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Quadrotors are ideal platforms for autonomous flight in unknown and complex environ-

ments. Their small size and maneuverability are conducive to operating in confined spaces and

avoiding obstacles. Equipped with appropriate sensors and algorithms, quadrotors could enable

several applications currently infeasible for ground robots.

A quadrotor’s small size and maneuverability also create problems for making them

autonomous. The same fast dynamics that make quadrotors maneuverable require accurate and

frequently updated position, orientation, and velocity state estimates to enable autonomous

control. Additionally, the amount of energy and payload available on a quadrotor limits

the available sensors and processing capability. These problems are especially relevant in

unknown and complex 3D environments that demand more processing-intensive algorithms and

information-rich sensor data.

A few research groups have made noteworthy progress toward deploying fully au-

tonomous quadrotors. The authors of [1] present their system while noting that one of the

major challenges is estimating the position and velocity. To address this problem they develop

a sophisticated laser scan-matching algorithm. They characterize that algorithm as the key
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technology that allows their vehicle to fly.

In [2] the authors present a quadrotor system also using a scanning laser rangefinder.

They state that the fast vehicle dynamics require pose estimates with update rates of 20 Hz.

Several of their design decisions are driven by the need to meet the system’s computational

limitations.

The authors of [3] rely on the increased information available from cameras at the

expense of increased computation. They emphasize that the estimated velocity is critical to

damp the system. Their estimator relies on a simple constant-velocity motion model that raises

the minimum update rate the filter requires from the vision processing.

It is clear that accurate and timely state estimates, of attitude and velocity in particular,

are key ingredients to enable an autonomous quadrotor. In this article, we present results showing

how velocity and attitude estimates can benefit from an improvement to the traditional quadrotor

dynamic model.

An assumption of the widely-used (e.g. [4]–[11]) traditional quadrotor model is that the

only significant forces acting on the vehicle are gravity and the thrust produced by the rotors

(see Figure 1). This assumption leads to a dynamic model for the quadrotor’s linear acceleration

given by 
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ẇ

 = Rb
I
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 , (1)

where u̇, v̇, and ẇ are the components of acceleration along the body-fixed ~ib, ~jb, and ~kb axes,

as shown in Figure 1. Rb
I is the rotation matrix from the inertial to the body-fixed reference

2



frame. The constants g and m represent the gravitational acceleration and the quadrotor’s mass.

The combined thrust of the rotors is T and is an input to the system.

This model is acceptable for some applications, such as designing a controller, because

it captures the external forces with the most significant magnitudes. However, it leads to an

interesting paradox that was articulated in [12]. The model implies accelerometers aligned with

the ~ib and ~jb axes will always measure zero. Yet many successful quadrotor implementations

using this model also use the accelerometer measurements to effectively improve estimates of

the quadrotor’s orientation.

An improved quadrotor model should explain how to more appropriately use the data

from the accelerometers aligned with the ~ib and ~jb axes. Many papers acknowledge that some

drag force must act on the vehicle’s body, but this is reasonably dismissed as being small as it

is proportional to the square of the vehicle’s linear velocity. Other researchers include a drag

force that is directly proportional to the quadrotor’s linear velocity. For example, [13], [14], [15]

and [16] identify similar terms. However, the authors’ emphasis on control algorithms avoids

any discussion of the physics that generate the drag or its effect on accelerometers or the state

estimation process. A drag force proportional to linear velocity is included in the estimation

approach of [1] based on the authors’ observation that something must prevent the quadrotor

from accelerating indefinitely. They too offer no physical explanation for the effect and instead

rely on a motion capture system to estimate the proportionality constant.

Both [12] and [17] identify a term called rotor drag as the force acting in the body-fixed

~ib and ~jb axes. Reference [12] derives a dynamic model of the quadrotor based on concepts

of fundamental blade-element theory, and they identify the rotor drag with the accelerometer
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measurements. They conclude with a discussion of two controllers based on their drag-force-

enhanced model. However, the resulting hardware implementations are only assessed qualitatively

by stating that the systems were much easier to fly than with the usual scheme.

In this article we discuss how accelerometer measurements in quadrotor flight lead

to improved estimation performance. We confirm, using hardware and truth data, that the

accelerometers directly measure the translational velocity, allowing more accurate estimates of

the attitude and velocity of the vehicle than can be achieved with traditional methods. In the

“Accelerometer Tutorial” (sidebar) we lay the groundwork to explain why accelerometers in

quadrotor flight measure the rotor drag. In many publications, like [3], [11], [18] for example, a

subtle mistake is made when relating gravity to the accelerometer measurements on a quadrotor.

In this article, we clarify this issue and show the agreement between the improved accelerometer

model and actual measurements.

We also show how easy it is to use this new, drag-force-enhanced model. The drag force

constant can be estimated as a state in a filter driven only by IMU measurements, thus removing

the need for experimental tuning as in [12] or an expensive motion capture system as in [1]. We

present several filters designed to work with only IMU measurements. We compare estimates

to truth as well as estimates from more traditional approaches to quantify the benefit of the

enhanced model in state estimation. In the results we show a twofold to threefold improvement

in average attitude error compared to standard approaches.

