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This paper develops an algorithm to estimate motion using a radar and ground targets.
It involves estimating motion using an Extended Kalman Filter (EKF) with an Inertial
Measurement Unit (IMU) and a side-looking Synthetic Aperture Radar (SAR) carried
on a �xed wing aircraft �ying over unknown, �at terrain. The accuracy of the motion
estimation is compared to dead reckoning using only the IMU, with truth data being
provided by a standard IMU/GPS Kalman �lter. Initial results show that over 4.5km of
simulated �ight, position drift of around 300m resulted, as compared to 2.5km using only
the IMU.

I. Introduction

True Autonomous Navigation by an Unmanned Air Vehicle (UAV) is predicated on the UAVs ability
to recognize its position relative to the surrounding environment. Current navigation systems typically
use an Inertial Measurement Unit (IMU) in conjunction with a GPS sensor. In these systems, a Kalman
Filter (or Extended Kalman Filter) uses the IMU to propagate the vehicles position and GPS to correct
the drift introduced by the IMU. Such systems provide accurate position measurement, but are reliant on
the reception of GPS positioning. As GPS signals are easily jammed, solutions that don't rely on GPS are
necessary for true autonomous navigation.

Several approaches exist for GPS-denied navigation. One option involves using interoceptive sensors such
as an IMU to estimate the relative motion of the aircraft. IMUs can be quite accurate, and are often used
successfully on inter-ballistic missiles, but that accuracy requires a very heavy and expensive sensor that is
often inappropriate for small, unmanned systems. Smaller, cheaper IMUs, such as those typically found on
small UAVs, have a large amount of drift, thus limiting the needed accuracy to small windows of time.

To reduce their dependence on IMUs, many algorithms, such as Nister's Visual Odometry (VO) algo-
rithm,10 estimate relative motion using the change in perspective of consecutive camera images. While VO
algorithms have been shown to be accurate and can operate real-time,4,11 they are severely constrained
by the range limitations of optical sensors as well as by their dependence on good weather and daytime
navigation (or the use of lighting).

Radar, as compared to vision, has better range resolution and is not limited by environmental factors
such as time-of-day, fog, or rain. The use of radar for motion estimation from a moving platform has been
investigated,13 but the Size, Weight, and Power (SWaP) requirements of these systems, as well as their cost,
has limited the scope and availability of such systems.

Over the last decade, recent technological advancements have resulted in signi�cant decreases in SWaP
for many radar systems, such as Synthetic Aperture Radar (SAR).1,5, 12 Miniaturization allows radar to be
an optional payload on small UAVs, and thus considered as an optional sensor to provide motion estimation.
Using radar, as opposed to vision, will provide precise range measurements to ground re�ectors, while also
allowing for night-time and all-weather operation. While some related results have been reported,6�9 there
is currently no working Radar Odometry system.

The contribution of this paper is to describe a Radar Odometry system that limits the drift rate of
an IMU-based navigation systems. At a later stage we envision using this system in conjunction with a
radar-based placement recognition solution to provide a complete GPS-denied navigation solution.
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The Radar Odometery motion estimation approach will be described in Section II. Section III describes
the Kalman �lter used to estimate motion using an IMU, and an IMU in conjunction with Radar Odometry.
In Section IV, the simulation results of each motion estimation approach will be discussed.

II. Radar Odometry
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Figure 1. Block Diagram describing the aircraft state estimation using an IMU and the optional Radar Odometry
algorithm.

The Radar Odometry algorithm is outlined in Figure 1. The algorithm performs an initial range com-
pressed image pre-�lter. The �ltered image is then used to identify and characterize re�ectors with large
radar cross section. The range to each identi�ed re�ector is then measured. The height above ground level
(AGL) is also estimated using the range compressed image. The aircraft's motion is measured using the
range measurements in conjunction with the AGL estimate.

II.A. Range Compressed Images & Pre-Filtering

There are many approaches to transmitting and receiving radar data. In this paper, we focus on using
a Linear Frequency Modulated Continuous Wave (LFM-CW) Radar, which returns the range to re�ectors
observed in the beamwidth of the radar's single aperture (one antenna).

