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Graph-based Observability Analysis of Bearing-only
Cooperative Localization

Rajnikant Sharma, Randy Beard, Clark Taylor, and Stephen Quebe

Abstract—In this paper we investigate the nonlinear observability
properties of bearing-only cooperative localization. We establish a link
between observability and a graph representing measurements and
communication between the robots. It is shown that graph theoretic
properties like the connectivity and the existence of a path between two
nodes can be used to explain the observability of the system. We obtain
the maximum rank of the observability matrix without global information
and derive conditions under which the maximum rank can be achieved.
Furthermore, we show that for complete observability, all of the nodes
in the graph must have a path to at least two different landmarks of
known location.

I. INTRODUCTION

In cooperative localization a group of robots exchange relative
position measurements from their exteroceptive sensors (e.g., camera,
laser, etc.) and their motion information (velocity and turn rate)
from interoceptive sensors (e.g., IMU, encoders, etc.) to collectively
estimate their states. Cooperative localization has been an active area
of research (e.g., [1]–[8]) because it provides several potential ad-
vantages, including increased localization accuracy, sensor coverage,
robustness, efficiency, and flexibility.

Recently, estimation algorithms such as the Extended Kalman
Filter (EKF) [9], Minimum Mean Square Estimator (MMSE) [2],
Maximum Likelihood Estimation (MLE) [10], Particle Filter [11],
and Maximum A Posteriori (MAP) [12], have been used to solve
the cooperative localization problem. These algorithms can be used
either in a centralized [5] or decentralized manner [2], [9], [12]. For
the localization errors to be bounded, it is required that the system
be observable, independent of the estimation technique being used.

Several authors have carried out observability analysis of the coop-
erative localization problem. Initial results regarding the observability
of cooperative localization were reported by Roumeliotis and Bekey
[9]. They used linear observability analysis to show that the states of
the robots performing cooperative localization are unobservable, but
can be made observable by providing global positioning information
to one of the robots. In [9] it was assumed that the absolute vehicle
heading is measured directly and does not need to be estimated.
Furthermore, linear approximation of a nonlinear system can provide
different structural properties regarding the observability [13], [14].
Martinelli et al. [15] investigates the nonlinear observability of coop-
erative localization for two robots without heading measurements.
They compared the observability properties of range and bearing
measurements and showed that with either type of measurement,
the maximum rank of the observability matrix is three, i.e., not
fully observable. The analysis in [15] shows that relative bearing
is the best observation between the robots. The part of the system
which is observable is in general larger than for the other relative
observations (relative distance and relative orientation). Accordingly,
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[15] uses polar coordinates for the observability analysis. Although
polar coordinates simplify the analysis for two robots, we use a
global coordinate system because it is more appropriate for graph
level (n > 2) observability analysis.

In this paper, we extend the observability analysis presented in [15]
from 2 to n robots, with bearing-only measurements. The extension
for n > 2 is not obvious because of the dynamically changing set
of n(n − 1)/2 different relative bearing measurements leading to
2n(n−1)/2 possible configurations. Furthermore, since the robot states
in [15] are not observable with respect to a global reference frame,
and since it has been shown that two landmarks are needed for the
observability of a single vehicle [16]–[18], in this paper we derive
the number of landmarks needed for full observability of a group of
n robots performing cooperative localization. In contrast to [9], we
also assume that the heading of each robot is not directly measured
but must be estimated.

To represent a group of robots, we will use the Relative Position
Measurement Graph (RPMG) introduced in [19]. The nodes of an
RPMG represent vehicle states and the edges represent bearing
measurements between nodes. We establish a relationship between
the graph properties of the RPMG and the rank of the system
observability matrix. We prove that for a connected RPMG, the
observability matrix for a team of n robots, which has size 3n× 3n
will have rank 3(n − 1). We also derive conditions under which
landmarks observed by a subset of robots enable the system to
become fully observable.

The paper is organized as follows. In Section II we describe
bearing-only cooperative localization and formulate the problem. In
Section III we perform the nonlinear observability analysis. In Section
IV we give our conclusions.