We have used the drag-force-enhanced model that is introduced in this paper in other

scenarios. Some preliminary analysis and a simplified application are presented in [19]. The

benefits that the enhanced model provides to a filter that estimates position and yaw using
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exteroceptive sensor measurements is discussed in [20].

Drag-force-enhanced Quadrotor Model

In this section we present a simplified version of the drag-force-enhanced model originally

presented in [12]. We note here that this model applies equally well to any multirotor vehicle,

not only quadrotors. We model the quadrotor with the nonlinear equations

ẋ = f(x,u) + ξ, (2)

yi = hi(x,u) + η, i = 1, ..., p (3)

where hi is the ith measurement function, and the vector u represents the inputs that drive the

evolution of the estimated states. In this paper we will use the input

u =

[
p q r

]>
, (4)

which are the rotation rates about the ~ib, ~jb, and ~kb axes respectively and correspond to the

outputs of the onboard gyroscopes after calibration. ξ and η are zero-mean Gaussian processes

with covariance Q and R respectively.

With reference to Figure 1, the states we consider are

x =

[
φ θ ψ u v w

]>
, (5)

where φ, θ, and ψ are the Euler angles that relate the orientation of the body-fixed frame to the

inertial frame, u, v, and w represent the components of linear velocity in the ~ib, ~jb, and ~kb axes,

respectively.
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The drag-force-enhanced model is obtained from (1) by adding a drag force, which is

proportional to the body-fixed-frame velocity, to the ~x and ~y body-fixed components


u̇

v̇

ẇ

 = Rb
I


0

0
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−

0

0

T
m

−

µ
m
u

µ
m
v

0

 , (6)

where µ is the drag force coefficient. The term µ can depend on several factors, but for nominal

autonomous flight conditions it can be treated as a constant. We highlight that the changes

required to implement the enhanced model are simply two terms added to the body-frame velocity

equations. Reference [12] identifies this drag force as the rotor drag, although the detailed

derivation somewhat obscures the simplicity and practicality of the model.

Using (6), the components of (2) can now be expressed as


φ̇

θ̇

ψ̇

 =


1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ




p

q

r

 , (7)


u̇

v̇

ẇ

 =


−g sin θ + (vr − wq)− Fdi

m

g sinφ cos θ + (wp− ur)− µ
m
u

g cosφ cos θ + (uq − vp)− µ
m
v

 . (8)

The other terms in the u̇ and v̇ portions of (8) are due to gravity and the Coriolis

acceleration. We discussed in the “Accelerometer Tutorial” why gravity is not measured by the

accelerometers, and the Coriolis terms can be neglected for a quadrotor that depends on onboard

sensors. We can therefore model the ~x and ~y accelerometer outputs ami and amj as directly
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measuring the respective components of the drag force

h1
4
= ami ≈ −

µ

m
u, (9)

h2
4
= amj ≈ −

µ

m
v. (10)

Equations (9) and (10) are the two measurement functions included in (3).

Figure 4 illustrates the agreement between the actual accelerometer measurements and

those predicted by equations (9) and (10). We generated Figure 4 using recorded time-

stamped accelerometer and pose data during a manually controlled flight. The accelerometer

measurements were from the onboard sensors and the pose measurements from a motion capture

system. We used a filtered numerical derivative of the position measurements, expressed in the

body-fixed frame of the quadrotor, for the u and v velocities in (9) and (10). The value for µ

was determined using a least-squares fit of the data from several flights. We found that the error

between the predicted and actual accelerometer measurements is modeled well as zero-mean and

Gaussian.

Why Traditional Attitude Estimates Provide Some Benefit

Reference [21] offers some additional perspective on accelerometer measurements as they

relate to the roll angle φ and the pitch angle θ on a quadrotor. Using (9) and (10) in (8) and

ignoring the Coriolis forces, the time evolution of u and v from (8) can be written asu̇
v̇

 =

 −g sin θ − µ
m
u

g sinφ cos θ − µ
m
v

 . (11)

Consider for a moment just the first row of (11). Using a small angle approximation and
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taking the Laplace transform gives the transfer function from θ to u as

u(s) =

−gm
µ

m
µ
s+ 1

θ(s). (12)

Substituting (9) in (12) we obtain

ami(s) =
g

m
µ
s+ 1

θ(s)
4
= H(s)θ(s). (13)

By similar arguments, we find that

amj(s) =
−g

m
µ
s+ 1

φ(s) = −H(s)φ(s). (14)

Equations (13) and (14) describe the first-order response relating the changes in attitude to the

accelerometer measurements, where H(s) is a low-pass filter.

Figure 5 shows the true pitch angle for a quadrotor measured by a motion capture

system, as compared to the traditional attitude estimate described in the “Accelerometer Tutorial”

(sidebar) using actual accelerometer measurements. We have also superimposed the result of

filtering the true pitch angle with H(s) as given in (13). The traditional attitude estimate based

on accelerometer measurements agrees well with the low-pass filtered pitch angle.