II.A.1. Radar Range and LFM-CW Radar

LFM-CW radar involves repeatedly performing radar transmits and receives, or chirps. The frequency of
chirp repetition is referred to as the pulse repetition frequency (PRF),

PRF =
1

τ
,

where τ indicates a chirp duration. During a chirp, the LFM-CW radar transmits a single, linear frequency
modulated chirp, that starts at time t, and chi given by

xt (t) = at (t) cos (2πF (t) t) ,

where
at (t) = u (t)− u (t− τ)
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represents the transmit pulse, u (t) is the unit step function, and where

F (t) = F0 +
β

τ
t

indicates the frequency as a function the initial transmit frequency F0, transmit bandwidth β, and time t.
As the transmitted signal is re�ected, there is a delay in time, ∆ti, unique to each re�ector, i. This time

delay represents the delay to the re�ector and back to the receiver, resulting in the delay

∆ti = 2
ri
c
,

where ri is the range to re�ector i and c is the speed of light. After a re�ector re�ects the transmitted signal,
the re�ected signal received by the radar is

xr (t) = ar (t)σreflectorxt (t−∆ti) ,

where
ar (t) = u (t)− u (t− τ)

is the receive window, σreflector is the re�ector's radar cross section.
The transmit and receive signals are mixed, resulting in

xr (t)⊗ xt (t) = at (t) cos (2πF (t) t) ·
ar (t)σreflectorxt (t−∆ti)

= at (t) at (t−∆ti) ar (t)σreflector ·
cos (2πF (t) t) ·
cos (2πF (t−∆ti) (t−∆ti)) .

Range compressing a chirp involves performing the Fourier Transform on the mixed transmit and receive
signals:

Xm (jw) = F (xr (t)⊗ xt (t)) .

As the re�ector radar cross-section is unknown and range dependent, the mixed transmit and receive is
approximated as

xr (t)⊗ xt (t) ≈ cos (2πF (t) t) ∗
cos (2πF (t−∆ti) (t−∆ti)) ,

resulting in the approximate range compressed signal

Xm (jw) ≈

 sin
(
π
(
ω − β

τ ∆ti

)
τ
)

π
(
ω − β

τ ∆ti

)
τ

2

= sync

(
ω − β

τ
∆ti

)
,

which is the sync function centered at the range-dependent frequency

ω =
β

τ
∆ti =

β

τ

2ri
c
,

where ri is the range to re�ector i and c is the speed of light.
The range compressed chirp represents the accumulative strength of all radar return for a given range r

during the speci�ed chip. The mapping from range bin index, b, to range is de�ned as

r = r0 + brres, (1)

where r0 is the minimum range bin visible to the radar, and rres is the radar's range resolution.
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Therefore the radar measurement over the time window [t− τ, t] of the chirp can be thought of as a
column vector where each row index (range bin) represents a particular range, and the value at that index
represents the strength of radar return. Since chirps occur sequentially in time, we de�ne the chirp index

s =
t− t0
τ

to be the chirp that occurs over the time window [t0 + (s− 1) τ, t0 + sτ ] , where t0 corresponds to the
absolute time the �rst chirp in the image was started.

Stacking the range measurements at consecutive chirps results in a positive matrix IRC called the range
compressed image as it can be displayed and visualized as an image. The pixel IRC [b, s] is the strength of
the radar return from chirp s at range bin b. Figure 2 shows a simulated (i.e., ideal) range compressed image
as the radar moves past two re�ectors while traveling a straight line at constant velocity. Prior to chirp 600,
the antenna beamwidth renders both re�ectors unobservable. Once observable, the range to the re�ectors
decreases until chirps 2000 and 2300, which occurs as the aircraft �ies past each re�ector. The range to
the re�ectors then increases until chirp 3450, at which time the antenna beamwidth renders both re�ector
unobservable. A more thorough treatment of the range compression derivation may be found in.3
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Figure 2. Range compressed image of two re�ectors, with the chirp number corresponding to speci�c transmit/received
pair and the range bin corresponding to the range of the observed re�ector.

II.A.2. Range-Compressed Image Pre-Filtering

A range compressed image, generated by a LFM-CW Synthetic Aperture Radar, contains a signi�cant amount
of noise speckle, as may be demonstrated in Figures 3a and 3b, which shows a range compressed image from
a �ight and simulation respectively. While the re�ectors, as seen by the hyperbolic lines, indicate the relative
motion of the aircraft, the noise in the imagery limits the ability to distinguish individual re�ectors.