II. BEARING-ONLY COOPERATIVE LOCALIZATION

Consider n robots moving in a horizontal plane performing coop-
erative localization. We can write the equations of motion for the ith

robot as,

Ẋi = gi(Xi, ui) ,

 Vi cosψi
Vi sinψi
ωi

 , (1)

where Xi = [xi yi ψi]
⊤ ∈ R3 is the robot state, including robot

location (xi, yi) and robot heading ψi, and ui = [Vi, wi]
⊤ is the

control input vector. We assume that onboard introspective sensors
(e.g., encoders) measure the linear speed Vi and angular speed ωi
of the robot. Without loss of generality, we assume that robots
cannot move backward (Vi ≥ 0, i = 1 · · ·n). Each vehicle has an
exteroceptive sensor to measure relative bearing to other vehicles and
known landmarks that are in the field-of-view of the sensor. Relative
bearing from the ith robot to the jth robot or landmark can be written
as,

ηij = tan−1

(
yj − yi
xj − xi

)
− ψi. (2)

For cooperative localization, each robot exchanges its local sensor
measurements (velocity, turn rate, and bearing to landmarks and other
robots) with their neighbors. Let NM

i be the set of neighbors for
which robot i can obtain bearing measurements, and let NC

i be the
set of neighbors with which robots i can communicate. In this paper,
we assume that NM

i = NC
i and we will therefore denote the set of

neighbors as Ni. To represent the connection topology of the robots
we use a relative position measurement graph (RPMG) [19] which
is defined as follows.

Definition 1: An RPMG for n robots performing cooperative
localization with l different known landmarks is a directed graph
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Fig. 1. Relative position measurement graph (RPMG). The nodes of an
RPMG represent vehicle states and the edges represent bearing measurements
between nodes.

Gln , {Vn,l, En,l}, where Vn,l = {1, · · · , n, n + 1, · · · , n + l}
is the node set consisting of n robot nodes and l landmark nodes
and En,l(t) ⊂ {Vn,0 × Vn,l} = {ηij}, i ∈ {1, · · · , n}, j ∈
{1, · · · , n, n+ 1, · · · , n+ l} is the edge set representing the avail-
ability of a relative bearing measurement. We use m to denote the
number of edges in the RPMG. An example RPMG (G3

5 with m = 7)
is shown in Fig. 1.
Additionally, without loss of generality we assume that robots
maintain a safe distance from each other and from landmarks, i.e.,
Rij > 0, ∀i, j = 1, · · ·n and landmarks Rik > 0, ∀i =
1, · · ·n; k = 1, · · · , l.

A. Lie Derivatives and Nonlinear Observability

To determine the observability of the entire system represented by
the RPMG we use the nonlinear observability rank criteria developed
by Hermann and Krener [20] which is summarized in the next
paragraph.

Consider a system model with the following form

Σ :
Ẋ = g(X,u) = [g⊤1 (X1, u1), · · · , g⊤n (Xn, un)]⊤
y = h(X,Z) = [h⊤

1 (X,Z) · · ·h⊤
m(X,Z)]⊤

(3)

where X = [X⊤
1 X

⊤
2 · · ·X⊤

n ]⊤ ∈ R3n is the state of the system,
Z = [Z⊤

1 Z
⊤
2 · · ·Z⊤

l ]⊤ ∈ R2l is the position vector of all landmarks,
Zi = [xi yi]

⊤ is the position vector of ith landmark, hi : R3n ×
R2l 7→ R is the measurement model of the ith sensor, u ∈ Λ ⊆ R2n

is the control input vector, and g : R3n × Λ 7→ R3n. We consider
the special case where the process function g can be separated into a
summation of independent functions, each one excited by a different
component of the control input vector, i.e.,

Ẋ = g(X,u) = fv1V1 + fω1ω1 + · · ·+ fvnVn + fωnωn (4)

The zeroth-order Lie derivative of any (scalar) function is the function
itself, i.e., L0hk(X,Z) = hk(X,Z). The first-order Lie derivative
of function hk(X,Z) with respect to fvi is defined as

L1
fvi
h = ∇L0h · fvi (5)

∇ represents the gradient operator, and · denotes the vector inner
product. Considering that L1

fvi
hk(X,Z) is a scalar function itself,

the second-order Lie derivative of hk(X,Z) with respect to fvi is

L2
fvifvi

h = ∇L1
fvi
h · fvi . (6)

Higher order Lie derivatives are computed similarly. Additionally, it is
possible to define mixed Lie derivatives, i.e., with respect to different
functions of the process model. For example, the second-order Lie

derivative of hk with respect to fvj , given its first derivative with
respect to fvi , is

L2
fvifvj

h = ∇L1
fvi
h · fvj . (7)

Based on the preceding expressions for the Lie derivatives the
observability matrix is defined as the matrix with rows

O =
{
∇Lpfvi ,··· ,fvj ,fωi

,··· ,fωj
hk(X,Z)

}
(8)

where i, j = 1, · · · , n; k = 1, · · · ,m; p ∈ N. The important role
of this matrix in the observability analysis of a nonlinear system is
demonstrated by Theorem 1.

