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Abstract—Traditional back-end optimization in graph-based
SLAM is focused on improving global pose estimates. The object
of the optimization is to find the most likely configuration
of global poses given fixed relative transformation constraints
produced in the front-end. However, the relative transformations
delivered by the front-end are themselves only estimates. In
this paper we show how making relative transformations the
focus of the back-end optimization leads to a novel algorithm
that iteratively improves the joint estimate of global poses
and relative transformations. We test the algorithm on front-
end data from a 225 meter closed-loop trajectory. Our results
show the algorithm provides the same global pose estimates
in slightly less computational time when compared to g2o, a
state-of-the-art back-end optimization tool. But the optimized
relative transformations produced by gZo require several itera-
tions before they become more accurate than their initial values.
The algorithm presented in this paper offers advantages over
traditional back-end optimization in at least two ways. It uses the
covariance instead of the information form, allowing ready access
to marginal covariance elements needed by the front-end. It also
improves both global pose and relative transformation estimates
at each iteration, making the end result of the optimization
suitable to a wider variety of applications.

I. INTRODUCTION

We seek to employ the graph-based representation of si-
multaneous localization and mapping (SLAM) as part of a
flying system operating in unstructured and unknown indoor
environments. Flying through such an environment leads to
several immediate consequences. For example, an appropriate
vehicle must be small and able to maneuver in cluttered spaces.
A small and agile vehicle will need to produce a useful
navigation solution quickly despite limits on payload and
computational resources. Relaxing assumptions about structure
in the environment motivates the use of information-rich
sensors (e.g. stereo or RGB-D cameras), but these further
increase demands on the constrained processing power.

The graphical representation of SLAM was first applied
in [1]. As a part of graph-based SLAM, the so called “back-
end” optimization [2] incorporates information gained from
revisiting a location in the map to reduce the errors that
have accumulated during exploration. The objective of that
optimization is tied to the real-time navigation of the vehicle.
For example, if the vehicle makes time critical decisions
based on global pose estimates, the back-end should be able
to quickly compute their mean and covariance. If, on the
other hand, the vehicle navigates relative to saved images of
the environment, the relative transformations between those
images may be the most important output from the back-end.

The contribution of this paper is to present an alternative
paradigm for addressing the back-end optimization problem.
We seek to efficiently estimate the joint distribution over

global poses and relative transformations by accounting for
the independence and conditional independence properties
inherent in the problem. This new approach gives essentially
the same global pose estimates as the current state-of-the-art.
It differs in that it operates in the covariance form, and it
directly optimizes the relative transformations between saved
images of the environment. Standard approaches can produce
intermediate results that actually make estimates of the relative
transformations worse. By estimating these variables directly
we improve their estimates at each iteration of the algorithm.

In Section II we review related work representing current
approaches to back-end optimization. In Section III we briefly
review our front-end estimation and navigation techniques.
Our front-end motivates our approach to back-end optimiza-
tion that we present in Section IV. Results for a simple
scenario presented in Section V highlight some of the strengths
of this new paradigm and suggest likely paths for further
development. We discuss those conclusions and plans for
future work in Section VI

II. RELATED WORK

In 1997 Lu and Milios [1] proposed optimizing a graph
of global poses as a robust solution to the SLAM problem.
Their objective was, “to maintain all the local frames of
[exteroceptive] data as well as the relative spatial relationships
between local frames. ... Consistency is achieved by using
all the spatial relations as constraints to solve for the data
frame poses simultaneously.” In other words, a “front-end” [2]
system would determine the relative transformations between
key poses where saved data was acquired in the globally
referenced environment. By “relative” they meant that the
transformations between global poses were defined in the
reference frame of the pose from which they originated. Once
relative transformations were estimated in the front-end, they
proposed that those estimates be frozen and used in a back-end
process to find the most likely arrangement of the global poses.
The optimized global poses then aligned their associated data
into a consistent map.

To further emphasize the nature of their approach, they
stated that, “We treat relations [i.e. relative transformations]
as primitives, but treat locations [i.e. global poses] as free
variables. ... [W]e do not directly update the existing relations
in the network when new observations are made. We simply
add new relations to the network. All the relations are used as
constraints to solve for the location variables which, in turn,
define a set of updated and consistent relations. ... We do not
deal with [i.e. optimize] the relations directly.”

We note here that, like Lu and Milios, we tend to limit our
discussion to graphs containing only relative transformations



between global poses. Some of the papers cited below also
optimize the position of global landmarks by accounting for
the relative transformations between those landmarks and
the poses from which they were observed. We will mention
landmarks in our discussion where important, but we explain
further in Section III that pose-to-landmark constraints can be
subsumed by the front-end into pose-to-pose constraints using
methods such as [3] and [4].

Several additional algorithms building on [1] have since
been presented [5]-[19]. Optimization is achieved by mini-
mizing the error measured by the squared Mahalanobis dis-
tance. Let p represent a vector of all of the global poses
to be optimized, with individual poses designated by p;. We
define 7] to be the relative transformation from p; to Pj
Let the probability distribution p(Tf) represent the Gaussian
distributed estimate of Tg with covariance matrix 3; ;. Finally,
let h(p;, p;) denote a function that takes p; and p; as inputs
and returns the relative transformation between them. Using
this notation, the error metric to be minimized is written as

e(p) = Z (h (pi’pj) - T{)T 2;,]'1 (h (Pzij) - Tz)v (1

where €(p) indicates that the scalar error, ¢, is a function of
all the global poses, p.

Some early efforts at back-end optimization applied re-
laxation techniques to the problem. In one example [5] the
authors draw an analogy between graph-based SLAM and a
mechanical spring-mass system. They assert that global poses
represent masses and that the fixed constraints, Tg, from the
front-end correspond to springs. Each constraint’s uncertainty
acts like a spring constant. They propose a type of gradient
descent to sequentially adjust each pose based on the “forces”

it experiences from adjacent poses.