The traditional attitude method given in the “Accelerometer Tutorial” (sidebar) is based

on the assumption of static equilibrium. The time constant m/µ governs how quickly the

accelerometer measurements react to a step change in the roll or pitch angle. For a heavier

quadrotor used for onboard vision experiments, m = 2.75 kg and µ ≈ 0.77. In this case

it would take the accelerometer (and therefore the traditional attitude estimate) more than

10 seconds to reach 95% of its steady-state value. Even for the nimble Hummingbird quadrotor

by Ascending Technologies, it takes approximately 3 seconds to approach steady state. Long
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before the accelerometer-based attitude estimate becomes valid, the quadrotor will reach speeds

that degrade onboard sensor data or that make collision in a cluttered environment likely.

It is well known that angle estimation using the traditional approach does not describe

fast attitude changes, even if the reason behind it is less understood. To compensate, gyroscopes

can be used to predict attitude over the short term. Accelerometers are then used to correct

the estimates in a measurement update. However, without accounting for the fact that the

accelerometers on the quadrotor measure scaled velocities, as shown in (9) and (10), the

measurement update will drag the estimates toward the low-pass filtered attitude and not the

true attitude. This estimation approach works reasonably well during flights with gradual attitude

changes, but produces less accurate estimates than are possible.

Observer Design

In this section, we present several filter design options using the drag-force-enhanced

model for the case where the states ximu = [φ, θ, u, v]> will be estimated using only IMU data.

This application is of interest when designing a filter for attitude estimation such as is typically

available on quadrotor autopilots.

Linear Fixed-gain Filter

A simple approach to observer design is to make approximations so that the state

propagation and measurement equations are linear. In this case, (2) and (3) are replaced by

ẋimu = Aximu +Bu,

9



yacc = Caccximu,

where A and B are the appropriate Jacobians of (7) and (8) and Cacc is the Jacobian of (9)

and (10). We will assume Coriolis forces are negligible and evaluate the Jacobians at hover. We

further simplify the design by choosing a fixed observer gain.

We take yacc = [ami, amj]
> as modeled by (9) and (10) as the only elements of (3). Using

the inputs u = [p, q, r]> gives

A =



0 0 0 0

0 0 0 0

0 −g µ
m

0

g 0 0 µ
m


,

B =



1 0 0

0 1 0

0 0 0

0 0 0


,

Cacc =

0 0 µ
m

0

0 0 0 µ
m

 .
State estimates are propagated using

ẋimu = Aximu +Bu+ Lfg(y −Caccximu)

where the observer gain Lfg is chosen using the lqr function in Matlab. Because of its simplicity,

this linear fixed-gain filter is the most practical choice for an embedded processor versus the

extended Kalman filters presented below. Results using this filter will be presented later in the

article.
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EKF with Known µ

The Extended Kalman Filter (EKF) offers improved performance over the linear fixed-

gain filter at the expense of increased complexity. Appropriate elements of the nonlinear equations

(7) and (8) are used in a separate prediction step to propagate ximu forward in time, and Jacobians

A, B, and Cacc are constantly reevaluated using the current state estimate.

However, most of the increased complexity arises in maintaining the uncertainty of the

state estimates, P, and calculating the variable filter gain. The uncertainty is propagated using

Ṗ = AP+PA> +BRgyroB
> +Q. (15)

The process uncertainty in (15) is modeled in two parts. Matrix Q is a hand-tuned, diagonal

matrix that we often use only to model the propagation of bias states. Since the inputs u are

gyroscope measurements, and B is the matrix that specifies how the gyroscopes affect the state

evolution, Rgyro is the covariance of the noise on those sensors. Since we can measure the noise

characteristics of the gyroscopes, using the BRgyroB
> term makes the filter easy to tune and

more accurate than assuming a generic, diagonal process noise matrix for all of the states.

The accelerometer measurement update is given by

L = P−C>acc
(
Raccel +CaccP

−C>acc
)−1

,

P+ = (I− LCacc)P
−,

x+
imu = x−imu + L

(
yacc −Caccx

−
imu

)
.

The notation Y − and Y + indicates a variable Y before and after the measurement update. We

use Raccel to denote the covariance of the accelerometer measurement, and I is an appropriate
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identity matrix. Results for this filter will be given later in the article.

EKF with Estimated µ

The filters given in the previous two sections assume that the rotor drag coefficient µ is

known. In this section we relax that assumption and add µ to the state vector of the EKF and

estimate it simultaneously with the other states. In “Observability of µ” (sidebar) we show that µ

is observable. In the remainder of the paper, we will designate the filter derived in this section as

EKF-µ. We have found that µ can be estimated accurately in a filter using only IMU data. Over

several datasets, the filter-estimated µ stays within about 5% of the truth value estimated using

a motion capture system. When added to the estimated state the propagation of µ is modeled as

a random walk.

Estimating µ as a state of the EKF provides substantial benefit over other approaches that

use an improved dynamic model. In reference [12] the authors describe a hand tuning process

accomplished by comparing several quantities from the vehicle and their counterparts given by

a GPS-driven attitude heading reference system (AHRS). Since the AHRS cannot be collocated

with the vehicle’s IMU, the parameter µ must be tuned simultaneously with the position and

attitude differences that make the accelerometers on the AHRS agree with those of the vehicle.

