
J Intell Robot Syst (2011) 62:125–158
DOI 10.1007/s10846-010-9439-2

UNMANNED SYSTEMS PAPER

Multiple UAV Coalitions for a Search
and Prosecute Mission

Joel G. Manathara · P. B. Sujit · Randal W. Beard

Received: 26 December 2009 / Accepted: 25 May 2010 / Published online: 16 June 2010
© Springer Science+Business Media B.V. 2010

Abstract Unmanned aerial vehicles (UAVs) have the potential to carry resources
in support of search and prosecute operations. Often to completely prosecute a
target, UAVs may have to simultaneously attack the target with various resources
with different capacities. However, the UAVs are capable of carrying only limited
resources in small quantities, hence, a group of UAVs (coalition) needs to be as-
signed that satisfies the target resource requirement. The assigned coalition must be
such that it minimizes the target prosecution delay and the size of the coalition. The
problem of forming coalitions is computationally intensive due to the combinatorial
nature of the problem, but for real-time applications computationally cheap solutions
are required. In this paper, we propose decentralized sub-optimal (polynomial time)
and decentralized optimal coalition formation algorithms that generate coalitions for
a single target with low computational complexity. We compare the performance
of the proposed algorithms to that of a global optimal solution for which we
need to solve a centralized combinatorial optimization problem. This problem is

J. G. Manathara
Department of Aerospace Engineering, Indian Institute of Science, Bangalore, 560 012, India
e-mail: joel@aero.iisc.ernet.in

P. B. Sujit (B)
Department of Electrical and Computer Engineering, University of Porto, Porto, Portugal
e-mail: sujit@fe.up.pt

R. W. Beard
Department of Electrical and Computer Engineering, Brigham Young University, Provo,
UT 84604, USA
e-mail: beard@byu.edu

126 J Intell Robot Syst (2011) 62:125–158

computationally intensive because the solution has to (a) provide a coalition for
each target, (b) design a sequence in which targets need to be prosecuted, and (c)
take into account reduction of UAV resources with usage. To solve this problem
we use the Particle Swarm Optimization (PSO) technique. Through simulations, we
study the performance of the proposed algorithms in terms of mission performance,
complexity of the algorithms and the time taken to form the coalition. The simulation
results show that the solution provided by the proposed algorithms is close to the
global optimal solution and requires far less computational resources.

Keywords Multi UAV · Coalition formation · Task allocation ·
Particle swarm optimization

1 Introduction

In recent time, there has been an increase in the use of unmanned aerial vehicles
(UAVs) for search-and-prosecute missions. In a typical search and prosecute mis-
sion, multiple UAVs cooperate with each other as a team to detect and prosecute
targets. Deploying multiple UAVs provides robustness to the mission and reduces
the mission completion time.

Often, the UAVs may have to use various types and quantities of resources to
completely prosecute a target. A single UAV may not have sufficient resources,
hence a sub-team of UAVs whose total resources are sufficient to completely
prosecute the target needs to be assigned. This sub-team of UAVs is called a coalition
and each agent in the coalition is called a coalition member. The agent that detected
the target is called the coalition leader. Other objectives for the mission are (i)
prosecute the target in minimum time, (ii) minimize the coalition size, and (iii)
simultaneously prosecute the target. The objective (i) enables the UAVs to quickly
accomplish the mission. The objective (ii) is required because the UAVs have limited
sensor range, therefore they need to distribute the search effort to detect the target.
A small coalition will allow higher numbers of agents for search task, while a larger
coalition will allow fewer agents for each search task, thus reducing the total search
effort and increasing the mission time. The objective (ii) implicitly assists in achieving
the mission quickly. The objective (iii) is required to induce maximum damage to
the target. Additionally, the resources of the UAVs deplete with use and the UAVs
have kinematic constraints. The coalition formation algorithms are computationally
intensive and are NP-Hard. Since, the UAVs are in motion, the algorithms need to
have low computational overhead. Therefore, there is a need to develop coalition
formation algorithms that have low computational complexity, satisfy the objectives
(i)–(iii), and take the depletion of resources and kinematic constraints into account.

Grekey and Mataric [1], present a taxonomy for the multi-robot task allocation
problem. Our problem falls in the Multi Task-Multi Robot (MT-MR) instantaneous
assignment problem category according to their taxonomy because the UAVs can
perform search and target prosecution tasks simultaneously and the targets may
require multiple UAVs to prosecute. The problem of allocating tasks to UAVs is sim-
ilar to the multi-robot task allocation problem. However, there are two differences.
First, the UAVs travel with greater velocities than ground robots. Second, the
resources of each robot do not deplete with use. Thus, the multi-robot task allocation

J Intell Robot Syst (2011) 62:125–158 127

algorithms cannot be directly used. Many researchers have developed task allocation
algorithms for efficiently allocating UAVs to different tasks. Most of the solutions
to task allocation problems assume the UAVs (a) are homogenous, (b) can carry
resources that do not deplete with use, (c) can individually prosecute the target, and
(d) can prosecute the target with any resource [2–7]. Therefore, we cannot apply
these algorithms directly to the problem that we consider in this paper.

A coalition is a group of team members that have agreed to cooperate with each
other to execute a single task [8]. The coalitions formed are temporary by nature;
once the task is accomplished, the coalition members can perform other tasks. De-
termining the optimal coalition from a group of agents is a computationally intensive
task and is NP-hard [9]. However, there are algorithms that provide approximate and
near-optimal solutions [11].

Forming a coalition to achieve tasks is an active field of research in the multi-agent
community [9, 10] and the multi-robot community [12–14]. The coalition formation
algorithms developed in the multi-agent community cannot be directly applied to
multiple robot systems since the resources cannot be transferred from one robot to
another [11]. Vig and Adams [12, 13] develop a coalition formation scheme, where
the tasks act as agents and perform the function of an auctioneer for gathering bids
and determining the coalition. This process of forming coalitions is different from the
typical approach where a robot is an auctioneer. In [12], the authors use a negotiation
process to form the coalition. It is well known that the negotiation process requires
significant amount of communication and also takes time to form the coalition. The
authors of [13] pose the problem as a matching problem that is also computationally
intensive. The same authors address the issue of balance in the coalition between the
coalitional size and the resource contribution in [11]. The algorithms developed in
[12, 13], or [11] require significant amount of computation time and communication
which may not be possible in UAV networks as UAVs move fast and cannot stop
in mid air. Hence, these algorithms cannot be directly applied to the UAV scenario.
Parker and Tang [14] present a coalition formation scheme where a coalition leader
robot broadcasts the existence of a task and other robots reply by providing their
availability. The leader robot evaluates all possible coalitions and sends an accept de-
cision to the robots that it considers suitable. The task is executed by sharing the sen-
sor information. However, they do not take coalition size or minimum arrival time to
the target into account.

The problem of forming a coalition has also not been adequately addressed in the
UAV community. Kingston and Schumacher [22] assign multiple UAVs to track and
prosecute a target using an mixed integer linear programming (MILP) formulation.
The goal is to minimize the length of task tours of the UAVs with known target posi-
tions. The resources of the tracking agents have the same capability and the problem
of depleting resources is not addressed. In our problem, we account for depleting
resources and assume that the agents have non-uniform payload of resources.

In our problem, we assume the UAVs have limited sensor range and search
for targets in a confined region. Once an agent detects a target, it broadcasts the
information about the kind of resources required to prosecute the target. In this
paper,we assume that the communication is global. The UAVs that have at least one
of the required resources send their information to the detecting agent. The detecting
agent determines a coalition of agents to prosecute the target. To determine the
coalition, we develop polynomial time sub-optimal and optimal coalition formation

128 J Intell Robot Syst (2011) 62:125–158

algorithms. Once the coalition is formed, the agents coordinate with each other by
modifying their paths such that they attack the target simultaneously.

The multiple agent rendezvous problem addresses the issue of multiple agents
arriving simultaneously to a common location by cooperating with each other [15–
17]. The stability of these solutions can be achieved using concepts from graph
theory. McLain and Beard [18] determine a time when the rendezvous should take
place and using a consensus algorithm they achieve the rendezvous for multiple
UAVs. Furukawa et al. [19], considered a search and destroy mission where the
target location, coalition leader and the number of UAVs required to form a coalition
are predefined. The coalition leader searches for other UAVs to form a coalition and
simultaneously attack the target by generating commands given by a time-optimal
control problem. Notarstefano and Bullo [20] present a distributed rendezvous
algorithm for multiple agents connected in a network using consensus algorithms.
The simultaneous arrival scheme that we develop in this paper is different than these
approaches. In our approach, the coalition leader determines the agent with the latest
arrival time at the target and establishes this time as the arrival time of the coalition.
Accordingly, the coalition members replan their paths to meet this constraint. In
our approach, the agents do not communicate with each other and have only one
communication with the leader, thus reducing communication costs.

We need to establish a benchmark for comparing mission performance of our
algorithms. In order to determine the deviation of the mission from the global
optimal mission where the target locations with their resource requirements, and the
UAV initial positions with their resources are known a priori, we solve the global
optimization problem. Finding the globally optimal solution is computationally
intensive and difficult as we need to determine both the coalition for each target
and the sequence in which the targets need to be prosecuted, while accounting for
depletion of the resources. Linear Programming based techniques may not deliver
the solution taking all the constraints of the problem. Hence we use the Particle
Swarm Optimization technique (PSO) that can produce a global optimal solution
and meet the constraints.

The rest of the paper is organized as follows. The mission scenario and the
problem formulation is described in Section 2. The proposed coalition formation
algorithm is presented in Section 3. For comparison purposes, we solve the combina-
torial optimization problem using particle swarm optimization which is presented
in Section 4. Monte-Carlo simulation results are presented in Section 5, and the
conclusion is presented in Section 6.