The approach of [6], dubbed multi-level relaxation (MLR),
follows in a similar vein. They primarily differ from [5] in
that they propose the network be relaxed at different levels
of resolution in order to make computation more efficient. As
late as 2006 some authors [8] cited MLR as the current “state-
of-the-art” in back-end optimization. See the citations in [6]
for additional references to relaxation-based approaches.

More recent back-end optimization algorithms tend to take
a different approach due to advances in direct methods for
solving sparse linear systems [2]. Equation (1) can be approx-
imated by replacing the nonlinear function h (p;, p;) with its
first order Taylor expansion. Taking the derivative, and setting
the result equal to zero (see [2] for details) yields the normal
equations

Hp, =d, )

where H is the information matrix associated with the prob-
ability distribution p(p), pa is an incremental change in p,
and d is a constant vector.

The authors of [7], [8] use the observation that H is sparse
for graph-based SLAM. Nonzero entries in the information
matrix only occur along the block diagonal and in off-diagonal
blocks corresponding to poses connected by a measured
relative transformation. The authors then employ a variable
elimination technique to reduce their initial graph to one

containing fewer variables. Specifically, they remove all of
the landmarks, incorporating the information from pose-to-
landmark constraints into appropriate pose-to-pose constraints.
The authors then solve the reduced system by matrix inversion
or conjugate gradient descent.

The authors of [9]-[11] take the variable elimination tech-
nique further. They present a line of research that seeks
to speed up the incremental optimization of p by making
smart decisions about the order and method for eliminating
variables from the graph. Instead of computing the information
matrix, they focus attention on the Jacobian of & (p;, p;) (and
the similar function for landmarks) to improve accuracy and
numerical stability [9]. Using QR-factorization they eliminate
all of the variables in the graph to form the right triangular
matrix R, then solve the resulting structured, sparse linear
system. The key to keeping this process efficient is keeping
R as sparse as possible by choosing a good order in which
variables are eliminated.

The authors of [9]-[11] also draw interesting connections
between the matrices arising from linearization of (1) and
probabilistic graphical models (Ch. 8 of [20]). Probabilistic
graphical models include Bayesian networks, Markov random
fields, and factor graphs. Their emphasis on graphical models
culminates in [11] where the authors directly manipulate
a tree similar to a Bayesian network [21] instead of the
corresponding right triangular matrix R. We also seek to draw
insight from probabilistic graphical models and will discuss
this further in Section IV and Section VI

The work presented in [12]-[17] represents another thread
in back-end optimization research. As usual, the methods
presented in [12]-[17] iteratively linearize Equation (1) and
adjust p. In [12] the authors introduce a variant of stochastic
gradient descent to make the iterative optimization robust to
local minima. They also present interesting results that suggest
Equation (1) as an error metric is “not an adequate measure of
graph quality.” We will return to this observation in Section I'V.

In [13] and [14] the authors extend the work in [12], making
it converge faster to a more accurate solution by organizing
the global poses into a tree structure and distributing rotational
error more effectively. The primary contribution of [15] is
similar to [9]-[11] in that they find an efficient solution to the
linear system used in iterative optimization by choosing an ap-
propriate ordering for variable elimination. In a contemporary
paper [16] the authors modify the typical iterative optimization
by calculating state changes on a manifold. They also make
use of a hierarchy of graph-based maps with varying degrees
of resolution.

Finally, in “A General Framework for Graph Optimization”
(dubbed gZo) [17] the authors take many of the above innova-
tions and package them in an efficient C++ implementation.
Regarding their results they state, “We present evaluations
carried out on a large set of real-world and simulated data-
sets; in all experiments g?o offered a performance comparable
with the state-of-the-art approaches and in several cases even
outperformed them.”

Of the foregoing papers, all but [14] treat the relative
transformations as fixed constraints. In other words, after
the front-end passes T{ to the back-end, that vector and its



uncertainty are never altered. Recall that Lu and Milios said
they “do not directly update the existing relations in the
network when new observations are made. We simply add new
relations to the network.” This leads to a network that grows
over time even if the robot remains within already explored
territory. They authors of [14] allow the possibility of revisiting
relative transformations, fusing new estimates with old ones.
Their update of the transformations is equivalent to a Kalman
update step where the measurement function is simply the
identity function.

The extended Kalman filter (EKF) SLAM community has
also produced a body of work relevant to our research. Several
authors (e.g. [18], [19]; see also the references therein) divide
the standard EKF SLAM map into a number of statistically
independent local maps, or “sub-maps.” Several factors mo-
tivate this approach to EKF SLAM. Consistency (as defined
in Ch. 5 of [22]) is improved [23] since smaller uncertainty
in the robot pose relative to the local map leads to smaller
linearization error. It is also well known that traditional EKF
SLAM becomes computationally intractable as the number
of mapped features grows. Sub-maps help to alleviate this
problem by bounding the size of the filter state within each
sub-map. Such approaches then retain an estimate of the
relative transformations between the sub-maps. The global
map can then be obtained as above by using an iterative
nonlinear optimization routine. In this sense, most work in
EKF SLAM using sub-maps is similar to graph-based SLAM.

The work in [23] (and subsequent publications [24]-[26])
presents an exception to this analogy between EKF SLAM
sub-mapping and graph-based SLAM. We discuss [23]-[26]
in additional detail in Section V. We note here that [23]
introduces a distinction from the rest of the sub-mapping
literature. They do not treat the individual sub-maps as statisti-
cally independent. Rather, when sub-maps are to be optimized
with information gained at loop closure, that information is
propagated back through the network of sub-maps using the
property of conditional independence.

The algorithms in [5]-[19] all have at their core a paradigm
similar to [1]. The relative transformations Tf from global
pose p; to global pose p; are estimate;d by a front-end
system. Once passed to the back-end, the 7] are almost always
treated as fixed constraints. The global poses are the focus of
iterative optimization; the objective is to find the arrangement
of global poses that best fits the fixed transformation estimates.
Innovations over [1] have made this approach more efficient
and more accurate, but the gist of the paradigm remains
essentially the same.