Reference [1] relies on an expensive motion capture system to provide flight data that they

compare to control commands; a system identification process is then used to determine the

right values for a damping coefficient similar in nature to µ.

Because EKF-µ estimates an additional state, its performance suffers as compared to the

filters that use a predetermined value for µ. Figure 6 illustrates this by comparing the root-
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mean-squared (RMS) error in body frame velocity over several initial values of µ. As would be

expected, EKF-µ is robust to poor initial estimates of µ. If µ cannot be determined beforehand,

we suggest EKF-µ be used in an initial manual flight to produce an estimate. In subsequent

flights, with perhaps some minor hand tuning of µ, one of the other filters should be used to

avoid a decrease in estimation accuracy. Figure 6 shows that there is a reasonable range of values

for the estimate of µ that enable the Fixed-Gain and EKF filters to perform well.

IMU-Only Results

We use a MikroKopter [22] quadrotor dipicted in Figure 2 and a motion capture system,

in Figure 3, from Motion Analysis [23] to generate the data used in these results. The quadrotor

provides accelerometer and gyroscope measurements at 40 Hz. We use this low rate, much

lower than is typically used, to highlight the benefits of using the drag-force-enhanced model.

We receive pose information for the quadrotor from the motion capture system at 200 Hz. A

filtered numerical derivative of the position information is used to estimate the true velocity.

All the data was first recorded from a 250 second manually-controlled flight and then processed

offline so that comparisons between different filters would be valid.

Comparison Filters

As a baseline to compare against, we present results from two filters that rely on the

traditional attitude approach. The first is a fixed-gain linear filter described by

ẋn =

p
q

+ Ln (xaccel − xn) ,
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where xn = [φ, θ]>. The fixed observer gain Ln is selected to prevent the estimates from drifting

while still tracking fast changes as best as possible. We tuned Ln to produce results qualitatively

similar to those from a popular commercial quadrotor. The vector xaccel is an estimate of φ and

θ based on the traditional attitude method (S4) and (S5). We designate this filter the Traditional

FG filter.

The second filter is the explicit nonlinear complementary filter developed in [24]. This

filter estimates the rotation matrix R̂ between the body-fixed reference frame and the inertial

reference frame, as well as the biases on the gyroscopes b̂. The filter is implemented using

˙̂
R = R̂

((
u− b̂

)
×
+ kP (ωmes)×

)
, R̂(0) = R̂0

˙̂
b = −kIωmes

ωmes =
n∑
i=1

kivi × v̂i, ki > 0,

where the notation ()× refers to the matrix form of the cross product, and vi are vectorial

measurements. Using only IMU information without a magnetometer, there is only one

vectorial measurement: the gravity measurement discussed in the “Accelerometer Tutorial”. The

implementation completed for this paper was iteratively hand-tuned to provide the minimum

RMS error in attitude for the dataset considered. The gains were kP = 0.5 and kI = 0.05 for

the results presented below. We designate this as the Complementary filter.

Attitude Results

Figure 7 plots the error in the estimates for a small portion of the manual flight; results

for the pitch angle θ are similar. The figure compares the performance of the Traditional FG and
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Complementary filters with the drag-force-enhanced, linear fixed-gain filter we have described

in this article.

The filters’ performance is further described by Table I which presents the RMS error

results for all of the filters over the entire flight. Notice in Table I that the other filters we have

designed using the enhanced model offer improved performance over the linear fixed-gain filter,

but at increased computational cost. We chose to represent the results of the linear fixed-gain

filter in Figure 7 as it is more relevant in an IMU-only, embedded scenario.

Velocity Results

In addition to improving attitude estimates, the enhanced model also provides information

on the body-frame velocities u and v that would be otherwise unavailable using only IMU

measurements. Table II documents the RMS errors for velocity estimates using the drag-force-

enhanced model in the filters presented above. Figure 8 illustrates estimates of u produced using

the linear fixed-gain filter and the EKF. Note that velocity estimates for the Traditional FG

and Complementary filters are absent from these results as these filters do not provide velocity

estimates.

Although the performance does not appear outstanding in Table II and Figure 8, we note

that these results are produced using only inexpensive MEMS accelerometers and gyroscopes

at low data rates. The fact that the improved model offers information on velocity along with

high-quality attitude estimates is an additional advantage of the proposed approach. The velocity

estimates from the drag-force-enhanced model reduce the need for fast position updates that

traditional approaches require [20].
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Results During Aggressive Maneuvers

We have also found that estimation using the drag-forced enhanced model is robust

to aggressive maneuvers despite the near-hover assumption made in [12] to derive the model.

Figure 9 shows estimates of θ for a segment of aggressive flight. The quadrotor experiences

pitch angles in excess of 45 degrees that are estimated well by the method we propose.

The performance improvements shown here are due to the more correct model of

the physical system that accounts for the rotor drag. The gyroscope measurements provide

information for the fast changes in angle and the accelerometer corrections accurately constrain

the drift. In the traditional approach, if the gyroscope measurements are trusted too much in

order to track fast angular changes, the attitude estimates drift rapidly. To constrain the drift, the

accelerometer measurements must be weighted sufficiently, but using the wrong dynamic model

results in inferior performance.