2 Problem Formulation

A search and prosecute mission is carried out on a battlefield scenario using N
heterogeneous UAVs (also called agents). The UAVs are heterogeneous as they
can carry different types of resources in limited quantities. Some of these resources
are consumable, while others like sensors do not deplete with use. Each UAV
has a unique token number Ai, i = 1, . . . , N that is assigned prior to the start of
mission. We assume that there are M targets whose initial positions are unknown.
The UAVs have the capacity to carry different types of resources. Assume that

J Intell Robot Syst (2011) 62:125–158 129

UAV Ai can carry n types of resources represented by a capability vector RAi of the
form:

RAi = (
RAi

1 , . . . , RAi
n

)
, i = 1, . . . , N (1)

where RAi
p , p = 1, . . . , n represents the number of type-p resources held by agent

Ai. For example, RAi = (4, 2, 0, 6) implies that agent Ai has four type-1 resources(
RAi

1 = 4
)
, two type-2 resources

(
RAi

2 = 2
)
, zero type-3 resources

(
RAi

3 = 0
)
, and six

type-4 resources
(
RAi

4 = 6
)
.

The UAVs have limited sensor range and do not have a priori knowledge of the
target locations and their resources. To detect the targets, the UAVs have to carry
out a search task. When Ai detects a target T j, we assume that the agent can also
determine the type of resources required to prosecute the target. If m-different types
of resources are required to engage target T j, then the resource requirement vector
is represented as

RT j =
(

R
T j

1 , . . . , R
T j
m

)
, j = 1, . . . , M (2)

where R
T j
q , q = 1, . . . , m represents the quantity of type-q resources required to

prosecute the target T j. We assume that m = n, that is, the agents can carry all types
of resources that are required by the target. For example: RT j = (3, 0, 5) indicates
that to prosecute target T j, the agents need three type-1 resources

(
R

T j

1 = 3
)
, zero

type-2 resources
(
R

T j

2 = 0
)
, and five type-3 resources

(
R

T j

3 = 5
)
.

We assume that each agent can communicate with other agents in the operating
zone. Once a target is located and identified, agent Ai broadcasts the target resource
requirement vector RT j to the other agents. The UAVs in the search region pos-
sessing at least one of the required resources to strike the target T j will respond to
Ai with their cost and resource capabilities. The cost is based on the earliest time of
arrival (ETA) of the agent at the target location using Dubins curves. The Dubins
curves determines the shortest path between a given start and goal locations taking
the kinematic constraints of the vehicle into account [21].

Assume that the UAV team takes T time units to accomplish a mission by
prosecuting all the targets. The mission time T depends on the time taken by the
agents to detect the targets which in turn depends on the performance of the search
strategy and the time taken by the coalitions to prosecute the assigned target. The
objective is to accomplish the mission in minimum time. That is

Global Objective : minT (3)

Here T = f
(
Ts,

∑M
j=1 T

T j
c

)
, where Ts is the search time and T T j

c represents the time
taken by the coalition to prosecute the target T j. It is to be noted that the search
time Ts implicitly depends on the coalition formation strategies. This is because,
for a given target and for a given search strategy, out of two coalitions with same
prosecution time, the coalition with lower size will make more UAVs available for
search which may lead to a reduction in the total search time. In this paper, we

130 J Intell Robot Syst (2011) 62:125–158

attempt to achieve the global objective (Eq. 3) by minimizing the time taken by the
coalitions to prosecute all the targets, that is,

min
M∑

j=1

T T j
c (4)

and by minimizing the size of coalitions formed to prosecute each target. Also, a
simultaneous attack is desirable to successfully prosecute the target. Thus, the task
of a coalition leader is to form a coalition such that (i) the target is prosecuted in min-
imum time, (ii) the coalition contains minimum number of UAVs, and (iii) the coali-
tion members simultaneously prosecute the target. The objective (i) (Minimizing the
time-to-attack the target) is a desirable quantity in achieving the objective given in
Eq. 4, the objective (ii) (which is to minimize coalition size) ensures that the UAVs
distribute their search effort so that the targets are detected quickly and the mission
is accomplished faster, and the objective (iii) maximizes the element of surprise.

The role of the coalition leader Ai is to form a coalition Ci
j (with combined

resources RCi

j = ∑
Ak∈Ci

j
RAk) for the target T j taking the constraints (i)–(iii) into

account. Assume a worst case scenario where all the N agents are assigned to be part
of a coalition. For this case, let D j

i = {
Dj

1, · · · , Dj
N

}
represent the set of earliest time

of arrival for the N agents, and Dj
k denotes the earliest time of arrival (ETA) of the

agent Ak to arrive at the location of target T j using Dubins curves [21]. The N agents
are represented in a set IA, Dj

k ∈ D j
i is the ETA of agent Ak ∈ A j and we define �A

as the set of all possible index sets over N agents. The ETA is used as the cost metric.
To determine a coalition, the coalition leader solves the objective function:

minIA∈�A maxA∈IA Dj
A (5)

subject to
(∑

A∈IA
RA

p

) ≥ R
T j
p , for all p = 1, . . . , m (6)

where maxA∈IA represents T T j
c the latest arrival time of agents in IA. The minIA∈�A

part of the objective function minimizes the coalition size satisfying Eq. 6. This
set satisfies the objectives (i) and (ii). Minimizing the T T j

c for every target T j

will minimize the objective function given in Eq. 4. Also, the coalition members
have to prosecute the target simultaneously (objective (iii)). In order to prosecute
simultaneously, the agents have to arrive at the target location at the same time. The
minimum time (objective (i)) for the coalition to arrive at the target is determined
by the agent that has the highest ETA (latest arrival time), that is, T T j

c . As we need
to determine both the smallest coalition and the coalition that can prosecute that
target in minimum time, the objective function is coupled. This coupling makes the
optimization problem nontrivial to be solved using standard techniques.

The solution to the optimization problem (Eqs. 5 and 6) can be found by searching
the complete solution space which is computationally intensive. The computational
effort exponentially increases with the number of agents and targets. In this paper, we
reduce the complexity of the solution by decomposing the problem into two-stages.
In the first stage, we will determine a minimum time coalition set, and using this set
we determine the smallest coalition that satisfies the constraints. We develop both a
suboptimal polynomial time algorithm as well as an optimal algorithm. In the next
section, we describe the two-stage coalition formation algorithms.

J Intell Robot Syst (2011) 62:125–158 131

The agent that detects a target becomes the coalition leader and forms the
coalition. Hence, the coalition formation algorithms are decentralized by nature
which has significant advantages over centralized solution concepts. However, if the
target locations and their resources, with the UAV positions and their resources are
known a priori, then we can solve the global optimization problem off-line. The
global optimization problem has to determine the appropriate coalitions for each
target taking the reduction of the UAV resources into account. The global solution
should also determine the order in which targets are prosecuted. In order to find a
solution to this highly complex problem and to take the dynamics of the resources
into account, we propose a particle swarm optimization (PSO) based solution which
we describe in Section 4.

The UAVs are subjected to kinematic constraints preventing instantaneous course
changes. We assume that the autopilots of the UAVs hold a constant altitude and
ground speed. The kinematics of the ith UAV is therefore modeled using first order
kinematics as

ẋi = vi cos ψi,

ẏi = vi sin ψi,

ψ̇i = k(ψd
i − ψi), i = 1, . . . , N (7)

where xi and yi gives the UAV location, ψi is its heading, ψd
i is the desired heading,

vi is the ground speed, and k is autopilot gain. We assume the heading rate to be
constrained within bounds. That is

− ωmax ≤ ψ̇i ≤ ωmax (8)

The UAVs perform a search task to detect targets. When a target is found, a coalition
with other agents is formed to prosecute the target. In the next section, the coalition
formation process is discussed.

3 Coalition Formation

The heterogeneous UAV swarm has to prosecute the targets by forming coalitions.
A coalition is formed based on the target resource requirements for prosecution.
A coalition is a temporal team and the agent that initiates a coalition formation
request is the coalition leader while the agents which form the rest of the coalition
are called as coalition members. The coalition leader may not necessarily be a part
of the coalition because (a) it does not possess the required resources, or (b) the rest
of the coalition can perform the task without its presence, or (c) the coalition leader
is committed to be a part of another coalition. The role of the coalition leader is to
determine a coalition and provide the simultaneous strike information to the coali-
tion members. Once the coalition is formed and the leader broadcasts the coalition
information, its role ceases.

In the search region, many agents can detect targets and assume the role of a coali-
tion leader for their detected targets. When a coalition leader announces his target
information, all the agents that have not been assigned to any target and who have
the desired resources will respond. Other coalition leaders may also respond to the
coalition formation requests. When an agent detects multiple targets simultaneously,

132 J Intell Robot Syst (2011) 62:125–158

it randomly chooses one of the targets and becomes coalition leader to form a
coalition to prosecute that target.

Since, the number of available agents are limited, there can be situations where
none of the coalition leaders are able to form coalitions causing deadlocks. Deadlock
is a situation where multiple coalition leaders attempt to form coalitions and none
of the coalition leaders is able to form a coalition. This situation can occur since the
total available UAV resources (sums of all the UAV resources) are not properly
distributed between the coalition leaders. The deadlock will eventually be solved
with time as the agents are in motion in different directions and hence some of the
agents will lose their coalition leader role. However, this situation causes delay in
forming the coalitions and hence the objective of minimize the coalition prosecution
time may not achieved efficiently. Note that the deadlock is different from a situation
where the total available agent resources are not sufficient to prosecute a target, in
which case, the target will never be prosecuted.

To accomplish mission efficiently, the agents use unique token numbers which
are assigned to them prior to the commencement of the search mission. The token
mechanism determines the preference with which agents respond to simultaneous
multiple coalition formation requests. Thus, when an agent receives multiple coali-
tion formation requests, then, from the broadcast information, the agent can deter-
mine which coalition leader has the highest token number. The agent will respond to
that highest token number coalition leader. The deadlock breaking mechanism using
token numbers is implicit, in the sense; there is no need of additional information
exchange between the agents to decide to which coalition leader they should propose.