Theorem 1: A system is locally weakly observable if its observ-
ability matrix whose rows are given in (8) has full rank, e.g., in our
case rank(O) = 3n.
Additionally, we assume that the robot sensors have limited sensor
range ρsensor and limited field of view. Therefore, agents can only
measure the bearing of those robots and landmarks that are located
within the footprint of the sensor. Therefore, the graph Gln will likely
have a time varying topology.

III. GRAPH-BASED OBSERVABILITY ANALYSIS

In this section, we obtain the conditions for the observability of
the graph Gln. We derive explicit conditions that establish the rank
of the observability matrix of the graph G0

n without landmarks, and
the number of landmarks needed for the full rank of the observability
matrix of the graph Gln.

A. Rows in the Observability matrix due to an Edge

In a graph Gln there are two types of edges: an edge between two
robots, and an edge between a robot and a landmark. We derive the
maximum number of linearly independent rows in the observability
sub-matrix of an edge and the conditions for the maximum rank of the
observability sub-matrix of an edge. The linearly independent rows
of the observability sub-matrix of an edge serve as building block
for the observability conditions for the graph Gln.

1) Edge between two robots: First we derive the linearly indepen-
dent rows in the observability matrix for an edge ηij between two
robots and derive the conditions under which maximum number of
linearly independent rows can be obtained.

We first find the Lie derivatives of ηij . We rearrange the nonlinear
kinematic equations in the following convenient form for computing
Lie derivatives:

Ẋ =

[
Ẋi
Ẋj

]
= fviVi + fωiωi + fvjVj + fωjωj (9)

where fvi = [cψi sψi 0 0 0 0]⊤, fωi = [0 0 1 0 0 0]⊤, fvj =

[0 0 0 cψj sψj 0]⊤, fωj = [0 0 0 0 0 1]⊤, cψi , cosψi, and
sψi , sinψi. We hereafter compute the necessary Lie derivatives of
ηij and their gradients.

Zeroth-order Lie derivative

L0h = ηij

and gradient scaled by R2
ij is given by

∇L0h =
[
−∆yij ∆xij −R2

ij ∆yij −∆xij 0
]

where, ∆xij = xi − xj ,∆yij = yi − yj , and R2
ij = (∆xij)

2 +
(∆yij)

2.
Remark 1: The scaling by R2

ij is an elementary row operation,
therefore, it does not change the space spanned by the rows of the
observability matrix. Also, it simplifies the computation of the higher
order Lie derivatives.
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First-order Lie derivatives

L1
fvi
h = ∇L0h · fvi = ∆xijsψi −∆yijcψi

L1
fvj
h = ∇L0h · fvj = −(∆xijsψj −∆yijcψj)

L1
fωi

h = ∇L0h · fωi = −R2
ij

L1
fωj

h = ∇L0h · fωj = 0

with gradients given by

∇L1
fvi
h =

[
sψi −cψi J+

i −sψi cψi 0
]

∇L1
fvj
h =

[
−sψj cψj 0 sψj −cψj −J+

j

]
∇L1

fωi
h = 2

[
−∆xij −∆yij 0 ∆xij ∆yij 0

]
where J+

i = ∆xijcψi +∆yijsψi and J+
j = ∆xijcψj +∆yijsψj .

Second-order Lie derivatives

L2
fvifvi

h = ∇L1
fvi
h · fvi = sψicψi − sψicψi = 0

L2
fvj fvj

h = ∇L1
fvj
h · fvj = sψjcψj − sψjcψj = 0

L2
fvifvj

h = ∇L1
fvi
h · fvj = −sψicψj + sψjcψi

L2
fvifωi

h = ∇L1
fvi
h · fωi = J+

i

L2
fvj fωj

h = ∇L1
fvj
h · fωj = −J+

j

L2
fωi

fvi
= ∇L1

fωi
h · fvi = −2J+

i

L2
fωi

fvj
= ∇L1

fωi
h · fvj = 2J+

j

with gradients given by

∇L2
fvifvj

h =
[
0 0 −Jψ 0 0 Jψ

]
∇L2

fvifωi
h =

[
cψi sψi J−

i cψi sψi 0
]

∇L2
fvj fωj

h =
[
−cψj −sψj 0 sψj −cψj −J−

j

]
where Jψ = cψicψj + sψisψj , J−

i = ∆yijcψi − ∆xijsψi, and
J−
j = ∆yijcψj −∆xijsψj .