It is important to note that the filter tuning parameters were not modified for this

flight segment, which highlights the robustness of the proposed estimators. The Traditional FG

and Complementary filters could be tuned for better performance during aggressive maneuvers

but then performance near hover would suffer. As an alternative, an adaptive control or gain

scheduling approach could be implemented on those filters to provide improved estimates for a

broader flight regime, but at the expense of increased complexity.
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Position Dead-reckoning Results

In this section we illustrate the significant results that are possible due to the improved

accuracy given by the drag-force-enhanced model. We completed an experiment where the IMU

information from the quadrotor was used to dead reckon the global position. We implemented

this experiment with two filters: the Traditional EKF and the Drag-Force EKF.

The Traditional EKF is a combination of the two methods presented in the “Accelerometer

Tutorial”. The Traditional FG filter, explained above, provides the attitude estimates using the

accelerometer and gyroscope measurements according to the traditional attitude method. Then

the filter estimates the global position by integrating accelerometer measurements using the

integrated velocity method.

The Drag-Force EKF is an augmented version of the EKF with Known µ method, which

was derived above. The filter uses the gyroscopes and accelerometer measurement updates (9)

and (10) to estimate the attitude and velocity. We augmented this filter to also include north and

east position states, which are estimated by integrating the velocity estimates.

In both filters the standard kinematic relationship between velocity and position is used

to estimate the position using velocity estimates. Initialization of the position estimates at the

starting global location is the only input position information provided to either filter during the

whole flight.

Figure 10 shows north and east position dead-reckoning estimates obtained using only

the IMU information available during the first ten seconds of the quadrotor flight. Note how

the Drag-Force EKF estimates trend well with the global position while the estimates from the
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Traditional EKF do not. Figure 11 plots the norm of the north and east error for the Traditional

EKF and the Drag-Force EKF. Note the vast difference in drift rate between the two approaches

over the whole flight.

The point of these results is to demonstrate how much information the IMU can provide

to the quadrotor state estimates when a valid model is employed. The basic position information

provided by this approach can contribute to a lower dependence on exteroceptive sensor or GPS

information [20]. Correctly modeling the accelerometer measurements has a significant impact

on position, velocity, and attitude estimates.

Conclusion

We have shown that assumptions behind the attitude method for measuring the gravity

vector are flawed when applied to a quadrotor, even though the approach provides some benefit.

When designing an estimator for a quadrotor it is too restrictive to assume static equilibrium.

The forces acting on the quadrotor will only sum to zero at hover or after a long period of time

at a fixed attitude.

Using only IMU data, the EKF and the linear fixed-gain filter based on the drag-

force-enhanced model provide a trade-off between complexity and performance. Each provides

an improvement in attitude estimates compared to typical approaches, even during aggressive

maneuvers, while also providing significant information about velocity. The velocity estimates, in

turn, can be used effectively by the EKF to provide position estimates based on dead reckoning

that diverge relatively slowly. If µ is unknown, we have shown that it can be effectively estimated

by including it in the state during accelerated flight. The accuracy of the estimates we provided
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from the IMU-only filters could be further improved by increasing the data rate of the IMU.

We attribute the improvements shown in this article to the correct characterization of

accelerometer measurement. This is a noteworthy advantage as IMU measurements are typically

available at high rates and are comparatively inexpensive to process.
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Flying,” PhD, École Polytechnique Fédérale de Lausanne, 2007.

[17] A. A. Mian and W. Daobo, “Nonlinear Flight Control Strategy for an Underactuated

Quadrotor Aerial Robot,” in IEEE Intl. Conf. on Networking, Sensing and Control, 2008,

pp. 938–942.

[18] S. Grzonka, G. Grisetti, and W. Burgard, “Towards a Navigation System for Autonomous

21



Indoor Flying,” in IEEE Intl. Conf. on Robotics and Automation, no. Section III. Ieee,

May 2009, pp. 2878–2883.

[19] R. Leishman, J. Macdonald, S. Quebe, J. Ferrin, R. Beard, and T. Mclain, “Utilizing an

Improved Rotorcraft Dynamic Model in State Estimation,” in IEEE/RSJ Intl. Conf. on

Intelligent Robots and Systems, 2011.

[20] J. Macdonald, R. Leishman, R. Beard, and T. McLain, “Analysis of an Improved IMU-

Based Observer for Multirotor Helicopters,” Journal of Intelligent & Robotic Systems (in

review; preprint available from the authors).

[21] C. Chamberlain, “System Identification, State Estimation, and Control of Unmanned Aerial

Robots,” Master’s Thesis, Brigham Young University, Provo, UT, Apr. 2011.

[22] “Mikrokopter.” [Online]. Available: www.mikrokopter.de/ucwiki/en/MikroKopter

[23] “Motion Analysis Corp.” [Online]. Available: www.motionanalysis.com/

[24] R. Mahony, T. Hamel, and J.-M. Pflimlin, “Nonlinear Complementary Filters on the Special

Orthogonal Group,” IEEE Transactions on Automatic Control, vol. 53, no. 5, pp. 1203–

1218, 2008.

[25] M. Vidyasagar, Nonlinear Systems Analysis. Prentice-Hall, 1993.