Other deadlock avoiding mechanisms can be used. For example, consider the
ETA of a potential coalition member to arrive at a target location published by a
coalition leader as the deadlock avoidance mechanism. Assume an agent Ak receives
requests from various potential coalition leaders. Then the agent will determine
ETA for each of the published targets and selects a coalition leader according to its
minimum ETA.

Although using ETA is a simple metric it may not avoid deadlocks consistently.
For example, consider the situation shown in Fig. 1, where agents A1 and A2 detect
targets T1 and T2 respectively and need to form coalitions. Let the target resources be
RT1 = (2, 3, 4), and RT1 = (3, 1, 2), and agent resources be RA1 = (1, 2, 1), RA2 =

Fig. 1 Situation where
multiple agents detect multiple
targets

T1

T2

A2

A3

A1

A4

J Intell Robot Syst (2011) 62:125–158 133

(2, 1, 0), and RA3 = (1, 1, 2), RA4 = (1, 1, 1). When the coalition formation request
is broadcast by A1 and A2 for T1 and T2 respectively, then agent A1 and A3 will
respond to A1 proposal as their ETA to T1 is smaller than ETA to T2. The agents
A4 and A2 send their bid to A2, because their ETA to T2 is smaller than to T1.
In this case, the coalition resources of A1 for target T1 are RC1

1 = (2, 3, 3), while
that of A2 for T2 are RC2

2 = (3, 2, 1). We can see that RC1

1 and RC2

2 do not meet the
RT1 and RT2 resource requirements and therefore no coalitions are formed causing
a deadlock. This situation may prevail for some more time until the geometry of
the agent locations change and one of the coalition leaders finds sufficient coalition
resources to assign a coalition.

For the above example if we use the token mechanism then the agents will respond
to A2 first as A2 has higher token number than A1. The agents A1, A2, A3, and A4

will respond to the request and a coalition constituting A2 and A3 is formed. After
A2 determines its coalition, A1 will broadcast again and A4 will send its information
as a response to the broadcast of A1. But the cumulative resources of A1 and A4 do
not satisfy the target requirement for T1, hence a coalition is not formed. Using this
scheme, we can see that at least one coalition has been formed to execute the task as
compared to no coalitions. As long as the sum of resources of the members intending
to be a part of the coalition is greater than or equal to the resources of the target,
token mechanism guarantees that at least one coalition is formed. For simulations in
this paper, we use the token mechanism.

Once an agent detects a target, it has to form a coalition that depends on the
current state of the agent. Figure 2 shows two different states (S1 and S2) and how
the agent makes a coalition. The sequence of actions carried out during these states
are described below.

3.1 Coalition Leader Has All the Required Capabilities (S1)

Agent Ai detects target T j that requiresRT j resources. If RAi
p ≥ R

T j
p , ∀ p = 1, . . . , m,

and if Ai is not already a part of another coalition, then Ai would attack target T j

without requesting a coalition with other UAVs. This is a special case of coalition
formation where only one UAV comprises the coalition. The UAV determines the
route to travel using Dubins curves [21], then proceeds towards the target as shown
by the state S1 in Fig. 2. In the above example, if A1 had all of the required resources,
then it will prosecute the target without sending a broadcast for a coalition.

3.2 Coalition Leader Has Partial Resources or No Resources (S2)

This state occurs when an agent Ai detects target T j that requires RT j resources, but
Ai has insufficient resources. In this case, Ai assumes the coalition leader role and
broadcasts the information about the target (i.e, its location and required resources)
to the other UAVs. The agents that have at least one type of the required resource
will send their cost (ETA) to arrive at the target and its resource vector. The coalition
leader considers all the responses and determines if a coalition can be formed or not.
If a coalition cannot be formed then it sends a discard coalition broadcast as shown in
Fig. 2, otherwise, it will form a coalition and broadcast the coalition information with
the time to prosecute the target. The selected potential members will re-plan their
paths using the developed simultaneous strike mechanism (described in Section 3.3)

134 J Intell Robot Syst (2011) 62:125–158

Detect and
determine

Coalition leader decision process

Check if has any
of the required

resources

No

Yes

Evaluate to reach
and broadcast with

Potential coalition member decision process

Yes

No

If accepted
No

Yes

Fig. 2 Sequence of events during coalition formation for the coalition leader and the potential
coalition members

to prosecute the target. The rejected agents will discard their potential interest in the
coalition and continue to perform their search task. During this process the potential
members who announced their availability for coalition will be in a wait state to
receive information from the coalition leader. The complete sequence of actions that
happen during the coalition formation for a target by the coalition leader is shown in
Fig. 2.

The coalition leader has to solve the optimization problem given in Eqs. 5
and 6 to determine the coalition members. Since solving the optimization problem
is computationally intensive we developed two coalition formation algorithms: (i)
Polynomial time coalition (which is sub-optimal) and (ii) Optimal coalition. Both the
algorithms use a two-stage mechanism to produce solutions that have low computa-
tional complexity. These two algorithms are similar to what we proposed in [30].

3.2.1 Polynomial Time Coalition Formation Algorithm (PTCFA)

Determining the minimum time and the smallest coalition that would successfully
prosecute the target can be accomplished in two stages. In the first stage, we
determine the set of all UAVs that can achieve the minimum time requirement
and then we prune this set to achieve the minimum member coalition in the second
stage. The process to achieve this task is shown by Algorithms 1 and 2. We assume
that agent Ai is the coalition leader and it has detected target T j that requires RT j

resources.

J Intell Robot Syst (2011) 62:125–158 135

Algorithm 1 First stage of the PTCFA
1: Initialize:
2: Ci

j = [] and RCi

j = []
3: agents_responded =

{
A1, A2, · · · , AN

}

4: ETAs = {Dj
1, · · · , Dj

N}
5: Dc = [];
6: Initialize:
7: \\ sorting of the responses by their ETAs in ascending order.
8: [Du, Da] = Sort (ETAs); % Du ← sorted ETAs, Da ← corresponding agent

index of Du

9: for k = 1 to |agents_responded| do
10: Aq = Da(k);
11: Ci

j ← append Aq to Ci
j

12: RCi

j ← RCi

j + RAq

13: Dc ← append Du(k);
14: if RCi

jp >= R
T j
p , for all p then

15: Return
(
Ci

j,Dc,RCi

j

)

16: BREAK
17: else
18: CONTINUE
19: end if
20: end for
21: Return(’No Coalition’)

The Algorithm 1 begins with initializing the coalition set and the coalition
resources set to empty sets (line 2). First the coalition leader sorts the responses
in the ascending order of cost (line 9). We take one agent (Aq) at a time (line 11),
include Aq in the coalition Ci

j (line 12), update the coalition resources set RCi

j (line
13) and the coalition time set Dc. Then check if the target resource constraint is met
(line 15). If the constraint is not met, then the process of including the next agent and

Algorithm 2 Second stage of the PTCFA

1: Ĉi
j = Ci

j;
2: for k = 1 : |Ci

j| do
3: Aq = Ci

j(k);

4: R̂Ci

j = RCi

j − RCq

j

5: if RCi

jp >= RT
jp, ∀ p then

6: Ĉi
j ← remove Aq from Ĉi

j

7: RCi

j = R̂Ci

j
8: end if
9: end for

10: Ci
j = Ĉi

j;

136 J Intell Robot Syst (2011) 62:125–158

its resources and verifying the resource constraint continues until the target resource
constraint is met.

Once the resource constraint is met, the algorithm terminates. If the target
resource constraint cannot be met despite adding all the agents in list Da, then a
successful coalition cannot be formed.

To illustrate Algorithm 1, we give a hypothetical example where agent A1 detects
a target that requires only two types of resources. The target resource requirement
is RT1 = (5, 3), with RT1

1 = 5 and RT1
2 = 3. Suppose that the UAVs that responded

with their resources and cost to the coalition leader are given in the Table 1. As per
stage 1 of the algorithm, the possible coalition members are sorted in ascending order
based on cost. The new list is given in Table 2. The ordered set of coalition members
is Da = (A2, A3, A6, A1, A4, A5). The coalition is formed by recruiting members
from this ordered set starting with the first member. The coalition formation process
progresses in the following way. Initially A2, the first member in the ordered set is
selected into the coalition making the coalition C1

1 = {A2} with RC1

1 = (1, 3). Since
RC1

1 is not sufficient to prosecute the target, the next agent, A3, is added to C1
1

forming C1
1 = (A2, A3) with combined resources of RC1

1 = (2, 4). As RC1

1 still does
not suffice, the next agent A6 is added to C1

1 which becomes (A2, A3, A6) and
the coalitional resource set becomes RC1

1 = (2, 6). The coalition resources are still
not sufficient, hence the next agent A1 is included in C1

1 resulting in RC1

1 = (4, 7).
The RC1

1 is still short of the requirement and A4 is recruited to the coalition
resulting in C1

1 = (A2, A3, A6, A1, A4) and RC1

1 = (6, 7), which satisfies the target
resource requirement. The first stage of the algorithm terminates once it determines
the coalition that satisfies the target resource constraint. The prosecute time for
simultaneous rendezvous is determined by the coalition member whose ETA is
highest. In the present case, the ETA of A4 is the highest with 172 s. The procedure
in Algorithm 1 will ensure a coalition with minimum time to target. This is proved in
the following theorem.

Theorem 1 Algorithm 1 generates an optimal minimal time coalition set.