Remark 2: Gradients of L2
fωi

fvi
and L2

fωi
fvj

are not included
because they are linearly dependent on ∇L2

fvifωi
h and ∇L2

fvj fωj
h

respectively.

Third-order Lie derivatives

L3
fvifvj fωi

h = ∇L2
fvifvj

h · fωi = −(cψicψj + sψisψj)

L3
fvifvj fωj

h = ∇L2
fvifvj

h · fωj = (cψicψj + sψisψj)

L3
fvifωi

fvi
h = ∇L2

fvifωi
h · fvi = 1

L3
fvj fωj

fvj
h = ∇L2

fvifωj
h · fvj = 1

L3
fvifωi

fωi
h = ∇L2

fvifωi
h · fωi = −(∆xijsψi −∆yijcψi)

L3
fvj fωj

fωj
h = ∇L2

fvifωj
h · fωj = ∆xijsψj −∆yijcψj

with gradients given by

∇L3
fvifvj fωi

h = −α
β
∇L2

fvifvj
h

∇L3
fvifvj fωj

h =
α

β
∇L2

fvifvj
h

∇L3
fvifωi

fωi
h = −∇L1

fvi
h

∇L3
fvj fωj

fωj
h = −∇L1

fvj
h.

where α = (sψicψj − cψisψj), and β = cψicψj + sψisψj .

Clearly, third and higher order Lie derivatives are linearly depen-
dent on the gradients of second and lower order Lie derivatives.
Therefore, with all the non-zero inputs the observability matrix of
an edge between two robots can be written using gradients of Lie

derivatives up to second-order as

Oij =



−∆yij ∆xij −R2
ij ∆yij −∆xij 0

sψi −cψi J+
i −sψi cψi 0

−sψj cψj 0 sψj −cψj −J+
j

−2∆xij −2∆yij 0 2∆xij 2∆yij 0
0 0 −Jψ 0 0 Jψ
cψi sψi J−

i −cψi −sψi 0
−cψj −sψj 0 cψj sψj −J−

j


.

(10)

Our objective is to find the number of linearly independent rows
in Oij . Therefore, we transform Oij into reduced row echelon form
(RREF). RREF is the simplest possible form of a matrix, which
directly provides the number of linearly independent rows in the
matrix. Since RREF is the backbone of the analysis presented in
this paper we state the next lemma, which explains the properties of
a RREF matrix.

Lemma 1 ( [21]): A matrix A ∈ Rm×n, by means of a finite
sequence of elementary row operations, can be transformed to a row
reduced echelon form U ∈ Rm×n such that

EA = U (11)

where E ∈ Rm×m is the elementary operation matrix. If the rank of
A is r then

1)

U =

[
Ir B

0(m−r)×r 0(m−r)×(n−r)

]
(12)

where Ir is the Identity matrix of size r and B ∈ Rr×(n−r),
2) the first r rows of matrix U are linearly independent,
3) the non zero rows of the matrix U spans the same row space

spanned by A,
4) if A is an invertible matrix ( r = m = n) then U is the Identity

matrix.

The next lemma provides conditions for the maximum rank of the
observability matrix of an edge between two robots.

Lemma 2: The rank of Oij given by (10) (edge between two
robots) is three if

1) Vi > 0,
2) Vj > 0,
3) the ith robot, which is measuring the bearing, does not move

along the line joining the two robots,
4) the jth robot does not move perpendicular to the line joining

the two robots.

Proof: To prove the lemma, first we write J−
i and J+

j as

J−
i = v⊤1 v

′
i = ∆yij cosψi −∆xij sinψi (13)

J+
j = v⊤1 vj = ∆xij cosψj +∆yij sinψj (14)

where v1 = [∆xij ∆yij ]
⊤ is a vector along the line between the

two robots, vj = [cosψj sinψj ]
⊤ is the heading vector of the jth

robot, and v
′
i = [− sinψi cosψi]

⊤ is a vector perpendicular to the
heading vector of the ith robot.