22



l1

ib

jb

kbnorth

h

1

2

3

4

east

down

Figure 1. Schematic of a Quadrotor. A schematic representation of the quadrotor showing

coordinate frames and notation used in the article. The inertial coordinate frame has its arbitrary

origin at OI with right-handed axes oriented in north, east, and down (i.e. aligned with gravity)

directions. The body-fixed reference frame has its origin, Ob, at the quadrotor’s center of mass,

assumed here to be some distance h directly below the quadrotor’s geometric center. The body

frame ~ib and ~jb axes are parallel with the vectors from the geometric center to motors 1 and 2.

The ~kb axis is oriented to complete a right-handed coordinate system. The motors rotate in the

directions shown.
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Figure 2. Hovering Quadrotor. A quadrotor from MikroKopter that was used in the experiments.

The vehicle is hovering using the measurements from the motion capture system. c©Jaren Wilkey,

BYU Photo
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Figure 3. Motion Capture Environment. Here is the motion capture environment where all the

testing was conducted for this research. We use a motion capture system from Motion Analysis.

The system provides 6DoF pose information at 200 Hz with sub-degree and sub-millimeter

accuracy.
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Figure 4. Predicted and Actual Accelerometer Measurements. The actual accelerometer

measurements for a nominal indoor flight are plotted against those predicted by (9) and (10).

We generated this figure using time-stamped accelerometer and pose data recorded during a

manually-controlled flight.
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Figure 5. Pitch Angle Comparison. Comparison of the true pitch angle θ, the traditional attitude

approximation, and a low-pass filtered θ for a small portion of a flight. Notice how closely the

traditional attitude estimation method results approach those of the low-pass filtered pitch angle.
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Figure 6. RMS Error in Velocity. RMS errors in velocity for the various filters when the initial

estimate of µ is a multiple of the true value. The Fixed Gain filter and EKF use the initial, but

incorrect, value of µ throughout the entire flight. With EKF-µ, the value evolves in time. It is

interesting to note that the Fixed Gain and EKF still provide low RMS values over a wide range

of incorrect estimates of µ.
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Figure 7. Error in φ Estimates. The error in the roll angle φ over a small window of the manual

flight for the Traditional FG, Complementary and drag-force enhanced fixed gain filters. Since

the plot is of error, smaller values denote increased performance.
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TABLE I

RMS ERROR FOR φ AND θ. THE COMBINED RMS ERRORS FROM THE VARIOUS FILTERS FOR

φ AND θ FROM A MANUAL FLIGHT.

RMS Error for Attitude Estimates

Filter RMS of φ and θ (deg)

Traditional FG 7.27

Complementary 5.66

Drag-Force Linear Fixed-Gain 2.80

Drag-Force EKF 2.16

Drag-Force EKF-µ 2.23
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Figure 8. IMU-Only Velocity Results. Body-frame velocity u truth versus the drag-force fixed-

gain filter and EKF estimates for a small portion of a flight. Velocity estimates are not available

when using only IMU data with the traditional approaches. Only IMU information is used to

produce these estimates. Only the drag-force enhanced filter estimates are shown;
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TABLE II

RMS ERROR ON VELOCITY. THE COMBINED RMS ERRORS FOR THE VELOCITY ESTIMATES

u AND v USING THE DRAG-FORCE ENHANCED MODEL.

RMS Errors for Velocity Estimates

Filter RMS of u and v (m/s)

Traditional FG N/A

Complementary N/A

Drag-Force Fixed-Gain 0.87

Drag-Force EKF 0.60

Drag-Force EKF-µ 0.67
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Figure 9. Pitch Angle During Aggressive Flight. This figure plots the true pitch angle θ

and its estimates using the Traditional FG, Complementary, and drag-force-enhanced fixed-gain

estimators during an aggressive flight. Notice that the linear fixed-gain filter for the enhanced

model provides accurate estimates despite the large angles that are experienced. The filter

parameters are identical to those used to produce the previous plots.
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Figure 10. Position Dead-reckoning Results. These position results were obtained using only

the IMU information available from the first 10 seconds of a manual quadrotor flight. The

Traditional EKF uses the integrated velocity method mentioned in the“Accelerometer Tutorial”

by integrating accelerometer values to obtain position estimates. The Drag-Force EKF uses the

drag-force-enhanced model accelerometer measurement updates to estimate velocity and then

integrates the velocity estimates to estimate position. Position information was used to initialize

the estimates to the starting global position. Note how the improved EKF estimates trend with

the global position while the estimates from the traditional approach walk off the chart. This

demonstrates the importance of IMU information to the quadrotor state estimates when a valid

model is employed.
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Figure 11. Norm of North and East Position Error. The norm of the north and east dead-

reckoning position error for the Traditonal EKF and the Drag-Force EKF is shown. IMU

measurements are the only sensor information provided to the two filters. Note the differences

in the drift rate between the two approaches. Using the Drag-Force EKF will allow less-frequent

exteroceptive and/or GPS updates because of the much lower drift rate using only the IMU

information.
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Sidebar 1: Accelerometer Tutorial

If a ∈ R3 represents the acceleration of a vehicle, m is the mass, and FT ∈ R3 is the

total external force acting on the vehicle, then Newton’s second law states that

a =
1

m
FT . (S1)

However, accelerometers do not measure the total acceleration a. Accelerometers measure

the specific acceleration, meaning the difference between the acceleration of the vehicle and

gravitational acceleration.

