on a vector indicate the first and second elements of that vector.
Using Eclosest, we estimate the projection matrix P̂, which contains the rotation and translation between

the keyframe and current image. Because of the lack of depth information, the translation is known only up
to an unknown scale factor.

The scale is determined using a ratio of estimates of 3D features. With each image pair, keyframe and
current image, we can estimate 3D locations for the features that are inliers from the estimated solution.
Following Ref. 1, the 3D feature locations from at least two 3D features Xk−1 and Xk, from two consecutive
image pairs, pair i and pair j, are compared in a ratio

r =
‖Xk−1,i −Xk−1,j‖
‖Xk,i −Xk,j‖

. (5)

We compare multiple 3D points and compute the mean for a more robust ratio. We use the mean as we are
only including inlier points. The translation in P is multiplied by the ratio r for the appropriate scale.

IV.A. Covariance Estimate

We also employ a covariance estimated by comparing truth from motion capture data to the motion estimates
produced by the approach. This estimate is scaled up when an insufficient number of inliers are found in
the solution.

cnghiaho.com/?p=1675
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V. Scan Matching

While scan-matching algorithms were originally developed for use with laser scan matchers **citations?
or even say this?**, we have been able to successfully implement such an algorithm using depth information
from the RGB-D data. A laser scan is simulated by taking a thin slice of the depth information and feeding
to the algorithm as a laser scan. Our current implementation of provides 2D estimates (x translation, y
translation, and yaw) of the pose of the rotorcraft.

The scan matcher we chose to implement is the point-to-line metric ICP (Iterative Closest/Corresponding
Point) matcher described in Ref. 22. We are implementing it using an **modified** open-source ROS
wrapperd that uses the code provided by the author of Ref. 22e.**how much detail do we want on this?**
A general ICP scan matcher estimates the change in pose of the vehicle, x, between two scans by comparing
an incoming scan, yt, to a reference or keyframe scan, yt−1. A reference surface, Sref , is created from the
reference scan by connecting the scan points with a poly-line. A set of correspondences {(pk,qk)} is then
calculated, where pk is a point from the scan yt, and where qk is the projection of pk onto Sref after pk has
been rotated and translated by x, denoted by

qk = Π (Sref ,Txpk)

where Txpk denotes the rotation and translation of pk by x. An incremental solution for x is then found to
minimize the error function

J (Sref , {pk} ,x) =
∑
k

‖Txpk − qk‖2

**talk about the difference between PlICP and regular ICP?**
In order to reduce the drift in the global pose estimate, the first scan is declared as a keyframe scan, and

then all subsequent scans are compared to this keyframe scan as opposed to comparing each scan to the one
immediately preceding it. Once a predetermined threshold of rotation or linear translation has been reached
and there are no longer enough correspondences between the two scans to calculate an accurate estimate,
the current scan is declared as the new keyframe scan, and the algorithm continues.

Because the ICP scan matching algorithm is sensitive to large errors in the initial guess of the change in
pose between scans, its convergence can be improved by using data from other sensors to provide a better
initial guess22**check citation**. In our implementation, data from the IMU is used to accomplish this.

V.A. Covariance Estimate

An accurate estimate for the covariance of the pose estimate provided by the scan matching algorithm can
be computed in closed form, as described in Ref. 23. The covariance of the estimate, x̂, of x can be
approximated as23

cov (x̂) ≈
(
∂2J

∂x2

)−1
∂2J

∂z∂x
cov (z)

∂2J

∂z∂x

T (
∂2J

∂x2

)−1
where z is the sensor measurement, which in this case is the depth information from the camera. This
calculation was implemented using the author’s codef.

VI. Results

Results for each algorithm comparing its performance to truth are first presented. These results are
all taken from rotorcraft flights within a room equipped with a Motion Analysis motion capture system.
Afterwards, we provide results without truth data that demonstrate the robustness of the motion estimation
approach which are completed using the camera in hand.

In the flight results we utilize a Mikrokopter hexacopter vehicle that carries a Intel i7 processor computer
on which all the processing is computed onboard. The computer is running Ubuntu 12.04 Linux and all the
applications are implemented in C++ and connected together using ROSg. RGB-D imagery and point clouds
are provided by an ASUS Xtion Pro Live at 15 Hz. Truth data is recorded at 100 Hz with sub-millimeter
and sub-degree precision.

dwww.ros.org/wiki/laser scan matcher
ehttp://andrea.caltech.edu/research/robot-perception/plicp/
fhttp://andrea.caltech.edu/research/robot-perception/icpcov/
gwww.ros.org
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VI.A. 3D View Matching Results

We demonstrate two different types of results for the 3D view matching algorithm. The first are relative
results, meaning that we express the truth information in the keyframe coordinate frames to get an idea of
how accurate the relative transformations are between the current and keyframe images. The second set of
results show the global performance of the visual odometry as is typically done.

VI.A.1. Relative Results
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Figure 1. Relative camera ~z (out of plane) position comparison between truth and estimates. The discontinuities in
the plots are due to new nodes being created, causing the truth and the estimates to jump to the new relative position.
We express the global truth from the motion capture in the relative node coordinate frame for the comparison of these
results. Results for the camera ~x and ~y positions are similar.
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Figure 2. Comparison between truth and estimates for the rotation about the camera ~x axis (camera pitch angle, which
is equivalent to the vehicle yaw angle because of the change in axes). Again, the discontinuities in the plots are due
to new nodes being created, causing the truth and the estimates to jump to the new relative position. We express the
global truth from the motion capture in the relative node coordinate frame for the comparison of these results. Results
for the camera roll and yaw positions are similar.

Figure 1 presents the camera z axis portion of the relative transformations between the current and
keyframe images. The discontinuities are due to changing keyframes. Figure 2 presents the results for the
rotation about the camera ~x axis, the camera pitch angle. This angle corresponds to the vehicle yaw angle
because of the change in axes. The algorithm actually outputs the change in rotation as a unit quaternion,
which we have converted to Euler angles for ease of comparison. Table 1 provides the RMS error in the
relative transformations over the flight. These values are representative of results that we routinely achieve
in the motion capture environment.
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Table 1. Presented are the RMS errors of view matching estimates produced during a flight. The motion capture data
is used as truth for the computation and is expressed in the relative coordinate frame. The estimates were produced
in real time during the flight.

RMS Error in Motion Estimates
Transformation RMS Error

camera ~x position 0.033 (m)

camera ~y position 0.041 (m)

camera ~z position 0.041 (m)

camera roll angle 0.020 (rad)

camera pitch angle 0.017 (rad)

camera yaw angle 0.013 (rad)

VI.A.2. Global Results

The global results are also produced from a hexacopter flight within the motion capture environment. How-
ever, we express the relative transformations in the motion capture coordinate frame (global) and compare
these estimates to the truth. These results demonstrate the global drift that occurs due to the small errors
in the relative transformations shown above.

VI.B. 2D View Matching Results

VI.C. 2D Scan Matching Results

VI.D. Combination Results

VII. Conclusions and Future Work
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