Proof Let N be the number of agents that responded to a coalition formation
request to prosecute target T j that requires resources RT j . The set of potential
coalition members is given by C = {A1, . . . , AN} with corresponding costs (ETA
to target) as D j

i = {
Dj

1, . . . , Dj
N

}
. Assume that

∑N
i=1 RAi ≥ RT j . Algorithm 1 orders

the set C to form Co = (
Ai1 , . . . , AiN

)
where i1, . . . , iN is a permutation of 1, . . . , N

Table 1 List of agents who
responded to the coalition
formation request in the
example, their available
resources and costs to target

UAV Resources Cost (s)

A1 2, 1 123
A2 1, 3 47
A3 1, 1 63
A4 2, 0 172
A5 3, 2 207
A6 0, 2 96

J Intell Robot Syst (2011) 62:125–158 137

Table 2 List of agents in the
example, after sorting

UAV Resources Cost (s)

A2 1, 3 47
A3 1, 1 63
A6 0, 2 96
A1 2, 1 123
A4 2, 0 172
A5 3, 2 207

such that the corresponding ordered cost D j
o =

(
Dj

i1 , . . . , Dj
iN

)
has the property that

Dj
ik ≤ Dj

ik+1
,∀i ∈ {1, . . . , N − 1}. For a given r ∈ {1, . . . , N}, let Cr

o = {Ai1 , . . . , Air }.
The target prosecution time for Cr

o is Dir . The algorithm finds the least r members
such that

∑r
k=1 RAik ≥ RT j . Let v be the least integer in {1, . . . , N} with the above

property. Then Cv
o is the coalition formed by Algorithm 1 and the claim is that this

is a coalition that prosecutes the target T j is minimum possible time. Clearly, Cv
o is a

feasible coalition as the combined resources of the coalition are enough to prosecute
the target. Since the elements of D j

o are ordered in ascending order, the addition of an
agent Aik with k > v will not decrease coalition time. Similarly, removal of any agent
from Cv

o other than Aiv will not decrease the coalition time which is Dj
iv . Whereas,

removal of Aiv will result in an infeasible coalition as v is the least integer such that
Cv

o satisfies the resource requirement. Thus Cv
o is a feasible coalition with minimum

time to prosecute target T j. ��

Once the minimum time coalition is formed by Algorithm 1, we need to prune
those members whose resources are not required to form a minimum member
coalition. This process is carried out by using Algorithm 2. In the second stage,
we check if the resources of each agent Aq ∈ Ci

j in the coalition formed in stage 1

are required for the coalition or not by removing its resources from RCi

j (line 5).
If resources of Aq are not required (line 6), then the agent Aq is removed from
Ci

j (line 7) and its resources are deducted from the RCi

j (line 8). This process is
carried out for all the agents Aq ∈ Ci

j. The process of the second stage is described in
Algorithm 2.

We continue the example given above to illustrate the second stage of the coalition
formation algorithm. Let Ĉ1

1 = C1
1 be a temporary coalition with RC1

1 as its resources.
The first agent in C1

1 is A2, therefore first we remove its resources from RC1

1 that
results in R̂C1

1 = (5, 4). As the target requirement is RT
1 = (5, 3), the condition

R̂C1

1 ≥ RT
1 is met, hence the agent A2 and its resources are removed. This results

in Ĉ1
1 = {A3, A6, A1, A4} and RC1

1 = {5, 4}. The next agent in C1
1 is A3, its resources

are removed from RC1

1 resulting in R̂C1

1 = (4, 3). Removing agent A3 from Ĉ1
1 does

not meet the target resource constraint, hence A3 and its resources are restored in
the coalition. If we remove any of the remaining agents in C1

1, the target requirement
will not be met. Hence the coalition after second stage is C1

1 = (A3, A6, A1, A4) with
resources RC1

1 = (5, 4). Determining the minimum member coalition set as above
involves less computational complexity but can produce sub-optimal solutions as all
possible sub-coalitions and their resource contributions are not taken into account.

138 J Intell Robot Syst (2011) 62:125–158

3.2.2 Optimal Coalition Formation Algorithm (OCFA)

To determine the coalition which has an optimal size, we formulate an integer pro-
gramming problem for the second stage of the two-stage algorithm. The formulation
of the problem is given in Algorithm 3.

Algorithm 3 Optimal coalition formation algorithm
1: Stage 1:
2: Use Algorithm 1 to determine Dc

3: Stage 2:
4: Solve:

Ob jective Function : min
D′

c⊆Dc

|D′
c| (9)

subject to
∑

Ak∈D′
c

RAk
p ≥ R

T j
p , for all p = 1, . . . , m (10)

Algorithm 1 provides optimal minimum time and the Algorithm 3 generates
an optimal minimum number of agents, hence the two-stage algorithm generates
an optimal minimum time and minimum size coalition. We continue the example
given above to describe the functioning of the second stage of the optimal coalition
formation algorithm. The optimal coalition after solving the integer programming
problem yields C1

1 = (A2, A1, A4) with RC1

1 = (5, 4).
From the coalitions obtained using PTCFA and OCFA, we can see that the

coalition formed using OCFA has the smaller coalition with three members and it is
the optimal solution for a single target. While the PTCFA is a sub-optimal solution.

3.2.3 Complexity Analysis

Now we analyze the complexity of the PTCFA and OCFA algorithms. The PTCFA
produces a sub-optimal solution that has polynomial time complexity. Hence, it can
be used for real-time applications.

Theorem 2 The computational complexity of the PTCFA composing of Algorithms 1
and 2 is O(N(log N + 2m)).

Proof Assume that all N agents respond to the coalition request and the target
T j requires m types of resources to prosecute. The first stage (using Algorithm 1),
which includes the sorting of proposals requires O(N log N) computations. The step
16 or 22 needs Nm computations, hence the computational complexity of the first
stage is O(N log N) + O(Nm). In the second stage (using Algorithm 2) we need
Nm computations for step 6. Therefore, the algorithm complexity of PTCFA is
O(N log N) + O(2Nm). ��

The computational complexity for the optimal coalition algorithm has a poly-
nomial time complexity for the first stage. But we use an integer programming

J Intell Robot Syst (2011) 62:125–158 139

technique in the second stage. Although solving an integer programming problem
is NP-hard, there are pseudo-polynomial algorithms to generate optimal solutions
[29]. To solve the integer programming problem in the second stage, we used the
bintprog command in MATLAB that in turn uses a branch and bound technique to
compute the solution.

When N is very large, the computational time for optimal size coalition depends
on two factors: the number of agents and the quantity of their resources. During
the initial phase of the mission, the resources of the UAVs are full and hence the
coalition leader may receive a higher number of proposals. However, since the UAVs
are full of resources the coalition selected after stage 1 (Dc) will have lower number
of UAVs. As the minimum member coalition is to be found from a subset of Dc

which is small, the computational time will be small. The case is reversed during
the final stages where the UAVs may have fewer resources and the coalition size
is necessarily larger to meet the target resource requirements. As the coalition size
becomes large the computational time increases. The above analysis indicates that
the computational time for the optimal member coalition formation mainly depends
on the distribution of the UAV resources.

3.3 Simultaneous Strike

The coalition leader Ai determines the latest arrival time T T j
c for the coalition and

provides this information to the accepted coalition members. The coalition members
need to adjust their paths such that the time to arrive at the target is equal to
T T j

c . There are several methods that can be used to achieve simultaneous strike by
solving the rendezvous problem [15–20]. However, these methods require continuous
communication to achieve rendezvous resulting in an increase in communication
cost. Moreover, the kind of operations that we consider are carried out in hostile
territory where the communication needs should be minimum. We developed a
different approach where there is no communication between the coalition mem-
bers to achieve simultaneous strike. In this approach, the agents find the radius r

¯(bounded below by the minimum turning radius) of the Dubins curve to be followed
by the agent such that the ETA of the agent is equal to T T j

c . To execute this
method, the coalition members need only the information of T T j

c from the coalition
leader.

Assume that agent Ai is the coalition leader for target T j forming a coalition

Ci
j with latest arrival time of T T j

c . Each member Aik ∈ Ci
j, ik ∈ {1, . . . , N}, k =

1, . . . , |Ci
j| has to adjust its path length such that Dik is equal to T T j

c . In order to

achieve that, the agents need to find their turning radius r
¯k such that Dj

k = T T j
c . Since,

r
¯k cannot be calculated using a closed form solution, we calculate r

¯k iteratively until
the condition Dj

k = T T j
c is satisfied.

Cost: The selection of the coalition members in the first stage of PTCFA and
OCFA is based on the ETA of the agent from the target. Since the agents have
kinematic constraints, they need to use Dubins curves [21] to compute ETA.

Given an agent position with its heading, two Dubins paths can be determined to
the target: (i) Dubins shortest path and (ii) Dubins longest path, as shown in Fig. 3a.
The time taken to follow either of these two paths can be used by the agents as
cost. However, the selection of (i) or (ii) depends on whether they can provide cost

140 J Intell Robot Syst (2011) 62:125–158

Fig. 3 a Dubins curves, where
D1 is the Dubins shortest path,
while D̄1 is the Dubins longest
path. b An example of
selecting Dubins path

T

Heading

D1

D1

UAV

(a)

A2

T

A1

D2

D2
D1

D1

(b)

(path length or ETA) as a continuous function of radius. This is important for the
simultaneous attack condition.

Consider the example as shown in Fig. 3b, where agent A1 is the coalition leader
and A2 is a member of the coalition. If we choose the ETA given by the Dubins
shortest path, then accordingly A1 has to adjust its path length such that D1 is equal
to D2, since T T

c = D2. But, it is not possible for A1 to determine a path if the radius
of the circle encircles the target, as shown by the dotted circle in Fig. 3b. In such a
case, A1 might want to choose D̄1, but then it may be that D̄1 > D2 and therefore A1

cannot travel along D̄1. This occurs because there is a discontinuity in the achievable
ETA when one uses Dubins shortest path. To eliminate this discontinuity, we always
use the Dubins longest path as the metric for cost. In this case, A1 can increase its
radius to match the ETA of A2 for any D̄2 > D1. The simultaneous strike constraint
for a coalition Ci

j is obtained by the individual agents modifying the radius of their

Dubins longest path to the target to match T T j
c .

To calculate the ETA of an agent using the Dubins longest path from its current
position to a target, we need to consider two cases as shown in Fig. 4. Case (a):
the target is on the right hand side of the UAV and the UAV has to turn counter-
clockwise to follow the Dubins path to the target. Case (b): the target is on the left
hand side of the UAV and the UAV has to make a clockwise turn to reach the target
via Dubins longest path.