We differ from the foregoing work on graph-based SLAM
in that we seek to directly optimize the relative transformations
in the back-end. Focusing on relative transformations leads to
the same final solution as the preceding algorithms. However,
for a simple example it produces noticeably more accurate
intermediate results. Our focus on the relative transformations
grows out of our front-end navigation concept. We will briefly
highlight some relevant aspects of that front-end navigation
approach before presenting our back-end concept in greater
detail.

III. FRONT-END PHILOSOPHY AND DESIGN

Autonomous flight through a priori unknown, indoor envi-
ronments is a growing topic of research, though to our knowl-
edge only a few groups [27]-[32] have produced significant
working prototypes. Multi-rotor helicopters are the platform of
choice for this research. These vehicles have been identified
as potential “game changers” [33] in robotics. We also adopt
mutli-rotor helicopters in our work.

The advanced systems presented in [27]-[30] use small
scanning laser range finders to sense the environment. Laser
range finders produce accurate and frequent measurements that
are easy to process, but they are inherently 2D sensors. To
map a 3D environment, laser range finders require significant
structure (vertical walls, piecewise constant floors, etc.). Stereo
vision [31] and recently popular RGB-D cameras [32] are
better suited to unstructured settings. However, data from these
sensors require more computation, as evidenced by the system
design in [31] or the use of an offboard computer in [32].
We use an RGB-D camera with the goal of performing all
computation using the vehicle’s limited resources.

To accommodate the vehicle’s fast dynamics the authors of
[27] advocate moving as many processes as possible out of
the time-critical estimation and control. We also subscribe to
this philosophy. Many authors represent the vehicle’s current
pose in globally metric coordinates. However, [27] states
that complex 3D environments, “will likely require relaxing
the need to maintain a purely metric representation of the
environment and the state of the vehicle.” We implement front-
end navigation by making all estimates and objectives relative
to saved images of the environment.

Relative navigation is especially relevant for indoor flight.
During initial exploration the vehicle will move into unknown
territory along traversable paths it can sense. Similarly, any
interaction with the environment will be accomplished based
on current sensor data. Plans to revisit an area should generally
follow paths already explored due to the high likelihood of
obstruction through unexplored areas. These are all relative
navigation concepts.

However, globally metric information is still important for
sophisticated autonomous behavior. For example, the authors
of [11] point out that an accurate global map allows the
vehicle to hypothesize whether globally adjacent locations
might have a previously undetected pathway between them.
Globally metric information should still be available to the
vehicle, but the vehicle’s immediate state estimation needs
can be satisfied in the front-end using metric information
referenced to the local surroundings

We implement relative navigation [34] using techniques
similar to those described in [3], [4]. Our knowledge of
the environment is embedded in saved RGB-D images. The
vehicle observes its current relative pose by comparing a saved
reference image with new images as they are captured. The
current relative pose estimate can also incorporate IMU and al-
timeter measurements. As the previously saved image becomes
inadequate (e.g. insufficient overlap with current images), the
vehicle saves a new image and its relative transformation from
the previous image. Navigation then continues relative to the



new image. When the vehicle detects images saved at times in
the more distant past, it also estimates and saves the relative
transformation between that image and the most recently saved
image (i.e. a loop closure estimate). The resulting chain of
saved images and relative transformations define a map of the
environment that is globally topological and locally metric.
In summary, we expect our small multi-rotor helicopter to
navigate through unstructured settings using saved RGB-D im-
ages with the goal of full autonomy despite limited computing
power. Our focus in the front-end is to provide time-critical
estimates of the vehicle’s metric pose relative to the most
recently recognized saved image. However, we also seek to
develop a globally metric map in the back-end optimization.

IV. PARADIGM SHIFT

In this section we present our primary contribution, an
alternative approach to back-end optimization. We first dis-
cuss some relevant background material related to Bayesian
networks and manipulating Gaussian distributions. With that
context we then present the details of our approach. We
conclude this section by discussing similarities and differences
between our work and that of [23]-[26].

A. Bayesian Network Concepts

A excellent introduction to Bayesian networks can be found
in [20]. We have also found [35] to be a useful source for
additional insights. We only mention a few concepts in this
section and refer the reader to these and other sources for a
more thorough description.

A Bayesian network (also called a Bayes or belief network)
is a directed acyclic graph that represents the conditional
dependencies among a collection of random variables. The
random variables make up the nodes in the graph depicted
by a labeled circle. A probabilistic dependence is indicated
by a directed edge such that the node at the arrow’s head is
dependent on the node at the arrow’s tail. To use the jargon,
the variable at the head is referred to as the child node. The
variable at the tail is called the parent node. The Asia Network
in Figure 1 offers a canonical example and illustrates the
concepts we introduce here.

The authors of [35] recommend that Bayesian networks be
constructed so that the direction of an edge represent a causal
relationship. While this is not technically necessary, they
argue that doing so makes inference more intuitive. Causal
relationships are manifest in Figure 1. Smoking, for example,
has a causal influence on getting cancer or bronchitis.

It is also useful to mention here the concept of a Markov
blanket. Formally defined, the Markov blanket for a given
variable, z, is the set of its parents, children, and co-parents.
More intuitively, we can think of a Markov blanket as the
minimal set of nodes that isolates our belief about x from the
rest of the network [20]. The distribution of x is conditionally
independent of all other variables given the variables in its
Markov blanket. In Figure 1, the Markov blanket for node ‘C’
consists of nodes ‘S’ (parent), ‘or’ (child), and ‘T’ (co-parent).