To remove the noise, several techniques are implemented. Rather than removing the average pixel value
from the entire image, a weighted average pixel value for a each pixel's 9x13 neighborhood is removed from
the image. Additionally, as the ranges to each re�ector changes very little in comparison to the chirp index,
a weighted horizontal corner kernel,

khc =
[
−1 2 −1

]
,

is also removed from the range compressed image. The weighted image is then thresholded, resulting in the
�ltered image IF shown in the pre�ltered �ight image in Figure 4a, while 4b shows the pre�ltered simulated
image.

II.B. Re�ector Identi�cation and Initial Characterization

While pre-�ltering the range compressed image removes much of the noise, it is still necessary to identify
individual re�ectors and estimate the aircraft's range to each re�ector. Initially, this is performed by identi-
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Figure 3. Range compressed image of radar return during a)an aircraft �ight and b)simulation.
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Figure 4. Range compressed image of radar return during an simulated �ight a)prior to �ltering and b)pre-�ltered.
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fying individual re�ectors and performing a �rst-order estimate of the motion of the aircraft relative to each
re�ector.

II.B.1. Range to Re�ector during �ight

p
a
(t

i,min
)=p

i,min

p
i

Figure 5. Possible Aircraft Flight Track

Consider Figure 5, which shows an aircraft, represented by a triangle, as it �ies in a straight line past
re�ector i, represented by the red circle, located at pi. The position of the aircraft pa (t), when it is closest
to pi, as identi�ed by the blue circle, is de�ned as pi,min and occurs at time ti,min. De�ning the aircraft
position as a function of ti,min results in

pa (t) = pi,min + ṗa (t) (t− ti,min) .

The range to re�ector i is represented by ri (t), while the squared range is calculated as

ri (t)
2

= (pa (t)− pi)
T

(pa (t)− pi)

= (pi,min − pi)
2

−2ṗa (t) (t− ti,min) (pi,min − pi)

+ṗa (t)
2

(t− ti,min)
2
.

The straight �ight and �xed velocity assumptions imply that ṗa (t) and pi,min − pi are terms becoming
orthogonal, resulting in

ri (t)
2

= (pi,min − pt)
2

+ ‖ṗa‖ (t− ti,min)
2
.

Further de�ning the minimum range to re�ector i as ri,min and the aircraft speed Vg = ‖ṗa‖, results in a
hyperbolic equation for the range equation:

1

r2
i,min

r2
i (t)−

V 2
g

r2
i,min

(t− ti,min)
2

= 1. (2)

To express this equation in range compressed image coordinates, let

ri [s] = r0 + bi [s] rres,

which is a function of the the range bin bi [s] during chirp s. The corresponding minimum range equation is

ri,min = r0 + bi,minrres.

Similarly de�ne ti,min and si,min so that

ti,min = si,minτ − t0.

The hyperbolic range equation using the discrete range bin and chirp number becomes

(r0 + bi [s] rres)
2

(r0 + bi,minrres)
2 −

V 2
g (s− si,min)

2
τ2

(r0 + bi,minrres)
2 = 1. (3)
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II.B.2. Re�ector Detection Using the Hough Transform

As r0 and rres are constant, and prede�ned, each re�ector is uniquely de�ned by Vg, bi,min, and si,min
(see Equation 3) which constrain the hyperbolic shape of the re�ector in the range compressed image. A
hyperbolic Hough Transform2 is used to identify, and provide initial parametrization for each re�ector. This
is performed by creating a parameter space

H = R× N× N,

containing su�cient hyperbola parameter combinations,

H ∈ (Vg, bi,min, si,min) ,

to represent the observable hyperbolas in the range compressed image. Speci�cally, the Hough Transform
iterates over pixels in the pre-�ltered image. When a pixel is illuminated, it votes for all possible parameter
combinations that would result in the speci�c pixel being illuminated. Combinations of parameters that
received large numbers of votes suggest that a hyperbola is present with those parameters.