J Intell Robot Syst (2011) 62:125–158 141

Ai

(xi,yi)

(xc,yc)

-

(xT,yT)
i

Ai

(xi,yi)

(xc,yc)

(xT,yT)

i

(a) Case a (b) Case b

Fig. 4 Calculation of Dubins distance

Let (xi, yi) be the location of an agent and ψ be its heading. Let (xT , yT) be the
target location. Let (xc, yc) be the center of the circle tangent to the UAV’s velocity
and drawn away from the target (in the direction of turn). For case (a), this is given as

xc = xi − r sin ψ (11)

yc = yi + r cos ψ (12)

and for case (b), this is

xc = xi + r sin ψ (13)

yc = yi − r cos ψ (14)

where r is the radius of the circle along which the agent makes a turn.
In both the cases, we find angles θ1, θ2 and θ3 as follows.

θ1 = arccos

(√
(xT − xc)2 + (yT − yc)2

r

)

(15)

θ2 = π

2
− ψ (16)

θ3 = arctan
(

yT − yc

xT − xc

)
(17)

In case (a), the ETA is given as

D = (r{2π − [θ1 − ((π − θ3) − θ2)]} + r tan θ1)/vi (18)

and in case (b), it is given as

D = (r{2π − [θ1 − (θ2 + θ3)]} + r tan θ1)/vi (19)

where vi is the ground speed of the agent.
Note that each agent’s Dubins longest path for the simultaneous strike constraint

can be found by adjusting the corresponding radius. One may argue that instead of
using Dubins longest path, it is better to use Dubins shortest path by increasing the

142 J Intell Robot Syst (2011) 62:125–158

radius until the radius encircles the target and when the shortest path encircles the
target, then use longest path. Alternatively, another approach could be to move away
from target and determine if the Dubins shortest path can allow you to reach the
target. Although these approaches are intuitively appealing, there is no guarantee
that they will produce the required simultaneous strike trajectories. Since, the UAV
is in motion, the solution should be quick. Any of the above alternatives, including
the Dubins longest path approach, are concrete in providing the solution. Hence, to
have a generic model with a single rule we adopted the Dubins longest path. In the
worst case, the time need to prosecute target T j increases by 2πrmin/V s as compared
to the time taken using Dubins shortest path.

Once the coalition is formed, the agents travel along the new derived path.
During this process, the coalition members may detect other targets. In that case,
the detecting member will become a coalition leader for that target and carry
out the coalition generation process. However, this agent will not participate as a
member of the coalition, since it is already a part of another coalition. From the
computational analysis described in the previous section, the two-stage algorithm has
low computational complexity and require only three broadcasts to make a coalition.
Hence, they can afford to be the coalition leaders for the detected targets instead of
allowing some other agent to become a coalition leader.

The algorithms developed in this paper are used to form coalitions and prosecute
targets as and when they are detected. Algorithm 3 provides an optimal solution to
prosecute a single target. But, it is necessary to know the deviation of the proposed
solution in a multiple target scenario from that of the global optimal solution where
the information about all targets are known a priori. For this purpose, we formulate
the problem as a global static optimization problem and solve it. In the next section,
we will discuss the solution concepts for this combinatorial optimization problem.

4 Combinatorial Optimization Problem

The solution to the combinatorial optimization problem is N P-hard, in part because
it is very difficult to capture the dynamics of the resources depletion after prosecuting
a target. Therefore we will solve the optimization problem using the Particle Swarm
Optimization (PSO) technique. The PSO allows us to model the optimization
problem taking the resource dynamics into account. Also, PSO is faster compared
to genetic algorithms [26]. Due to these features we adopted PSO to solve the
optimization problem with known target and UAV positions and resources.

4.1 Overview of Particle Swarm Optimization

PSO is a population based stochastic optimization technique developed by Eberhart
and Kennedy [23, 24]. The key idea behind the algorithm is to simulate the social
behavior of bird flocks, fish schools, etc. Each particle in a swarm is a potential
solution in the search space. The particle adjusts its velocity according to its own
flying experiences and its flock’s experiences. The PSO technique is similar to the
evolutionary computation techniques in [26], however, in PSO each particle can
adapt its velocity to move in the search space and has memory of its best position.

J Intell Robot Syst (2011) 62:125–158 143

If we assume the optimization problem to be of Q-dimension, then each particle
in the swarm S can be represented as Xl = (xl1, xl2, . . . , xlQ), l = 1, . . . , S. The best
previous position attained by the particle is represented as Pl = (pl1, pl2, . . . , plQ),
and the velocity of the particle is Vl = (vl1, vl2, . . . , vlQ). The best global position
achieved by the swarm is represented as Pg = (pg1, pg2, . . . , pgQ), and the iteration
number is represented as superscript k. The particles in the swarm are updated
according to the following equations

vk+1
ld = χ

(
wvk

ld + c1r1
(

pk
ld − xk

ld

) + c2r2
(

pk
gd − xk

ld

))
, (20)

xk+1
ld = xk

ld + vk+1
ld (21)

where d = 1, . . . , Q, r1 and r2 are uniformly distributed random numbers between
[0, 1], c1 and c2 are positive constants representing cognitive and social parameters,
w is the inertia weight, and χ is the constriction factor. The role of inertia weight w

is to create a balance between global and local explorations. Initially, it is necessary
to explore the search space and then reduce w as the solution reaches the optimum
value [25]. The constants c1 and c2 aid in convergence of the solution. The random
parameters r1 and r2 are used to maintain the diversity of the swarm population,
while the constriction factor controls the effect of velocity on the particles.

The update equations given in Eqs. 20 and 21 are modified from the original equa-
tions developed by Eberhart and Kennedy [23], which did not have the inertia and
constriction factors. In the next section we will apply the PSO algorithm to determine
coalitions for all the targets and the sequence in which the targets are prosecuted.

4.2 Solution to the Static Optimization Problem Using PSO

The value of the particle in each dimension can, in general, be a decimal value, but for
the target assignment problem we need it to be an integer. The usual method of using
PSO for integer programming optimization methods is to round the value of the par-
ticle [27, 28]; we will be using the same scheme in evaluating the objective function.

The notation of the particle Xl is modified to suit our problem. We assume that
N UAVs and M targets are present in the search space. The lth particle at the
kth iteration is Xk

l = (
xl,k

11 , . . . , xl,k
1M, xl,k

21 , xl,k
22 , . . . , xl,k

2M, . . . , xl,k
N1, xl,k

N2, . . . , xl,k
NM

)
, where

xl,k
ij ∈ {0, . . . , M} and indicates that agent Ai will prosecute target xl,k

ij in jth sequence.

A value of 0 for xl,k
ij represents a search. The dimension of the particle is NM. The

first M dimensions of the particle present the order in which the first agent would
execute different targets. The dimensions M + 1 to 2M present the order in which
the second agent will attack targets, and so on. Thus we have N agents’ preferences
of the targets and using these preferences the PSO evaluates the cost of the mission
using Algorithm 4.

First the PSO algorithm parameters are initialized in lines 1 and 2 of Algorithm 4.
For each iteration, all the particles are evaluated using evaluate_swarm function.
Before evaluating the particle in this function we check if the boundary conditions
are met or not. If they are not met then the value of the particle is set to infinity
(line 18). The value of the particle is also set to infinity if the solution does not exists
(line 34), otherwise the particle is evaluated (lines 20–39). The cost of the particle in
line 29, is the time taken by a coalition to prosecute that target. Once all the particles

144 J Intell Robot Syst (2011) 62:125–158

Algorithm 4 Global optimal solution using PSO
1: Initialize: S, χ, ω, c1, c2, number_of_iterations.
2: bestParticleValue = ∞; bestParticle = []
3: for Iter = 1 to number_of_iterations do
4: Pval ← evaluate_swarm(S); % Evaluate each particle and determine its value
5: [minParticleValue, minParticleIndex] ← min(Pval)
6: if minParticleValue ≤ bestParticleValue then
7: bestParticleValue ← minParticleValue;
8: bestParticle← S(minParticleIndex);
9: end if

10: check termination conditions
11: update S using Eqs. 20 and 21
12: end for
13: Function cost = evaluate_swarm(S)
14: for l = 1 : S do
15: cflag ← check if the value of each dimension of the particle is between [0, M].
16: targetsAssigned ← [];
17: if cflag == 0 then
18: cost(l) ← ∞
19: else
20: cost(l) ← 0;
21: for j = 1 : M do
22: currPref ← S(l, j : M : NM)
23: while currPref �= ∅ do
24: target ← currPref(1)
25: if find(target == targetsAssigned)==∅ then
26: agentsPrefTarget ← find(currPref == target);
27: cr ← Check the sum of resources of agentsPrefTarget
28: if cr ≥ RT

j then
29: cost(l) ← cost(l) + max {dubinDistance(agentsPrefTarget)}
30: Reduce the resources of the agents in agentsPrefTarget
31: targetsAssigned ← [targetsAssigned target]
32: Record agent to target mapping
33: else
34: cost(l) ← ∞
35: end if
36: end if
37: currPref = setdiff(currPref, target)
38: end while
39: end for
40: end if
41: end for

are evaluated, we determine the lth particle that has minimum value (minParticle-
Value) and the particle in the swarm S corresponding to the minimum value (min-
ParticleIndex, line 5). If minParticleValue is less than the previous best value then
the bestParticleValue and bestParticle variables are re-assigned (lines 6–9). Then we

J Intell Robot Syst (2011) 62:125–158 145

check for termination condition and update the swarm using the PSO equations given
in (20) and (21) (lines 10 and 11). This process is carried out for all the iterations
(given by number_of_iterations) or until a termination condition is met.

The PSO algorithm produces the optimal coalition assignment for all the targets.
However, the dimension of the particle depends on the number of agents and targets.
With an increase in the number of agents or number of targets or both, the compu-
tational time increases as PSO has to search on NM dimensional solution space.