Finally, we introduce here the concept of a mediating
variable. The authors of [35] describe mediating variables as,

Fig. 1. The so-called Asia Network, a canonical example of a Bayesian
network. The network models a physician’s belief about the variables: A - the
patient has recently been to Asia; S - the patient is a smoker; T - the patient
has tuberculosis; C - the patient has cancer; B - the patient has bronchitis; X -
the results of a patient’s X-ray are abnormal; D - the patient exhibits dyspnoea
(i.e. shortness of breath). The variable labeled ’or’ is a mediating variable that
captures the belief that the patient has either tuberculosis or cancer.

“variables for which posterior probabilities are not of imme-
diate interest, but which play important roles for achieving
correct conditional independence and dependence properties
and/or efficient inference.” In Figure 1 the ‘or’ variable is a
mediating variable.

B. Updating Joint Gaussian Distributions

The ultimate description of a collection of random variables
is the joint distribution over those variables. Conditional dis-
tributions are useful when decomposing the joint distribution,
and marginal distributions are relevant, for example, when we
receive outside information (i.e. a measurement) about a subset
of the random variables. For use in subsequent sections, we
will briefly present some derivations relating these types of
distributions for jointly Gaussian random variables. For more
detail, see [36].

Let a D-dimensional random vector x of jointly Gaussian
variables be partitioned into two, disjoint sub-vectors such
that x = [XI,X;—]T, where x; is dimension D; and x5 is
dimension D5. Then the joint distribution p(x), with mean p
and covariance 3, is partitioned such that

_ M
u=tl.
Y X
Y= .
{221 Z322]

Typical textbook derivations (e.g. [20], Chapter 2.3.1) define
the conditional distribution p (x1|x2), with mean p,, and



covariance X3, such that

N _
fip = By + Z12%5 (X0 — ), 3)
A -
Sijp = B - B0y S “
To simplify notation in the sequel we define
A _
K=" (5)

There are a few undesirable aspects of expressing the
conditional distribution p (x;|x2) using (3) and (4). First, the
mean vector |, has dimension D;. The marginal distribution
p (x2) has a mean p, of dimension Ds. To recover the joint
distribution p (x) = p(x1]|x2) p (x2) would require that we
sum exponents with different dimensions. It is also unattractive
to leave the conditional distribution’s functional dependence
on X buried in the conditional mean.

We can rewrite the conditional distribution p (x;|x2) (see
[36]) such that

log (p (x1[x2)) o< (x — 1) " A (x — p). (©)
where o .
A 21|2 _21\2K 7
K, K'3K

Note that the dimension and mean of the conditional exponent
now correspond to the original joint distribution. We can
similarly rewrite p (x2) such that

log (p (x2)) o (x —b) ' B(x —b), (8)
where the D-dimensional vector b is defined as
b2 0] :
122
and
Afo 0
B= 0 z;;} '

In [36] we offer some additional observations about the
relationship between the information matrices A, B, and >
As mentioned above, the marginal distribution is important
when incorporating new information from a measurement that
is a function of a subset of variables from the full joint
distribution. Let the measurement be a function of x5, and
let p(%2) represent our belief about the updated states, with
updated mean fiy and covariance X, . We also define

f)é{f)}
M2
- A |0 0
B_L Eﬂ

To propagate the new information contained in X» into the
remaining elements of x we recover the joint distribution from
the conditional and the updated marginal distributions: p(x) =
p(x1|x2)p(X2). This product gives

log (p (x)) o< (x — ) "A(x — p) + (x — b) B(x — b)

oc (x = f1) ' 37 (x — fu),

where the optimized joint covariance and mean are

XA 1

»=(A+B)
= -3 K !
T KR S KT K ®
it £ (Ap+ BD) (10)

The optimized covariance 3 of the joint distribution can
be recovered without inverting the information matrix as
suggested by (9). Instead, following the derivation in [36],
we find the optimized covariance and mean to be

i _ 5*311 2*312
[ o1 2o
B (= - K (B2 — B0) KT K3, (11
i KT o |
ﬁ: HI—KKNQ—HJZ)] ) (12)
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C. Optimizing Relative Transformations

Most back-end optimization routines seek to optimize the
global poses by minimizing Equation (1). This function is
parameterized by saved relative transformations considered to
be “measured” in the front end and fixed in the back-end.
Equation (1) compares the saved transformations to the relative
transformations derived from the optimized global poses. The
global poses are the focus of the optimization.

However, those saved relative transformations are them-
selves only estimates. As described in Section III, the saved
estimates of the relative transformations are an amalgamation
of several IMU, altimeter, and visual odometry measurements.
There is no guarantee that one will arrive at a globally accurate
map by making global pose estimates agree with error prone
relative transformation estimates. This may be the reason why
the authors of [12] argue that Equation (1) is “not an adequate
measure of graph quality.”

We also note that the set of all relative transformations
between global poses fully characterizes the globally metric
map just as much as the set of all the global poses. By
this we mean that if all the relative transformations were
known without error then the map would be completely
defined. Since the relative transformations are the only thing
we can actually observe, why not seek to further refine the
transformation estimates in the back-end. Using a relative
navigation scheme in the front-end makes this subtle shift
in emphasis seem especially relevant. A focus on optimizing
relative transformations is the underlying philosophy driving
our approach to back-end optimization.

1) Direct Approach: For the remainder of this paper we will
consider the simple case of a vehicle traveling around a long,
rectangular hallway before returning to the origin to detect a
single loop closure. This scenario allows us to examine some
of the fundamental aspects of our approach. In Section VI we
will discuss extending the algorithm to more complex map
topologies.



Fig. 2. A Bayesian network for a direct approach to optimizing the relative
transformations. The nodes at the top represent odometry-like transformations
between temporally consecutive saved images. The node at the bottom rep-
resents the single loop closure considered in this discussion. When evidence
about ‘rg becomes available through a loop closure measurement, all of the
odometry-like measurements become correlated by the “explaining away” [20]
phenomenon.

For this simple scenario, a direct approach to optimizing
relative transformations might be modeled by the Bayesian
network in Figure 2. The relative transformations represented
in the top row exist between N temporally consecutive poses
corresponding to images saved during exploration. Transfor-
mations between temporally consecutive poses are of the
form 7:t'. The transformation at the bottom of Figure 2
corresponds to the loop closure transformation from the origin
to the pose of the last image in the trajectory.