Ideally, when all illuminated pixels have been traversed, the parameter combinations that receive the
largest number of votes would be used to parametrize and identify re�ector hyperbolas found in the image.
However, non-straight �ight, non-constant airspeed, measurement inaccuracies, multiple re�ectors, and the
resolution of hyperbola constraints often result in a large number of votes being cast for incorrect constraints.
Using the Hough Transform to detect re�ectors from the pre�ltered image (seen in 4b) results in Figure 6,
which shows an image representation of the Hough space

IVg (bi,min, si,min) = H
(
V̂g, bi,min, si,min

)
(4)

for a single, �xed V̂g. As the Hough Transform is a voting algorithm, neighboring range bins and chirp
numbers often have similar numbers of votes. Additionally, possible bi,min and si,min combinations that
could result in pixels being illuminated in multiple hyperbolas (as seen in Figure 6b near si,min 1500 and
bi,min 50) are also arti�cially high. To this end, additional �ltering is necessary to select the re�ectors, and
their approximate hyperbola parameters.

b
i,min

s i,m
in

I
Vg

[s
i,min

,b
i,min

]
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Figure 6. The Hough-space image IVg for a �xed V̂g, with color indicating the number of votes.

To further isolate individual hyperbola constraints, a ground velocity V̂g is estimated to be the ground
velocity in the Hough-space cube that contains the pixel with the largest number of votes. The resulting two
dimensional Hough-space image (see Equation 4) is then used to identify speci�c re�ectors. This is done by

removing the average pixel value, E
[
IV̂g

]
from the image, resulting in

Imr = IV̂g − E
[
IV̂g

]
.
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The mean-removed image Imr is normalized, such that

In =
Imr

maxb,s (Imr)
,

then thresholded, resulting in Im = In > Tn, where Tn is the threshold applied. The pixels illuminated
in the thresholded image are then segmented into connected groups GVg . Figure 7a shows the thresholded
Image generated from the Hough-space image in Figure 6b. As each of the two sets of unconnected pixels
exist, two groups are formed.

Erroneous peaks with-in each group are removed from IVg by convolving the image using a 5x5 smoothing
kernel, resulting in the smoothed image Ism. The pixel with the maximum value in Ism from each group
g ∈ GVg is identi�ed as a re�ector and characterized by Hough-space indexing parameters V̂g, b̂i,min, and
ŝi,min. To limit the number of hyperbolas, only groups containing more than Tg pixels are considered, where
Tg identi�es a minimum group count threshold. Figure 7b shows the smoothed image resulting from 6b. The
pixel with the largest number of votes from each group (see 6a) are identi�ed as re�ectors and characterized

by their ŝi,min and b̂i,min indices.

a)
b

i,min

s i,m
in

I
m

[s
i,min

,b
i,min

]

10 20 30 40 50 60 70 80 90 100

500

1000

1500

2000

2500

3000

3500

4000

b)
b

i,min

s i,m
in

I
sm

[s
i,min

,b
i,min

]

 

 

20 40 60 80 100

500

1000

1500

2000

2500

3000

3500

4000

10

20

30

40

50

60

Figure 7. (a) Thresholded Hough-space image Im, and (b) the smoothed Hough-space image Ism, with color indicates
the number of votes.

II.C. Range estimation

The initial re�ector identi�cation and parametrization calculated by the Hough Transform provides a rough
estimate as to where each re�ector is at each chirp. While imprecise, this estimate provides a starting point
to determine a more precise range estimate for each chirp.
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Figure 8. Range compressed image of an observed single re�ector (seen in green) as compared to the initial hyperbola
estimate (seen in red)

Consider Figure 8 which shows a pre-�ltered radar's range compressed image with the observed range to
the re�ector seen in green. To compare the observed radar return with the initial hyperbola estimate, the
estimated V̂g, b̂i,min, and ŝi,min parameters are used to generate an initial hyperbolic range estimate at each
chirp. For visualization, this hyperbola estimate is super-imposed in red on the radar's range compressed
image and shown in Figure8.