A hypothetical scenario is considered to demonstrate the execution of the PSO
algorithm. Consider a scenario with three targets and four UAVs whose initial
positions are shown in Fig. 5. The resources of the agents are RA1 = (1, 2, 3), RA2 =
(2, 0, 1), RA3 = (1, 3, 1), RA4 = (1, 2, 1), and the target resource requirements are
RT1 = (2, 1, 0), RT2 = (1, 0, 1), RT3 = (0, 1, 3).

Fig. 5 a Initial positions of the
UAVs and targets for the
example. b The target
assignment achieved
using PSO

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

800

T
1
, (100, 700)

T
2
, (450, 300)

T
3
, 700 550

A
1
, (10, 20)

A
2
, (50 200)

A

m

m

3
, (100 300)

A
4
, (450, 500)

(a)

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

800

T
1

T
2

T
3

A
1

A
2

A
3

A

m

m

4

(b)

146 J Intell Robot Syst (2011) 62:125–158

The solution generated by the PSO is Xl = (300020100100) after 532 iterations.
From the solution, according to step 22 in the Algorithm 3, currPref = [3 0 1 1]. Let
the current target be 3 (step 24). Since only one agent has target 3, and it satisfies
the resource requirement, A1 is assigned to T3 in step 26. The distance of the agent
to target using Dubins curves is added to the cost in step 29. The target is removed
from the currPref vector which now is [0 1 1]. The next target is 0, which is a search,
hence it is not taken into account. Therefore the currPref is [1 1]. The next target
is T1, carrying out procedure similar to T3 we can see that the resource constraint
is satisfied. Hence A3 and A4 are assigned to T1. The cost (latest arrival time of the
coalition) to execute the target is added to the cost(l), and the target is removed from
the currPref list. Since the currPref list is empty, the next sequence is considered, and
now currPref = [0 2 0 0]. Since, target T2 is the only target present there, it is assigned
to A2. The cost(l) is updated with the new cost of A2 moving to T2. The process
continues until all the for-loops are completed. Figure 5b shows the assignment of
the agents to targets. In the figure we can see that A1 is assigned to T3, A3 and A4

are assigned to T1, and A2 is assigned to T2. The cost given by the solution Xl is the
total time taken to accomplish mission by prosecuting all of the targets.

5 Simulation Results

Monte-Carlo simulations are carried out to evaluate the performances of the single
target coalition formation algorithms (PTCFA and OCFA) as well as the global
optimal coalitions for all the targets. The complexity of the optimization problem
increases with increase in number of agents or number of targets, or both. We will
analyze these effect in terms of the time required to complete the mission (mission
completion time), time required to form a coalition (coalition time), and the time
required to simulate one complete mission with a given target and UAV distribution
(simulation time) on both the two-stage algorithms and the static PSO solution.

5.1 Difference in Solutions Obtained Using PSO and Two-Stage Algorithms

We consider a sample mission scenario with four UAVs and four targets and analyze
the time taken by each algorithm to form a coalition (coalition time), the time taken
to accomplish the mission, and the simulation time (i.e. the time computer takes to
simulate a given mission scenario). The region is an area 1,000 × 1,000 m in size, and
the initial position of the UAVs and targets are shown in Fig. 6. The velocity of the
UAVs is 10 m/s and the sensor range is 300 m. A UAV that goes out of the 1,000 ×
1,000 m region of interest during its search takes a minimum radius turn to come back
into the region. The available resources of the UAVs are RA1 = (2, 3, 4), RA2 =
(2, 1, 3), RA3 = (3, 2, 4), RA4 = (2, 2, 0) and the required resources of the targets
are RT1 = (1, 1, 2), RT2 = (3, 2, 4), RT3 = (2, 1, 2), RT4 = (3, 4, 1).

5.1.1 Mission Performance Using PTCFA

The agents have to search for targets and when detected need to form coalitions.
As shown in Fig. 7a at time t = 0.6 s, A1 detects target T1 and its resources satisfy
the condition RA1 ≥ RT1 . Hence, the agent is in state S1 and it attacks the target
without sending a coalition request as described in Section 3.1. The trajectory of A1

J Intell Robot Syst (2011) 62:125–158 147

Fig. 6 Sample scenario for
determining the difference in
mission performance achieved
using PTCFA, OCFA and the
PSO solution

T
1

T
3

T
4

T
2

A
4

A
2

A
1

A
3

traveling towards T1 is shown in Fig. 7a. At time t = 1 s, A3 detects T4 and forms a
coalition with agents A2 and A4. These agents adjust their path and travel towards
T4 as shown in Fig. 8a. After prosecuting the assigned targets, the agents continue to
search the region. At t = 147.8 s, A3 detects T3 and a coalition with A4 is formed. The
agents adjust their path length to meet the rendezvous constraint and their desired
trajectory is shown in Fig. 9a. On the other hand, T2 is detected by A1 at t = 164 s and
a coalition with A2 is formed. The route taken by A1 and A2 is shown in Fig. 10a. The
total mission was accomplished in 263 s. Now, we will repeat the experiment on the
mission performance using OCFA, which will demonstrate that the coalition formed
using PTCFA is sub-optimal.

5.1.2 Mission Performance Using OCFA

In this simulation, A1 detects T1 at t = 0.6 s and it assigns itself to T1. The route
followed by A1 is similar to that using Algorithm 1 as shown in Fig. 7b. At t = 1 s,

A
2

A
4

A
1

A
3

T
3

T
4

T
1

T
2

(a)

A
2

A
1

A
4

A
3

T
3

T
1

T
4

T
2

(b)

Fig. 7 a The trajectory of A1 attacking T1 using PTCFA. b The trajectory of A1 attacking T1 using
OCFA

148 J Intell Robot Syst (2011) 62:125–158

T
3

T
4

T
2

T
1

A
2 A

3

A
4

A
1

(a)

A
2

A
4

A
3

A
1

T
3

T
2

T
4

T
1

(b)

Fig. 8 a A2, A3, and A4 are assigned to T4 PTCFA. b A3 and A4 assigned to T4 using OCFA

T
2

T
3

A
3

A
4

A
2

A
1

(a)

T
3

T
2

T
1

T
4

A
4

A
2

A
1

A
3

(b)

Fig. 9 a A3 and A4 assigned to T3 using PTCFA. b A2 assigned to T3 using OCFA

T
2

A
3

A
4

A
1

A
2

(a)

T
2

A
2

A
1

A
4

A
3

(b)

Fig. 10 a Trajectories of agents A1 and A2 attack target T2 using PTCFA. b Routes of A1, A3, and
A4 follow to attack target T2 using OCFA

J Intell Robot Syst (2011) 62:125–158 149

A3 detects T4, but A3 generates a coalition with A4 only and hence the coalition has
2 members, while the coalition generated using PTCFA produced a coalition with
three agents. Figure 8b shows the trajectories of A3 and A4 towards T4. The agent
A2 is not assigned to any target and it detects target T3 at t = 1.4 s. Since, its resources
are sufficient to prosecute T3, it generates a single member coalition. The route taken
by A2 to T3 is shown in Fig. 9b. The final target T2 is detected by A1 at time t = 155 s
and a coalition with A2, A3, and A4 is formed. The route of these agents is shown in
Fig. 10b and the mission was accomplished in 213.8 s.

5.1.3 PSO Solution

When the target positions and their resources are known a priori, we can solve the
combinatorial coalition formation for each agent using PSO. Figure 11 shows the
assignment and the routes that the agents take to accomplish the mission. Agent A1

is initially assigned to T1 and then assigned to T4, while A4 is assigned to T4 only.
So, A4 takes a path length of A1 attacking target T1 plus the Dubins distance of
A1 from T1 to T4. The mission can be accomplished in 114.3 s using the assignment
determined by the PSO. The optimal solution was obtained with 600 iterations, where
each iteration involves solving lines 3–12 in Algorithm 4.

5.1.4 Comparison Analysis

Table 3 summarizes the mission time and simulation time for a mission using PSO
solution and the two-stage coalition formation algorithms. The simulations were
carried out using MATLAB on a 1.83 GHz, 1 GB RAM machine. The performance
of the mission using PTCFA is less than that achieved using OCFA, because the
number of agents performing a search task is reduced in PTCFA as the coalitions are
not of minimal size and hence the search to detect targets is less efficient. Although
the performance of the mission using OCFA is better, the computational time is
higher than the PTCFA algorithm.

From the table we can see that the mission can be accomplished earlier using the
PSO solution than using any of the two-stage algorithms as the target positions are

Fig. 11 PSO coalition
assignment for all the targets

T
1

T
3

T
2

T
4

A
2

A
3

A
1

A
4

150 J Intell Robot Syst (2011) 62:125–158

Table 3 Comparison of the mission with PSO solution and mission with two-stage algorithm

PSO (s) PTCFA (s) OCFA (s)

Mission time 114.3 263 213.8
Simulation time 17.3 3.31 3.83

known a priori in this case. However, the simulation time taken to complete the
mission using the PSO is much higher than that of two-stage algorithms. In case of
PSO solution, the time taken to produce a solution increases exponentially as we
increase the number of agents and targets. This effect is studied in the next sub-
section. Another advantage of using two-stage algorithms is that it is decentralized
and can take any uncertainties in the environment into account, that may include
incomplete knowledge of the resources and the positions of the targets and the
UAVs.

5.2 Effect of Increase in Number of Agents and Targets

A set of 100 simulations were carried out using PTCFA, OCFA and PSO solutions on
a 1,000 × 1,000 m area. For the simulations using PTCFA and OCFA, the parameters
for the UAVs are a velocity of 10 m/s, minimum turning radius of 50 m, a sensor range
of 100 m, and a simulation time of 1,000 s. While the simulation parameters for the
PSO coalition formation algorithm are: c1 = 0.5, c2 = 0.5, χ = 1, Vmax = 100, and the
number of iterations = 5,000. For each simulation, the target positions and resources,
and the UAV positions and resources are randomly generated. The resources for
each target were randomly generated between 0 and 3, while the UAV resources
were randomly generated between 0 and (number_of_targets)/2. So, the minimum
resources is equal to zero, while the UAV can carry a maximum of three different
types of resources and each resource quantity can be equal to (number_of_targets)/2.
We controlled the quantity of resources for the UAVs based on the number of
available targets. For a given number of targets, we find the performance in terms
of mission completion time by varying the number of agents to 5, 10, 15 and 20, while
changing the number of targets to 5, 10, and 15. We also study the effect of percentage
mission accomplished, time taken to form the coalition using PTCFA and OCFA
(coalition time), and the CPU time required to carry out each simulation (simulation
time).