When a new image of the environment is first saved, the
vehicle begins navigation with respect to that image. The front
end can estimate its change in position and heading with
respect to that image independent of any other estimates of
global poses or relative transformations. This is because the
vehicle was certainly at the spot where the image was captured,
no matter where that image is in the world or how the vehicle
got there. This independence is reflected by the fact that no
arrows enter the variables in the top row of Figure 2.

As the vehicle continues to explore, our prior belief about
the relative transformations Tﬁ“ provides the only source
of information about the relative transformation 7{. This
is reflected in the Bayesian network by the arrows pointing
from all of the 7'2“ transformations into TON. However, at
loop closure the vehicle measures its pose relative to the
origin. This “evidence,” to use the Bayesian network parlance,
changes our belief about 7). For a Bayesian network like
that of Figure 2, evidence on T) makes all of the T2+1
transformations correlated [20].

We can also think about this scenario in terms of a covari-
ance matrix for the joint distribution p(7), where

1>

Fig. 3. A Bayesian network based on the idea of using global poses as
mediating variables, thus leading to the joint distribution p (7, p). Directed
edges in the network are drawn to represent the physical reality that a relative
transformation moves the vehicle from one global pose to another.

Before measuring a loop closure the covariance matrix has
an upper left submatrix that is block diagonal because of the
independence of the relative transformations T§+1. The last
block row and column are dense because our prior belief about
7Y is a function of all the transformations preceding it. When
a measurement of 73 is applied to p(7) via a Kalman update
step, the cross-covariance elements in the last block row and
column cause the remainder of the matrix to become dense
also.

The correlations induced by the first loop closure mea-
surement make it intractable to directly estimate the joint
distribution over all relative transformations. To apply any
future loop closure would require manipulating a large, dense
covariance matrix. In a sense, this is analogous to naive EKF
SLAM; using a single covariance matrix to keep track of
correlations between all state elements is too computationally
expensive.

2) Decomposing the Joint Distribution: Consider the rela-
tionship between a particular relative transformation 7 and
the rest of the relative transformations if the global poses p;
and p; are given. Knowing these global poses ensures 7 is al-
ways independent from the remaining relative transformations
because 77 is only defined by p; and p;- This conditional
independence property is part of the justification [3] for the
cost function given by Equation (1). The global poses p; and
p; constitute a Markov blanket for T

This motivates us to reconsider our approach to back-end
optimization by using the joint distribution p (7, p). We con-
struct the Bayesian network in Figure 3 following the guideline
of assigning directed edges based on causal relationships.
Relative transformations point into a global pose because they
represent our belief about how the vehicle arrived there from
the previous pose. We have made p, the arbitrary and certain
global origin, therefore p; = 7.

The remaining global poses can be considered mediating
variables that help explain the “correct conditional indepen-
dence ... properties” [35] between the relative transformations.
In our simple scenario, if p, is given then our belief about 7}
and 72 cannot be affected by any other relative transformation
in the network. It is also evident from this Bayesian network
that the Markov blanket of T%, for example, consists of p,
(co-parent) and p5 (child).

The Bayesian network in Figure 3 suggests the following
decomposition of the joint distribution p (7, p). To keep ex-
pressions compact we introduce the notation x, to indicate the
remaining variables in a random vector x that have not already



been broken out in the preceding conditional distributions.
Then the joint distribution can be written as

p(r.p) =p (74, 7i|7e, ) P (T2, )

p (T

p (10, 731p2) P (T2, p,)

=p (70, 711p2) P (73, Po| T2, ) P (T2, P,)
p (76, 711p2) P (T3, p2|p3) P (71, p;)

=D (Té, T%|P2) P (T§’7p2|p3) T
p (TN Px_i|T0) P (70) - (13)

After completely decomposing p (7, p) we have the marginal
distribution p(TON) at the end of (13). The loop closure
measurement will be applied to this marginal distribution so
that p (73') represents our updated belief about the relative
transformation between the origin and the pose of the NI
saved image.

Using Equations (11) and (12) we now find the opti-
mized distribution p (py_1,7N_1,70 ). We note that this
is an efficient operation because the matrices involved are
small. Once we have p(py_;,7N_1,70) We can triv-
ially extract the marginal distribution p (/*)N_l) and find

P (Px_2,TN_2:Pn_1) in the same manner. This pattern re-
peats back through the network until all variables have been
updated with the loop closure information.

Algorithm 1 summarizes the back-end optimization process.
Relative transformation estimates are produced in the front
end. Those relative transformations can be composed in the
back-end to find our prior belief about the joint distributions
between relative transformations and global poses (Algo-
rithm 1, lines 1 and 2). After a loop closure measurement is
applied (line 3), the new information can be propagated back
through the network of small joint distributions by repeated
use of Equation (11) and (12) (lines 4 - 6). Since our goal is
Back-End optimization of Relative Transformations, we will
dub this approach BERT. _

Small joint distributions of the form p(p;, 77, p;) are the
important entity in BERT. We can use a collection of such
distributions as a modular representation of the entire joint
distribution, p(7, p). For example, in the simple scenario
under consideration, our collection of small joint distributions
is

p(p1.71.p2)

b (p277’§7 pS)
p (p377§7 p4)

p (pN—la T§—17 pN)

We can update any of the individual variables within
p(p;, 77, pj) and then propagate that information through
the remaining small joint distributions based on Equa-
tions (11) and (12).