Estimating the range to the re�ector during each chirp involves traversing the pre-�ltered image (pre-
viously de�ned as IF ) and discerning between an observed re�ector and noise. At each incremental chirp,
sinc, the range is estimated, resulting in bi [sinc], using the range compressed image and an adapting range

estimate, b̂i [sinc], which is initialized to the initial hyperbola formed by the estimated Hough parameters.
Consider Figure 9a which shows a synthetic observed re�ector, in green, and the initial range estimate, in
red. Starting at the vertex of the hyperbola (seen in the left-most white square in Figure 9b), each increasing

range bin is assessed. If the pixel at the estimated pixel location IF

(
b̂ [sinc] , sinc

)
is illuminated (or both

IF

(
b̂ [sinc] + 1, sinc

)
and IF

(
b̂ [sinc]− 1, sinc

)
are illuminated), the range to target is estimated to be the

adapted range estimate. This occurs for the �rst 3 assessed chirps, resulting in the results shown in Figure

9b, in white. When IF

(
b̂ [sinc] , sinc

)
is not illuminated (as seen by the red and green during chirp number

8 in Figure 9b), but IF

(
b̂i [sinc] + 1, sinc

)
or IF

(
b̂i [sinc]− 1, sinc

)
are illuminated, each adapting estimate

b̂ [s] value for all future chirps (s ≥ sinc) adjusted such that IF

(
b̂ [sinc] , sinc

)
becomes illuminated. When

this occurs, the range estimate bi [sinc] is set to the new b̂i [sinc]. This is demonstrated by the resulting range

compressed map shown in Figure 9c, which shows a shifted b̂i [s] for s ≥ sinc. It also shows that the �rst
adjusted range becomes the range estimate as shown in white.

The process continues until IF

(
b̂i [sinc] , sinc

)
, IF

(
b̂i [sinc] + 1, sinc

)
, and IF

(
b̂i [sinc]− 1, sinc

)
are all

not illuminated (as seen in range bin 13 in Figure 9d). When this happens, the range estimate is assigned
to the adapting estimate and an uncertainty estimate is incremented, as seen in the blue during chirp 13 in
Figure 9e. Once the edge of the range compressed image is reached, the algorithm is repeated for decreasing
chirp values, again starting at the vertex. The resulting range estimates may be seen in Figure 9f, where
white representes range bins where the estimate was observed, while blue indicates an unobserved range bin.
Re�ectors are considered unobservable when they have an accumulated uncertainty above Tu.

II.D. AGL Estimation

Nadir (the return from the ground immediately below the UAV) is used to estimate the AGL. This is
calculated as the �rst range bin in the range compressed image with a signal larger than the AGL threshold
TAGL, and is identi�ed as dAGL. The threshold is present to remove the measurement noise.
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Figure 9. Synthetic range compressed image of an observed single re�ector (seen in green) as compared to the initial
hyperbola estimate (seen in red). Estimates that are observed are indicated in white, while uncertaint estimates (ie.
no measurement is considered an estimate) are seen in blue.
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II.E. Motion Estimation

Using the estimated range to multiple re�ectors, the motion of the aircraft is estimated. This is performed by
calculating the incremental motion using the estimated range to consecutive pairs of re�ectors. The ranges
to each re�ector, i and j, are both observed at ti,min and tj,min. For simplicity, a northern �ight-track is
assumed. A north-east-down coordinate system is used, with down being relative to ground-level. A �at
earth model used.

De�ne the position of the aircraft at ti,min as

pa (ti,min) =

 ni,min

ei,min

di,min

 .
At time tj,min, the position of the aircraft may be represented as

pa (tj,min) =

 nij + ni,min

eij + ei,min

dj,min

 ,
where nij and eij indicate the northern and eastern aircraft motion between ti,min and tj,min. Figure 10
visualizes the aircraft at times ti,min and tj,min. It also shows re�ector i, located at

p
a
(t

i,min
)

p
a
(t

j,min
)

p
i

n
ij

e
ij

e
i

e
j

Figure 10. Motion experienced by an aircraft between times ti,min and tj,min

pi =

 ni,min

ei + ei,min

0

 ,
and re�ector j, located at

pj =

 nij + ni,min

ej + eij + ei,min

0

 ,
where ei and ej represent the eastern range to each re�ector at pi and pj respectively.

Assuming that both re�ectors are visible at times ti,min and tj,min, the squared range to the re�ectors
are

r2
i (ti,min) = e2

i + d2
i,min

r2
j (ti,min) = n2

ij + (ej + eij)
2

+ d2
i,min

r2
i (tj,min) = n2

ij + (ei − eij)2
+ d2

j,min

r2
j (tj,min) = e2

j + d2
j,min.
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The down position of the aircraft is provided by the AGL measurement,

di,min = dAGL (ti,min)

dj,min = dAGL (tj,min)

which allows for the eastern position term for each target to be calculated as

ei =

√
r2
i (ti,min)− dAGL (ti,min)

2

ej =
√
r2
j (tj,min)− dAGL (tj,min)

2
.