The resources for the agents and the targets are generated randomly and the
simulations are carried out in different ways for the two-stage and the PSO solutions.
For the simulations using PTCFA and OCFA, the total time required to prosecute all
the targets is recorded as the mission time. If some of the targets were not prosecuted
due to lack of UAV resources then the percentage of the mission accomplished is
recorded and calculated as:

% mission completed = 100 − Total number of target left
Total number of targets

× 100.

The UAV team does not have a priori knowledge of whether the cumulative
resources of the team are sufficient to prosecute all the targets or not. When the
resources are not sufficient then UAVs have to search till the end of simulations, that
is 1,000 s, otherwise the time taken to prosecute all the targets is recorded as mission

J Intell Robot Syst (2011) 62:125–158 151

time. We also record the time to form the coalition and the CPU time needed to
perform the simulation.

For the PSO based optimal solution, each simulation was carried out by running
the PSO algorithm for a given number of iterations (5,000) and the mission time
obtained from the solution and the CPU time taken for the solution are stored. When
the cumulative UAV resources are less than the cumulative target resources then a
solution using PSO cannot be obtained and the percentage mission accomplished is
0% and the mission time in that case is treated as 1,000 s.

The performance curves for the Monte-Carlo simulations are shown in Figs. 12, 13
and 14. Let us first consider a mission with five targets and varying number of UAVs
as shown in Fig. 12a. From the figure, we can see that the optimal solution obtained
from PSO outperforms the solution obtained using two-stage algorithms. However

Fig. 12 a Comparison of mean
mission completion time in
seconds for a mission with five
targets and increasing number
of agents. b Mean percentage
mission not accomplished due
to lack of sufficient resources
with increasing number
of agents

5 10 15 200

100

200

300

400

500

600

700

Number of UAVs

A
ve

ra
ge

 m
is

si
on

 c
om

pl
et

io
n

tim
e

PTCFA
OCFA
PSO solution

(a)

5 10 15 2050

55

60

65

70

75

80

85

90

95

100

Number of UAVs

A
ve

ra
ge

 p
er

ce
nt

ag
e

m
is

si
on

 c
om

pl
et

ed

PTCFA
OCFA
PSO solution

(b)

152 J Intell Robot Syst (2011) 62:125–158

Fig. 13 a Comparison of mean
mission completion time in
seconds for a mission with ten
targets and increasing number
of agents. b Mean percentage
mission not accomplished due
to lack of sufficient resources
with increasing number
of agents

5 10 15 20
0

100

200

300

400

500

600

700

800

900

1000

Number of UAVs

5 10 15 20
Number of UAVs

A
ve

ra
ge

 m
is

si
on

 c
om

pl
et

io
n

tim
e

PTCFA
OCFA
PSO solution

(a)

0

10

20

30

40

50

60

70

80

90

100

A
ve

ra
ge

 p
er

ce
nt

ag
e

m
is

si
on

 c
om

pl
et

ed

PTCFA
OCFA
PSO solution

(b)

the deviation of the performance by PTCFA and OCFA algorithms from that of
the optimal is marginal. The time to accomplish a mission has two components (i)
the search time to detect the target and (ii) the time to prosecute the target. As the
agents have small sensor range, they take more time to detect all the targets. Also, the
target detection time depends on the kind of strategy used by the agents. Because of
the lower sensor range and randomized search strategy, the mission completion time
is higher for the two-stage algorithms. The mission time using these algorithms can
be reduced by increasing the sensor range and also using better search scheme that
can detect the targets early.

Figure 12b shows the percentage of the missions that were completed. From the
figure we can see that the percentage mission completed when we use PSO solution
is low for five UAVs compared to that obtained using the PTCFA and OCFA

J Intell Robot Syst (2011) 62:125–158 153

Fig. 14 a Comparison of mean
mission completion time in
seconds for a mission with 15
targets and increasing number
of agents. b Mean percentage
mission not accomplished due
to lack of sufficient resources
with increasing number
of agents

5 10 15 20
0

100

200

300

400

500

600

700

800

900

1000

Number of UAVs

A
ve

ra
ge

 m
is

si
on

 c
om

pl
et

io
n

tim
e

PTCFA
OCFA
PSO solution

(a)

5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

Number of UAVs

A
ve

ra
ge

 p
er

ce
nt

ag
e

m
is

si
on

 c
om

pl
et

ed

PTCFA
OCFA
PSO solution

(b)

algorithms. This is because for some of the Monte Carlo runs, the UAVs did not have
sufficient resources to prosecute all the targets. In those cases the problem does not
have an optimal solution leading to 0% mission completion, and hence decrease in
the percentage mission completed. But, for PTCFA or OCFA algorithms, the targets
are prosecuted when detected and hence the percentage mission accomplished is
always higher than that of PSO solution. When the number of UAVs are increased
to 10, 15 and 20, all the targets were prosecuted by the UAVs, therefore the mean
percentage mission completed is 100%.

The mission performance for ten targets is shown in Fig. 13a. For the mission
with five UAVs, 99% of the simulations did not have sufficient UAV resources to
prosecute all the targets. Hence, the average time for the mission is high. However,
for the simulations with increasing number of UAVs, the mission time decreases.

154 J Intell Robot Syst (2011) 62:125–158

The PSO solutions are better than the PTCFA and OCFA solutions. Although the
PSO solution is better in terms of mission completion time, the percentage mission
accomplished is lower than that achieved using PTCFA and OCFA algorithms. This
phenomenon can also be seen for 15 targets in Fig. 14a, b.

From these simulations we can see that even though the PTCFA produces sub-
optimal coalitions in polynomial time still its performance is comparable to that
achieved using OCFA and PSO solution. As discussed previously, when a coalition
leader receives proposals for possible coalition members then it uses PTCFA or
OCFA to determine the coalition for the task. Figure 15 shows the mean computa-
tional time taken to form coalitions for various target and UAV distributions. From
the figure we can see that the time taken for OCFA is higher than that using PTCFA
for any given agent and target distribution. However, the time taken to solve these
algorithms is less than one millisecond for both the algorithms which is encouraging
for real-time applications.

With increase in the number of agents or targets, the simulation time increases
when PSO algorithm is used. Figure 16 shows the average time taken (with standard
deviation bars), to complete one simulation using PSO. For a given number of
targets, the total number of computations increases with increasing number of agents
and hence the time to determine the optimal solution also increases. However while
using the two-stage algorithms it was found that the time to simulate was less than
30 s for all the cases that we studied.

5.3 Discussion

The simulation results show that the combinatorial optimization solution using PSO
provides the lowest mission completion time. But, if there is an uncertainty in the
number of resources allocated to UAV or in the information about the targets, then
the solution obtained using combinatorial optimization is not valid. The advantages
of forming coalitions in a decentralized manner is that the agents need not have any a
priori information about other members in the team or the targets. The information
is required only while forming coalitions. Thus, even if the resources of some of the

Fig. 15 Average
computational time taken to
form coalitions for given
number of targets and varying
number of agents

5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of UAVs

A
ve

ra
ge

 c
oa

lit
io

n
tim

e
in

 m
ill

i s
ec

OCFA

PTCFA

J Intell Robot Syst (2011) 62:125–158 155

Fig. 16 Mean time taken to
complete a simulation
using PSO

5 10 15 20
0

500

1000

1500

2000

2500

3000

3500

4000

Number of UAVs

A
ve

ra
ge

 s
im

ul
at

io
n

tim
e

in
 s

ec

5 target
10 targets
15 targets

UAVs are exhausted or cannot be used for some reason, the decentralized coalition
formation algorithms still can handle these uncertainties.

5.3.1 Coalition Formation for Agents with Heterogenous Speed

In the simulations, we assumed that the UAVs have same velocity. However, the
developed coalition formation algorithms can generate coalitions when the agents
have different velocities without any change to the algorithm. This is because, the
algorithm uses ETA of the agents which implicitly captures their velocity informa-
tion. We present an example with five agents and three targets. The initial locations
of the UAVs and the targets are shown in Fig. 17a and agents use the PTCFA
algorithm to determine coalitions. The agent speeds are v1 = 8 m/s, v2 = 10 m/s, v3 =
13 m/s, v4 = 15 m/s, and v5 = 18 m/s. The agent resources are RA1 = (1, 1, 1),RA2 =
(2, 1, 1),RA3 = (2, 2, 1),RA4 = (2, 2, 1),RA5 = (1, 1, 1) and the target resources are
RT1 = (1, 3, 1),RT2 = (3, 3, 1),RT3 = (3, 1, 3). The rest of the simulation parameters
are same as described in Section 5.2.

At time t = 0.4 s, agent A3 detects target T1 and forms a coalition of agents
A4 and A5. The trajectories followed by the agents A4 and A5 to prosecute T1 is
shown in Fig. 17b. As the mission progress, agent A2 detects target T3 and forms a

T
1

T
2

T
3

A
1

A
2

A
3

A
4

A
5

(a)

T
1

T
2

T
3

A
1

A
2
A

3

A
4

A
5

(b)

Fig. 17 a Initial agent and target locations. b The trajectories of agents A4 and A5 to target T1

156 J Intell Robot Syst (2011) 62:125–158

T
1

T
2

T
3

A
1

A
2

A
3

A
4A

5

(a)

T
2

A
1

A
2A

3

A
4

A
5

(b)

Fig. 18 a Trajectories of agents A1, A2, A3 to T3. b Trajectories of agents A1, A3, A4, and A5 to T2

coalition consisting of agents A1, A2 and A3 at time t = 23.1 s. The trajectories of the
agents are shown in Fig. 18a. The agents A4 and A5 prosecute T1 at t = 27.4 s and
subsequently they prosecute T3 at time t = 98.6 s. The final target T2 is detected by
agent A3 and forms a coalition with agents A1, A3, A4, and A5 at time t = 123 s. The
target was prosecuted at time t = 198.2 s and the trajectories of the agents are shown
in Fig. 18b. From the trajectories, we can see that even though the initial ETAs of
the agents are different, the simultaneous strike mechanism ensures that the agents
reach the target at the specified time which is the maximum of ETAs of all the agents
in the coalition.