Notice that a given global pose variable can occur in multi-
ple distributions. The belief about the global pose variables is
identical in each small joint distribution by construction. The

Algorithm 1: BERT using a modular representation of
p (T, p) for the single loop scenario.

for (int i =1, 1 < N; i++) do

1 Compose p; with 7'hLl to find p; .

2 Calculate the joint covariance for p (pi,
end

+1
T; »Pi+1)-

3 Apply the loop closure measurement in a Kalman update
to find p(+Y).

4 Use Equation (11) and (12) to find p(py_1,TN_;, TD)
where x; corresponds to py_; and 7X_,, and x2

corresponds to .

for (inti=N—1; i > 0; i--) do
5 Extract the marginal distribution p (p;) from
p(pw *’L 7p2+1)

6 Findp(p,_y, 71y, p;) using
Equations (11) and (12) where x; corresponds to

p;—; and T;_,, and X5 corresponds to p;
end

redundancy highlights the role of global poses as mediating
variables. They serve to isolate our belief about each relative
transformation, and they act as containers where information
can be stored before propagating it through the rest of the
network.

D. Comparison to CI Submap EKF-SLAM

We find some parallels and differences between BERT and
the algorithms described in [23] and subsequent developments
[24]-[26].

Similar to BERT, [23] divides the entire joint distribution
into conditionally independent modules. In their case these
modules are EKF SLAM sub-maps, primarily consisting of
point features in the environment. They also show how du-
plicating some elements in multiple sub-maps allows the sub-
maps to remain conditionally independent and efficiently share
information gained at loop closure. During exploration the
duplicated variables used in [23] consist of point feature
estimates and vehicle pose estimates shared by temporally
consecutive sub-maps.

We believe some important differences between [23] and
our work arise from the way we represent the environment.
In our concept of graph-based SLAM, we save key images of
the environment that correspond to past vehicle poses. We do
not reduce the raw images into a particular set of individual
features. This removes feature position estimates from the
back-end optimization, making it more efficient.

More importantly, because the vehicle was certainly at the
pose represented by the saved image, reobserving the image
is equivalent to reobserving the vehicle’s actual pose at that
previous point in time. In [25] the authors observe, “The
price paid to maintain the conditional independence between
submaps is some overhead in the size of the maps. We
call overhead to all those elements of a submap that cannot
be observed from it, i.e., robot positions corresponding to
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Fig. 4. True global poses in green (gray) verses the unoptimized estimate
(black) based on composed odometry transformations. Red boxed regions are
shown close up in Figures 5 & 6.

the transitions between submaps and [additional] features
included in the current submap because [they are needed to
transmit new measurement information along the chain of
intermediate submaps],” (emphasis added).

In [23] the authors use a simple, single loop closure scenario
to illustrate their method just as we do here. Even in this
simple case some feature estimates must be added as overhead
to each of the sub-maps around the loop. Such is not the case
with the approach we have presented.

We acknowledge that some non-trivial work remains on
our part to establish whether we will need in the general
case something equivalent to the overhead described in [23]
and [25]. In [25] the authors are describing the extension of
their algorithm to complex map topologies. Such an extension
remains an item of future work for us which we discuss in
Section VI. However, observing past poses in the form of
saved images is a fundamental departure from feature-based
maps.

V. RESULTS
A. Test Scenario

We have demonstrated in prior work [37], [38] that the roll
and pitch of a multi-rotor vehicle can be estimated with high
accuracy using an improved dynamic model in the front-end
observer. It is also possible to use vision measurements in
conjunction with frequent IMU and laser altimeter measure-
ments to maintain accurate estimates of the vehicle’s relative
down position. Accordingly, we will confine our presentation
of results to 2D optimization. Future work includes applying
BERT to all six degrees of freedom.

For this test we generate front-end data using a Simulink
simulation based on the dynamic model and state observers
described in [37]. The vehicle flies around a rectangular
hallway with a total trajectory length of about 225 meters.
During exploration the vehicle designates new saved images
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Fig. 5. A close up view of Figure 4 around the true beginning and
end of the trajectory, where loop closure occurs. Arrows indicate the true
(green/gray) and estimated (black) heading; the corresponding positions are
marked (green/gray stars; black circles) at the base of each arrow.
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Fig. 6. A close up view of Figure 4 around the odometry-based estimate of
the end of the trajectory. See also the caption on Figure 5

about every 0.3 meters change in position or 10 degrees change
in heading. This results in 735 relative transformations of type
7171 that we will refer to as odometry transformations. In this
experiment there is only a single loop closure transformation
between the last pose and the origin.

The front-end saves the relative transformation estimates
and their uncertainty for use in the back-end. The average
error in the position change per transformation is 2.1 c¢m, or
about 7% of the length of the transformation. The average error
in the heading change of a transformation is 0.0115 radians
(0.7 degrees). We note that the covariance matrix is not simply
diagonal.

While these errors may not seem exceptionally high, the
length of the trajectory allows for significant error to accumu-
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Fig. 7. True global poses in green (gray) verses estimates in blue (PUT
SHADE OF GRAYSCALE VERSION HERE) from BERT as described in
Algorithm 1. Not shown is the fact that one iteration of g2o returns identical
global poses.

late in the global pose estimates. Figure 4 shows an overhead
view of the true global poses compared to the composition of
unoptimized odometry transformations. Figures 5 and 6 show
close up portions of Figure 4 to emphasize the error in the
global pose estimate that has accumulated by the end of the
trajectory.

We implement BERT using the Eigen C++ linear algebra
library. We compare our results with those obtained using g%o
[17], which also relies on the Eigen library. The g0 code
is open-source and among the most recent work in back-end
optimization. Also, as stated in Section II, the authors provide
evidence that g20 is at least as good as many other back-end
optimization techniques both in accuracy and execution time.

B. A Single Iteration

We first apply BERT according to Algorithm 1 and compare
our results to one iteration of g2o. Figure 7 presents the
optimized global poses achieved by our approach. These
global poses are identical to the global poses returned by the
first iteration of g2o using a Gauss-Newton solver.

BERT runs in just 6.2 ms.! The first iteration of g2o
can takes about 25.5 ms. Of this time about 10.5 ms is
spent numerically approximating the Jacobian of Equation (1).
An analytical Jacobian should reduce the linearization time
considerably. Subtracting all linearization time still makes the
first iteration of gZo around 9 ms longer than BERT. We
assume that remaining difference is due to initialization g2o
requires as a more general software tool.