Subtracting the cross-terms results in

r2
j (ti,min) − r2

i (tj,min) = e2
j − d2

j,min − e2
i + d2

i,min + 2eij (ej + ei) .

Solving for eij gives

eij =
r2
j (ti,min)− r2

i (tj,min)− e2
j + d2

j,min + e2
i − d2

i,min

2 (ej + ei)
.

The northern motion may also be as solved as

nij =
√
ri (tj,min)

2 − (ei − eij)2 − d2
j,min,

which allows for the aircraft motion to be calculated using the measured ranges ri (ti,min), rj (ti,min),
ri (tj,min), and ri (tj,min) in addition to the measured AGL dAGL (ti,min) and dAGL (tj,min).

Selecting re�ector pairs pi and pj such that the re�ectors are both visible at ti,min and tj,min involves
sorting the re�ectors by their respective tmin. Sequential re�ectors are then selected and the resulting
northern and eastern motion is calculated using each re�ector pair.

III. Extended Kalman Filter

The radar motion estimation algorithm does not take advantage of other available sensors. Using IMUs
in conjunction with the radar provides additional accuracy. Combining the multiple sensors with di�erent
update rates is often performed by a Kalman Filter, or an Extended Kalman Filter (EKF) when the system
has non-linear dynamics.

III.A. The Extended Kalman Filter

The EKF, or Extended Kalman Filter, involves linearizing around the estimate and covariance of the current
state. It involves predicting the state and using state observations to compensate for prediciton error.

III.A.1. Prediction Model

The EKF prediction model is calculated

x̂k|k−1 = f
(
x̂k−1|k−1, uk−1

)
,

resulting in a predicted covariance,

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +GkQuG

T
k +Qk−1.

The calculation of Fk−1 involves linearizing around x̂k−1|k−1and uk−1,

Fk−1 =
∂f

∂x
|x̂k−1|k−1,uk−1

,

while the calculation of Gk is also linearizing around x̂k−1|k−1and uk−1,

Gk =
∂f

∂u
|x̂k−1|k−1,uk−1

,
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III.A.2. Observation Model

The nonlinear observation estimate is de�ned as

ŷk|k−1 = h
(
x̂k|k−1, uk

)
,

with covariance
Sk = HkPk|k−1H

T
k +Rk,

where Hk is linearized around x̂k−1|k−1and uk−1,

Hk =
∂h

∂x
|x̂k−1|k−1,uk−1

.

The observation error is de�ned as

ỹk = yk − h
(
x̂k|k−1, uk

)
,

while the predicted state is
x̂k|k = x̂k|k−1 +Kkỹk.

The state covariance is calculated
Pk|k = (I −KkHk)Pk|k−1,

where the Kalman Gain is de�ned
Kk = Pk|k−1H

T
k S
−1
k .

III.B. Sensor Models

III.B.1. IMU

An IMU sensor consists of both accelerometers and rate gyros. Each of the three accelerometers measure
the acceleration along its axis, with each accelerometer typically aligned with one of the body-frame axis,
resulting in

yaccel,x = ax + ηaccel,x

yaccel,y = ay + ηaccel,y

yaccel,z = az + ηaccel,z,

where ax, ay, and az represent the acceleration, and ηaccel,x, ηaccel,y, and ηaccel,z represent the noise, each
along its speci�ed axis.

The three rate gyros, also aligned with the body-frame axes, measure rotation around the speci�c axis,

ygyro,x = p+ ηgyro,x

ygyro,y = q + ηgyro,y

ygyro,z = r + ηgyro,z,

where ηgyro,x, ηgyro,y, and ηgyro,z are the noise along each axis.

III.B.2. Radar Odometry

The Radar Odometry approach measures the along-track and cross-track velocity over time. For simplicity,
�ight is considered in a straight north direction, resulting in

yRO,n = ṅ+ ηRO,n

yRO,e = ė+ ηRO,e

yRO,AGL = −d+ ηRO,AGL.
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III.C. Prediction Models

For the system under consideration, position

p =

 n

e

d


and velocity

v =

 ṅ

ė

ḋ


are represented using the inertial frame, while attitude is represented as

Θ =

 φ

θ

ψ

 ,
where φ is the roll angle, θ is the pitch angle and ψ is the heading angle.