5.3.2 Minimum Member Coalition

The coalition formation algorithm presented here (OCFA) can be extended to a
single objective of minimizing the total number of UAVs, and not taking the time
to accomplish the mission into account. In this case, the first stage of the two-stage
algorithm can be removed, and solving only the second stage of OFCA will yield the
desired result.

5.3.3 Improving the Performance of PTCFA

The second stage of the polynomial time algorithm attempts to determine the
minimum number of agents required for the coalition through a systematic pruning
of the coalition formed during stage 1. However, this algorithm is naive and we can
incorporate different mechanisms that can provide better solutions. A mechanism
can be to sort the agents by their resource contribution and then screen them, in
which case, the agents with low resources will be released from the coalition that
might result in a coalition with lesser members. However, there is no guarantee that
even such a mechanism would produce an optimal member coalition.

5.3.4 Other Applications

The coalition formation algorithm can be used for many other applications where
a sub-team of UAVs are required to perform a task. These include cooperative
tracking, patrolling sea shores, and cooperatively tracking and prosecuting moving
targets in a battle-field. In these applications, the coalitions are formed to share
sensor information and the resources may not deplete. The proposed coalition
formation algorithms can be easily modified depending on the mission. For example,

J Intell Robot Syst (2011) 62:125–158 157

consider a cooperative target tracking mission where the coalition leader detects a
target and assigns a coalition of UAVs to track the target with varying sensors on
board and prosecute it [22].

6 Conclusion

In this paper, we presented two decentralized two-stage coalition formation algo-
rithms, the first one has polynomial time complexity and the second uses binary
integer programming technique with low computational overhead, for a search
and prosecute mission. The algorithms determine optimal set of agents that have
sufficient resources to simultaneously prosecute a target. In order to determine the
deviation of the solution provided by the proposed algorithms from an optimal
centralized solution, we developed a PSO formulation to solve the centralized
combinatorial optimization problem. Simulation results are presented to show that
the mission performances of the two-stage algorithms are close to the PSO solution.
The simulation time taken by the proposed algorithms, as well as the time to form
coalitions, is less and this holds promise for real-time applications.

Acknowledgements This work was partially funded by the National Science Foundation under
Information Technology Research Grant CCR-0313056 and by NASA under STTR contract number
NNA04AA19C to Scientific Systems Inc, and Brigham Young University and by the Air Force Office
of Scientific Research award No. FA9550-04-0209.

References

1. Gerkey, B., Mataric, M.J.: A formal framework for the study of task allocation in multi-robot
systems. Int. J. Robot. Res. 23(9), 939–954 (2004)

2. Nygard, K.E., Chandler, P.R., Pachter, M.: Dynamic network flow optimization models for air
vehicle resource allocation. In: Proc. of the American Control Conference, Arlington, Texas,
pp. 1853–1858

3. Schumacher, C., Chandler, P.: UAV task assignment with timing constraints via mixed-integer
linear programming. In: AIAA Unmanned Unlimited Technical Conference, Workshop and
Exhibit, Chicago, Illinois. AIAA-2004-6410 (2004)

4. Darrah, M., Niland, W., Stolarik, B.: UAV cooperative task assignments for a SEAD mission
using genetic algorithms. In: AIAA Guidance, Navigation, and Control Conference and Exhibit,
Keystone, Colorado. AIAA-2006-6456 (2006)

5. Alighanbari, M., How, J.: Robust decentralized task assignment for cooperative UAVs. In:
AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, Colorado, 21–24
Aug 2006

6. Sujit, P.B., Sinha, A., Ghose, D.: Multi-UAV task allocation using team theory. In: Proc. of the
IEEE Conference on Decision and Control, and European Control Conference, Seville, Spain,
pp. 1497–1502 (2005)

7. Sujit, P.B., Sinha, A., Ghose, D.: Multi-UAV task allocation using negotiation. In: Autonomous
Agents and Multi-Agent Systems, Hakodate, Japan, (2006)

8. Shehory, O.M.: Methods for task allocation via agent coalition formation. Artif. Intell. 101(12),
165200 (1998)

9. Sandholm, T., Larson, K., Andersson, M., Shehory, O., Tohme, F.: Coalition structure generation
with worst case guarantees. Artif. Intell. 111(12), 209238 (1999)

10. Shehory, O.M., Sycara, K., Jha, S.: Multi-agent coordination through coalition formation. In:
Rao, A., Singh, M., Wooldridge, M. (eds.) Lecture Notes in Artificial Intelligence, no. 1365.
Intelligent Agents IV, pp. 143–154. Springer, New York (1997)

11. Vig, L., Adams, J.A.: Multi-robot coalition formation. IEEE Trans Robot 22(4), 637–649 (2006)

158 J Intell Robot Syst (2011) 62:125–158

12. Vig, L., Adams, J.A.: Market-based multi-robot coalition formation. In: Gini, M., Voyles, R.
(eds.) Proc. of the International Symposium on Distributed Autonomous Robotic Systems,
pp. 227–236. Springer, Minneapolis (2006)

13. Vig, L., Adams, J.A.: A framework for multi-robot coalition formation. In: Proc. of the Indian
International Conference on Artificial Intelligence. India (2005)

14. Parker, L.E., Tang, F.: Building multi-robot coalitions through automated task solution synthesis.
In: Proc. of the IEEE Special Issue on Multi-robot Systems, vol. 94, no. 7, pp. 1289–1305 (2006)

15. Lin, J., Morse, A.S., Anderson, B.D.O.: The multi-agent rendezvous problem. In: Proc. of the
IEEE Conference on Decision and Control, Maui, Hawaii, pp. 1508–1513 (2003)

16. Tiwari, A., Fung, J., Carson, J.M., Bhattacharya, R., Murray, R.M.: A framework for Lyapunov
certificates for multi-vehicle rendezvous problems. In: Proc. of the American Control Confer-
ence, Boston, MA, pp. 5582–5587 (2004)

17. Lin, Z., Francis, B., Maggiore, M.: Necessary and sufficient graphical conditions for formation
control of unicycles. IEEE Trans. Automat. Contr. 50(1), 121–127 (2005)

18. McLain, T.W., Beard, R.W.: Coordination variables, coordination functions, and cooperative
timing missions. AIAA J. Guid. Control Dyn. 28(1), 150–161 (2005)

19. Furukawa, T., Bourgault, F., Whyte, H.F.D., Dissanayake, G.: Dynamic allocation and control of
coordinated UAVs to engage multiple targets in a time-optimal manner. In: Proc. of the IEEE
Conference on Robotics and Automation, Barcelona, Spain, pp. 2353–2358 (2005)

20. Notarstefano, G., Bullo, F.: Distributed consensus on enclosing shapes and minimum time ren-
dezvous. In: Proc. of the IEEE Conference on Decision and Control, San Diego, California,
pp. 4295–4300 (2006)

21. Dubins, L.E.: On curves of minimal length with a constraint on average curvature and prescribed
initial and terminal positions and tangents. Am. J. Math. 79, 497–516 (1957)

22. Kingston, D.B., Schumacher, C.J.: Time-dependent cooperative assignment. In: Proc. of the
American Control Conference, Portland, Oregon, pp. 4084–4089 (2005)

23. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proc. of the
Symposium on Micro Machine and Human Science, Piscataway, NJ, p. 3943 (1995)

24. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. of the IEEE International
Conference on Neural Networks, Piscataway, NJ, p. 1942–1948 (1995)

25. Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: Proc. of the IEEE Conference
on Evolutionary Computation, Anchorage, Alaska, pp. 69–73 (1998)

26. Parsopoulos, K.E., Vrahatis, M.N.: Recent approaches to global optimization problems through
particle swarm optimization. In: Natural Computing, vol. 1, pp. 235–306. Springer, New York
(2002)

27. Laskari, E.C., Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization for integer pro-
gramming. In: Proc. of the IEEE Congress on Evolutionary Computation, Honolulu, pp. 1582–
1587 (2002)

28. Nemhauser, G.L., Wolsey, L.A.: Integer programming. In: Nemhauser, G.L., Rinnoy Kan,
A.H.G., Todd, M.J. (eds.) Handbooks in Operations Research and Management Science. Vol. 1:
Optimization. Elsevier, Amsterdam (1999)

29. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity,
Prentice-Hall, Englewood Cliffs (1981)

30. Sujit, P.B., George, J.M., Beard, R.: Multiple UAV coalition formation. In: Proc. of the American
Control Conference, Seattle, Washington (2008)

	Multiple UAV Coalitions for a Search and Prosecute Mission
	Abstract
	Introduction
	Problem Formulation
	Coalition Formation
	Coalition Leader Has All the Required Capabilities (S1)
	Coalition Leader Has Partial Resources or No Resources (S2)
	Polynomial Time Coalition Formation Algorithm (PTCFA)
	Optimal Coalition Formation Algorithm (OCFA)
	Complexity Analysis

	Simultaneous Strike

	Combinatorial Optimization Problem
	Overview of Particle Swarm Optimization
	Solution to the Static Optimization Problem Using PSO

	Simulation Results
	Difference in Solutions Obtained Using PSO and Two-Stage Algorithms
	Mission Performance Using PTCFA
	Mission Performance Using OCFA
	PSO Solution
	Comparison Analysis

	Effect of Increase in Number of Agents and Targets
	Discussion
	Coalition Formation for Agents with Heterogenous Speed
	Minimum Member Coalition
	Improving the Performance of PTCFA
	Other Applications

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