So BERT and the first iteration of gZo produce the same
global pose estimates in about the same time. However, the
focus of BERT is optimization of the relative transformations.

For timing results we use a 1.66 GHz Intel® Atom" " CPU (using a
single thread) running Ubuntu 12.04. This computer is compatible with the
size, weight, and power limitations of our vehicle.
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Fig. 8. The error in distance for each relative transformation estimate. We
should expect optimized estimates to change only slightly from the originals
because the 735 odometry transformations are being updated with information
from a single loop closure. The important feature to note is the degradation
toward the end of the trajectory caused by one iteration of g2o.
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Fig. 9. A close up of Figure 8 highlighting the last 135 relative transforma-
tions.

Accordingly, we compare the effect BERT and g0 have on
the relative transformations. Like most back-end optimization
algorithms, g?0 does not directly optimize transformations.
Instead we must use the standard pose composition operator
to find the new transformations that would be given by
the optimized global poses g2o provides. BERT returns the
optimized relative transformations without extra computation.

Figure 8 plots the error in the estimated change of position
in each relative transformation. A single iteration of g?o causes
the error to jump, especially near the end of the trajectory as
shown in Figure 9. Before optimization the average error in
this metric is about 2 cm. One iteration of g2o causes that
error to rise to about 8 cm (25% of an average transformation’s
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Fig. 10. This figure shows the error in global position estimates for each
saved image along the trajectory after one iteration of g20 and BERT. The
vertical dashed lines mark poses occurring in the turns of the trajectory to
facilitate comparisons with Figures 4 , 7 , and 12. The global poses returned
by BERT and g2o are identical. However, the global poses calculated by
composing the relative transformations returned by BERT are significantly
different. In particular, the global distance error at the end of the trajectory
suggests the loop closure measurement might be reapplied to further improve
the relative transformation estimates.

change in position) near the end of the trajectory.

We should expect 735 independent odometry transforma-
tions to be almost unchanged by a single loop closure measure-
ment. Figures 8 and 9 show that BERT conforms to this intu-
ition, producing relative transformations that are only slightly
adjusted from the original front-end estimates. We have also
observed that the relative transformations returned from BERT
using Algorithm 1 are identical to those one would find
using the direct approach to optimizing the transformations
described in Section IV-C1. This bolsters our interpretation of
global poses as mediating variables.

C. Multiple Iterations

A question about BERT naturally arises from the results
presented so far. The relative transformation results from g2o
were found using the pose composition operator. In a manner
of speaking, each 7 connects p; to p;. Since BERT returns
the same global pose estimates as one iteration of g2o, what is
significant about the different relative transformations returned
by the two algorithms?

Standard back-end optimization techniques aim to find “the
most likely configuration of the [global] poses given the
[relative transformations delivered by the front-end].” [2] This
differs fundamentally from BERT in that BERT returns an
a posteriori estimate of the joint distribution p(7, p). Standard
back-ends use the pose composition operator to find new
transformations implied by optimized poses. What then can we
learn from the global poses one would calculate by composing
the new relative transformations returned by BERT?

Figure 10 plots the error in position for each global pose
along the trajectory. The equivalent global pose estimates from

BERT using Algorithm 1 and from one iteration of g0 show
very little error in global position toward the end of the
trajectory near the loop closure. This is intuitive given that a
loop closure with the origin provides considerable information
about the vehicle’s true global pose.

However, if one were to recompose the relative transforma-
tion estimates returned by BERT, the error in global position
at the end of the flight would still be significant (see again
Figure 10). This observation motivates us to eliminate the
global pose estimates obtained in the first application of BERT
and repeat Algorithm 1. Doing so returns global pose and
relative transformation estimates that are further refined.

Like g0 and other traditional back-ends, BERT can be
iterated until the solution converges. For the experiment in
this paper, Figure 11 shows that BERT converges to a global
pose solution that is slightly better than g2o. Figure 12 gives a
view of the BERT solution from the same overhead perspective
as earlier plots. Figure 13 shows the evolution of the average
global position error verses computation time.

We consider these results for global pose estimates to be
useful, but the driving philosophy behind BERT is a focus on
relative transformations. To that end, we conclude this section
with some observations on the error in relative transformation
estimates.

Equation (1), the squared Mahalanobis distance metric,
measures the weighted deviation of optimized relative trans-
formations from their initial values. Figure 14 (top) shows
the evolution of Equation (1) per iteration of g20 and BERT.
Before the first iteration all of the deviation is concentrated in
the difference between the measured and prior belief about the
loop closure transformation. For g2o, Equation (1) decreases
monotonically with each iteration until it has converged to
a final value. BERT converges to essentially the same value.
However, BERT initially overshoots that value before settling
into a steady state.

Figure 14 (top) also illustrates the error calculated by Equa-
tion (1) when the frue relative transformations are compared
to the original values. The result is two orders of magnitude
higher than the minimum achieved by the optimization. The
error surface defined by Equation (1) may not, in general, have
a minimum value at the ideal solution.

The correct measure of map quality is the error calculated by
comparing estimates to truth. Similar in form to Equation (1)
we define the sum squared error

em =Y (7 -7) (71 -7).

where ‘T'z indicates the true transformation from p, to p,.
Figure 14 (bottom) plots this metric for each iteration of g=o
and BERT. With g?o, €(7) initially rises before settling into
a new value that is slightly lower than before optimization.
BERT, on the other hand, arrives at the same value of €(7)
while making modest and monotonically decreasing changes.