Figure S1 shows a simplified diagram of a one-axis accelerometer, where a proof-mass

is attached by a flexure to the housing of the accelerometer. When the proof mass undergoes

an acceleration that is different than the acceleration experienced by the housing, the proof

mass deflects and a non-zero measurement is produced. With the accelerometer in Figure S1

on a horizontal surface, the normal force offsets the force due to the weight. The proof-mass,

which does not experience the normal force, deflects under the influence of gravity, causing the

accelerometer to measure an upward acceleration of 1 g. On the other hand, during free fall,

gravity would accelerate both the housing and the proof-mass, resulting in a measurement of

zero.

The output of a three-axis accelerometer mounted on a rigid body is then given by

am =
1

m
(FT − Fg) , (S2)

where am ∈ R3 is the measured acceleration and Fg ∈ R3 is the force due to gravity.

Equation (S2) states that for an accelerometer to measure the effect of gravity only, all the

external forces must sum to zero.
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Throughout the article we assume that the axes of the accelerometer are aligned with the

body-frame axes. We also assume that the accelerometer has been properly calibrated to remove

misalignment errors and cross-axis sensitivity.

Below we detail two different methods for state estimation using accelerometers. Many

researchers have shown that using one of these methods to fuse accelerometers with an

exteroceptive sensor increases performance compared to using the exteroceptive sensor alone.

Accelerometer-based Attitude Estimation

From (S2), when the sum of external forces is zero the accelerometers will measure

am = − 1

m
Fg. (S3)

Let abm
4
= (ami, amj, amk)

>, represent the acceleration measured in the body-frame axes. In the

inertial frame the force of gravity is Fg = (0, 0,mg)>. Expressing (S3) in the body frame gives
ami

amj

amk

 = Rb
I


0

0

−g

 ,

=


g sin θ

−g sinφ cos θ

−g cosφ cos θ

 ,

where φ is the roll angle and θ is the pitch angle of the ground vehicle. The roll and pitch angles

can therefore be estimated as

φ̂accel = tan−1
(
amj
amk

)
(S4)
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θ̂accel = sin−1
(
ami
g

)
. (S5)

This estimation method, expressed by (S4) and (S5), will be termed the traditional attitude

method. We note here that the underlying assumption required for this method of zero external

forces is rarely met during quadrotor flight.

Accelerometer-Based Velocity Estimation

If the attitude is known, measured accelerations can be integrated to estimate velocity

using

v̇b = abm +
1

m
Rb
IFg. (S6)

where vb = (u, v, w)> is the velocity expressed in the body-fixed frame. It is critical to note

here that this method of using accelerometers is sensitive to the underlying assumption of known

attitude. The traditional attitude method should not be used to provide the necessary attitude

estimates since it requires that v̇b = 0. In the remainder of this article we will refer to this

approach as the integrated velocity method.

Accelerometers on Quadrotors

Quadrotors obviously differ from ground vehicles because of the thrust required to keep

them airborne. Yet many researchers using quadrotors treat them as ground vehicles with respect

to accelerometer measurements. Quite often a variant of the traditional attitude method provides

IMU-based estimates of attitude to a higher-level observer. This second observer then uses the

integrated velocity method despite the fact that the methods’ assumptions are contradictory.
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As a simple example, when a quadrotor rests on an inclined surface, as shown in the left

half of Figure S2, it experiences a normal force Fn, a friction force Ff and the force due to

gravity Fg. The summation of forces in the body frame is

FT = Rb
IFg − Fn − Ff .

Consequently the accelerometer measures

abm =
1

m
(FT −Rb

IFg) =
1

m


−Ff

0

−Fn

 ,
and (S5) can be used to correctly find the pitch angle.

When the quadrotor is in the air with a similar attitude, the forces are usually assumed

to be Fg and the thrust Ft; all other forces are assumed negligible. The thrust force Ft and

moment Mt are resolved from the individual thrust forces acting at each propeller. This would

give the total force, in the body-fixed reference frame, as

FT ≈ −Ft +Rb
IFg.

According to the model, the accelerometers would then measure

abm =
1

m
(FT −Rb

IFg) =
1

m


0

0

−Ft

 .
Clearly in this situation the attitude cannot be determined using (S4) and (S5) since, according

to the model, the body frame ~i and ~j accelerometers should always measure zero. It would also

be invalid to integrate these values to find the vehicle velocities. Still, many researchers make

productive use of the traditional attitude and velocity methods within control and estimation

schemes. The discrepancy is explained by nontrivial forces that are missing in the model.
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Figure S1. Simplified diagram of an accelerometer. When the proof mass undergoes an

acceleration that is different than the acceleration experienced by the housing, the proof mass

deflects and a non-zero measurement is produced.
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Figure S2. Quadrotor Free-body Diagrams. Free-body diagrams of a quadrotor in two scenarios.