The system state is given by

x =

 p

v

Θ

 .
with the state dynamics

ẋ = f (x,u) .

The input for the prediction step is the gyro and accelerometer,

u =

[
ab

ω

]
,

resulting in the full state transition model

f (x,u) =

 v

g +Rib (Θ) ab

S (Θ)ω

 ,
where Rib (Θ) is the body to inertial frame rotation and S (Θ) is

S (Θ) =

 1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ

 .
The Jacobian of f (x,u) is given by

∂f

∂x
(x,u) =

 03x3 I3x3 03x3

03x3 03x3 ∂Rib(Θ)ab

∂Θ

03x3 03x3 ∂S(Θ)ω
∂Θ

 ,
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where

∂Rib (Θ) ab

∂Θ
= ax

 0 −sθcψ −cθsψ
0 −sθsψ cθcψ

0 −cθ 0

+

ay

 cφsθcψ + sφsψ sφcθcψ −sφsθsψ − cφcψ

cφsθsψ − sφcψ sφcθsψ sφsθcψ − cφsψ

cφcθ −sφsθ 0

+

ay

 −sφsθcψ + cφsψ cφcθcψ −cφsθsψ + sφcψ

−sφsθsψ − cφcψ cφcθsψ cφsθcψ + sφsψ

−sφcθ −cφsθ 0

 ,
and

∂S (Θ)ω

∂Θ
=


qcφtθ − rsφtθ q

sφ
c2θ

+ r
cφ
c2θ

0

−qsφ − rcφ 0 0

q
cφ
cθ − r

sφ
cθ q

sφsθ
c2θ

+ r
cφsθ
c2θ

0

 .
III.D. Radar Odometry Measurement Model

Radar Odometry provides two measurement update models. The AGL update is acquired every 100 mil-
liseconds and may be measured regardless of the measured re�ectors. It's update model is of the form

hRO,AGL (x,u) =
[
−d

]
,

with the Jacobian

∂hRO,AGL
∂x

(x,u) =
[

0 0 −1 0 0 0 0 0 0
]
.

To measure ground velocity, the Radar Odometry update model is

hRO,Vground (x,u) =

[
ṅ

ė

]
,

with the associated Jacobian

∂hRO,Vground
∂x

(x,u) =

[
0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

]
.

The ground velocity measurement is updated as often as the algorithm is able to correctly measure ground
motion.

IV. Results

We simulated an unmanned aircraft over an unknown, �at terrain using an IMU alone and using both
IMU and Radar Odometry sensors. The simulations used the IMU to propagate the aircraft's pose, while
the Radar Odometry algorithm, when used, provided a corrective update term. In all tests, simulated �ight
dynamics, wind, and sensor noise were implemented. Each test started with an aircraft �ying at a �xed,
known velocity at a known location.

Figure 11 shows the position error from a 100 second simulation, with the aircraft �ying 45 m/s. As
expected, the IMU-only solution (Figure 11a) has a large drift rate, resulting in northern position error of up
to 2500m, with an eastern position error reaching around 3000m, and AGL error of 200m. Radar Odometry
and IMU (Figure 11b) resulted in a signi�cantly smaller drift rate, with worse-case along-track error of 300m,
worse-case cross-track error of 300m, and AGL error of less than 2 meters.
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Figure 11. Position error over time using a)IMU and b)IMU and RO
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V. Conclusion

When the GPS signal is lost or denied, current small UAV systems are unable to accurately estimate
their position. Using the Radar Odometry algorithm derived in this paper in simulation has shown to reduce
drift to less than 7%, as compared to the 66% drift from an IMU alone. Such results suggest that the using
radar for motion estimation is a feasible alternative to traditional vision systems, particularly when using
�xed-wing aircraft outdoors. Future work involves handling non-straight �ight-tracks and minimizing the
error in the current approach. We hope to integrate this solution with other placement recognition work to
create a complete solution to GPS-denied navigation.

This work was supported by the Munitions Directorate of the Air Force Research Laboratory under contract

FA8651-12-C-0075. Program Manager: Martin Eilders. Principal Investigator: Bryce Ready.
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