With each iteration BERT improves the estimates of the
global poses and the relative transformations. In the context of
relative navigation, especially given limited computing power,
we consider this a noteworthy feature. It may be sufficient
during online operation to conserve computing resources by

(14)
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Fig. 11. This figure shows the error in global position estimates for each
saved image along the trajectory after g2o and BERT are run to convergence.
See also the caption for Figure 10.
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Fig. 12. True global poses in green (gray) verses estimates in blue
(GRAYSCALE DESCRIPTION) from BERT run to convergence. Compare
with Figures 4 and 7

running one iteration of BERT at a loop closure and waiting
for additional loop closure measurements before optimizing
further. Doing so with g?0 would be detrimental to the more
immediately important relative transformation estimates.

VI. CONCLUSIONS AND FUTURE WORK
A. Future Work

The most obvious item for future work is to extend BERT to
general map topologies. A simple first step would be to retrace
the loop in the current example, detecting the previously saved
images along the way. The information from new estimates
of each T§+1 can be incorporated into the map without any

modification to the current approach.
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Fig. 13. RMS Error in global position estimates as a function of cumulative
iteration time. Times shown for g2o reflect subtracting all the linearization
time out of each iteration; actual execution may be longer.
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Fig. 14.  Two error metrics for relative transformations and the performance
of g20 and BERT against those metrics. On top is the Mahalanobis distance
(Equation (1)) measured with respect to the initial values of the estimated
transformations. The horizontal dotted black line is the value of €(p) when
the true relative transformations are plugged into Equation (1). This top plot
also suggests that BERT has something like a second order response to the
impulse the system experiences at loop closure. On the bottom is the true
sum squared error of the relative transformations. For the scenario under
test the loop closure should only introduce a minor improvement in the
relative transformations. Both methods reflect this in their final values, but g20
requires three iterations before producing a reasonable result. BERT reduces
the error in the relative transformations at each iteration without negative
transient behavior.

To allow for arbitrary map topologies, we need to generate
loop closure hypotheses between arbitrary global poses. The
simple scenario presented above benefited from the fact that
the origin involved in the loop closure was completely certain
and independent. Therefore, we could generate a loop closure
hypothesis without considering the correlation between the



global poses involved. Our prior belief about arbitrary global
poses before applying a loop closure should treat those poses
as correlated. We expect that this will lead to additional
computation in the composition steps represented by lines 1 - 2
in Algorithm 1, but we also expect the properties of conditional
independence will keep the back-propagation of information
(lines 5 - 6 of Algorithm 1) computationally neutral.

Applying BERT in general map topologies will likely
benefit from considering additional formalisms to describe the
problem. Back-end optimization is always posed in terms of
estimating a random vector. However, this neglects the fact that
relative transformations are temporally related. Considering
the problem as a random process may lead to additional
insights.

We also expect an effort to generalize BERT will benefit
from using factor graphs. Our factor graphs will differ from
those in [9]-[11] in that the relative transformations will be
variables in the graph. Furthermore, the process described in
Algorithm 1 seems to bear semantic resemblance to message
passing algorithms such as those described in [20], Chap-
ter 8.4. Factor graphs figure prominently in deriving such
algorithms.

On the other hand, the lightweight computational burden
of BERT might be useful in its current form as part of a
visual odometry system. For example, we currently perform
visual odometry by repeatedly comparing incoming frames to
the last saved image of the environment. The comparisons
produce measurements of the relative change in pose from
that saved image. If we also compared temporally consecutive
images we could save the relative transformations between
them. The comparison to the saved image could then be treated
like a global pose measurement, where the global poses are
actually defined in the saved image’s reference frame. It is
common practice to smooth visual odometry estimates with,
e.g., windowed bundle adjustment [39] to improve accuracy.
We plan to investigate whether BERT can have a similar
benefit at perhaps a lower computational cost.

Finally, we find the behavior in Figure 14 (top) interesting
for an additional reason. Many authors briefly allude to an
analogy between graph-based SLAM and a physical mass -
spring system. Global poses are spoken of as masses and
the saved relative transformations are described as springs.
Equation (1) is said to describe the energy of the system con-
figuration, and optimization adjusts the global poses (masses)
until the network reaches a minimal energy configuration.

When we apply the loop closure measurement to the net-
work it can be thought of like a step input to a second-order
system. Initially the energy in the system responds to the
step by overshooting its final value. As time (i.e. iteration)
continues, the response settles down to a steady state with
perhaps some ringing along the way. BERT exhibits this
behavior, including some small ringing that is not obvious in
Figure 14 (top) due to the logarithmic scale of the plot. To our
knowledge, only [5] makes explicit use of the mass - spring
system analogy to inform the development of their algorithm.
In future work we expect to give closer attention to how we
might draw insight from the analogy to further develop or
explain BERT.

B. Concluding Summary

We recall here the context for our work. Our vehicle relies
on the relative transformations for its front-end navigation.
We also put a premium on computation time due to limited
computational resources. We consider global pose estimates to
be important but not time critical. The focus of our back-end
optimization is to produce accurate relative transformations as
efficiently as possible.

Our main contribution is an alternative approach to back-
end optimization, BERT, that uses properties of conditional
independence to efficiently estimate the joint distribution over
relative transformations and global poses. We have illustrated
in a simple scenario that BERT improves the estimates of the
global poses and the relative transformations at each iteration
of the algorithm. By comparison, a state-of-the-art back-
end optimization tool produces similar global pose estimates
at each iteration but requires multiple iterations to improve
relative transformation estimates. This result is especially well-
suited for our application, a small vehicle relying on relative
transformations for its real-time navigation.

BERT offers other useful features. No extra computation
is required to provide the optimized relative transformations,
their associated marginal covariance matrices, or the marginal
covariance matrices of the global poses. This latter measure of
uncertainty can therefore be conveniently accessed if the front-
end uses covariance gating to eliminate loop closure hypothe-
ses. BERT also naturally admits global pose measurements
when available, e.g. from intermittent GPS. Furthermore,
BERT can be thought of as any-time algorithm, providing a
useful result at any iteration and any stage of Algorithm 1. It
is our hope that BERT will prove to be a useful alternative
paradigm for back-end optimization in graph-based SLAM.
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