The left image shows the forces when the quadrotor is sitting on an inclined surface. The right

image illustrates the forces according to the standard model when the quadrotor is at a constant

attitude in the air and Mt is zero.
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Sidebar 2: Observability of µ

In this section we demonstrate the observability of the drag coefficient µ when it is

included in the state. We note that observability is a necessary condition for filter convergence.

As a review, we briefly present the theory of nonlinear observability. Afterwards we provide the

conditions where the longitudinal quadrotor system is locally observable with µ included in the

vehicle state. This overview is based on a more detailed presentation of the theory in [25].

Theory

Let x ∈ X , where X is an open subset of RN , represent the state of the nonlinear system

ẋ = f(x) +
m∑
i=1

gi(x)ui, (S1)

with n nonlinear outputs of the form

yj = hj(x), j = 1...n, (S2)

which form the vector output function y(y1(x), ..., yn(x),u). Further, let S(X) and V (X)

respectively designate the set of all scalar-valued smooth functions and the set of all vector

fields (i.e. column vectors on smooth functions) on X . The functions f(x), gi(x) ∈ V (X) are

the nonlinear functions of the state and the m time-varying scalars ui are the (known) inputs

that drive the system.

Given (S1) and (S2), we can say that two states x0 and x1 are distinguishable if there

exists an input function u(·) such that

y(y1(x0), ..., yn(x0),u) 6= y(y1(x1), ..., yn(x1),u). (S3)
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The system is said to be locally observable at a point x0 ∈ X if there exists a neighborhood

N (x0) around x0 such that every x ∈ N (x0), other than x0, is distinguishable from x0. We can

say that the system is locally observable if it is locally observable at each point x0 ∈ X .

It can be shown that a system is locally observable at a point x0 ∈ X if there are a

sufficient number of linearly independent vectors in the gradients of the measurement equations

or the gradients of the Lie derivatives evaluated at x0. Recall that the Lie derivative of a function

κ ∈ S(X) with respect to some vector field ω ∈ V (X) is defined by the mapping

Lωκ
4
=
∂κ(x)

∂x
· ω(x) : X → R.

Quadrotor Longitudinal States With µ

We will now analyze the observability of the longitudinal quadrotor system with µ

included in the state. The longitudinal states of a quadrotor are x = [θ, u, µ]>. Recall that θ is

the pitch angle, u is the body-fixed forward velocity, and µ is drag coefficient. The longitudinal

system is 
θ̇

u̇

µ̇

 = f(x) + u1g1(x) =


0

−g sin(θ)− µ
m
u

ςµ

+ u1


1

0

0

 , (S4)

where we assume that θ̇ = q, the rotation rate about the body ĵ axis. The acceleration due to

gravity is g and m is the mass of the vehicle. The time propagation of µ is modeled as a random

walk where ςµ is a zero-mean, Gaussian random variable. The gyroscope measurement u1 = q

is the input to the system.

The output of the system is the accelerometer measurement in the body î direction,
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modeled as

y1 = h1(x) = −
µ

m
u. (S5)

To show that the longitudinal system is locally observable at a point x0 ∈ X , we must

find three vectors of the observability Grammian that are linearly independent at x0. We begin

with finding the gradient of the output (S5)

dh1 =

[
0 − µ

m
− u
m

]
. (S6)

Next we look among the first-order Lie derivatives. Due to the simplicity of g1(x) in (S4),

dLg1h1 = [0 0 0]. We then consider

dLfh1 = d


[
0 − µ

m
− u
m

]


0

−g sin(θ)− µ
m
u

0




=

[
g cos(θ) µ

m

(
µ
m

)2 (
g sin(θ)
m

+ 2µu
m2

)]
. (S7)

We use a the second-order Lie derivative of f(x) to find a final vector

dLfLfh1 = d


[
g cos(θ) µ

m

(
µ
m

)2 g sin(θ)
m

+ 2µu
m2

]


0

−g sin(θ)− µ
m
u

0




=

[
−g cos(θ)

(
µ
m

)2 − ( µ
m

)3 (
−2µg sin(θ)

m2 − 3µ2u
m3

)]
. (S8)

We can combine the vectors (S6), (S7) and (S8) into an observability matrix OM for the
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longitudinal state

OM =


0 −µ

m
−µ
m

g cos(θ) µ
m

(
µ
m

)2 g sin(θ)
m

+ 2/muu
m2

−g cos(θ)
(
µ
m

)2 − ( µ
m

)3 −2/mug sin(θ)
m2 − 3/mu2u

m3


The determinate of OM is

|OM | = −
u cos(θ)µ4g + sin(θ)mµ3g2

m5
.

Since µ 6= 0, the system will be locally observable except when

0 = −g sin(θ)− µ

m
u. (S9)

We note that S9 is exactly equal to (11) when u̇ = 0. Consequently, the condition (S9) will

only be true during unaccelerated flight, as it is then impossible to tell the difference between

θ and u, making the state unobservable. Therefore, we may say that the longitudinal state x is

locally observable during accelerated, u̇ 6= 0, flight. The ability to estimate the drag coefficient

µ in the state of the vehicle, using only IMU measurements, makes it straightforward to use the

drag-force enhanced model for quadrotor state estimation.
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