From (13) and (14), we can verify that if the ith robot, which is
measuring the bearing, does not move along the line joining the two
robots then J−

i ̸= 0, and if the jth robot does not move perpendicular
to the line joining the two robots then J+

j ̸= 0. We then use the
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elementary operation matrix

Eij =



− cψjJ
+
i

J−
i J

+
j

− cψjR
2
ij

J−
i J

+
j

−∆yij

J+
j

0 0 0 0

− sψjJ
+
i

J−
i J

+
j

− sψjR
2
ij

J−
i J

+
j

∆xij

J+
j

0 0 0 0

− s(ψj−ψi)

J−
i J

+
j

J−
j

J−
i J

+
j

1

J+
j

0 0 0 0

− 2J+
i

J−
i

− 2R2
ij

J−
i

0 1 0 0 0

1
2

s(2ψi−2ψj)

J−
i J

+
j

c(ψj−ψi)J
−
j

J−
i J

+
j

c(ψi−ψj)

J+
j

0 1 0 0

1

J−
i

J+
i

J−
i

0 0 0 1 0

− J+
i

J−
i J

+
j

− R2
ij

J−
i J

+
j

−
J−
j

J+
j

0 0 0 1


which transforms Oij as

EijOij = Uij =

[
I3 Ōij

04×3 04×3

]
(15)

where

Ōij =

 −1 0 ∆yij
0 −1 ∆xij
0 0 −1

 . (16)

From Lemma 1 we can say that RREF matrix Uij has three linearly
independent rows and these rows span the same observability space
spanned by rows of Oij , therefore, maximum rank of Oij is three. It
should be noted that the top three non-zero rows in Uij corresponds
to L0h, L1

fvi
h, and L1

fvj
h, therefore, conditions of the Lemma 2 are

the sufficient conditions for rank(Oij) = 3.

2) Edge between a robot and a landmark: In this section, we
derive the linearly independent rows in the observability matrix for
an edge ηik between a robot and a landmark and derive the conditions
under which maximum number of linearly independent rows can
be obtained. We rearrange the nonlinear kinematic equations in the
following convenient form for computing Lie derivatives:

Ẋi = fviVi + fωiωi (17)

where fvi = [cψi sψi 0]
⊤ and fωi = [0 0 1]⊤. We hereafter compute

the necessary Lie derivatives of ηik and their gradients.

Zeroth-order Lie derivative

L0h = ηik

and its gradient, scaled by R2
ik is given by

∇L0h =
[
−∆yik ∆xik −R2

ik

]
where, ∆xik = xi − xk, ∆yik = yi − yk, and R2

ik = (∆xik)
2 +

(∆yik)
2.

First-order Lie derivatives

L1
fvi

= ∆xiksψi −∆yikcψi

L1
fωi

= −R2
ik

with gradient given by

∇L1
fvi

=
[
sψi −cψi ∆xikcψi +∆yiksψi

]
∇L1

fωi
= 2

[
−∆xik −∆yik 0

]
.

Second-order Lie derivatives

L2
fvifvi

h = sψicψi − sψicψi = 0

L2
fvifωi

h = ∆xikcψi +∆yiksψi

L2
fωi

fvi
h = −2L2

fvifωi
h

with gradients given by

∇L2
fvifωi

h =
[
cψi sψi ∆yikcψi −∆xiksψi

]
.

Remark 3: Gradient of L2
fωi

fvi
h is not included because it is

linearly dependent on ∇L2
fvifωi

h.
Third-order Lie derivatives

L3
fvifωi

fvi
= 1

L3
fvifωi

fωi
= −(∆xiksψi −∆yikcψi) = −L1

fvi
.

Clearly, the gradients of third and higher order Lie derivatives are
linearly dependent on the rows of the observability matrix corre-
sponding to second and lower order Lie derivatives. Therefore, we
can write the rows of the observability matrix corresponding to an
edge between a robot and a landmark, using the gradients of Lie
derivatives up to second order, as

Oik =


−∆yik ∆xik −R2

ik

sψi −cψi J+

−2∆xik −2∆yik 0
cψi sψi J−

 (18)

where J+ = ∆xikcψi +∆yiksψi and J− = ∆yikcψi −∆xiksψi.
Lemma 3: The rank Oik given by (18)(edge between a robot and

a landmark) is two if

1) Vi > 0,
2) the robot does not move along the line joining the robot and

the landmark.

Proof: If the robot does not move along the line joining the
robot and the landmark then J− ̸= 0 and the elementary operation
matrix

Eik =


−cψi
J−

−∆xil
J− 0 0

−sψi
J−

−∆yil
J− 0 0

−2J+

J−
−2R2

il
J− 1 0

1
J−

J+

J− 0 1


transforms Oik as

EikOik = Uik =

[
Ōik
02×3

]
(19)

where

Ōik =

[
1 0 ∆yik
0 1 −∆xik

]
. (20)

It should be noted that the top two non-zero rows in the observability
matrix are linearly independent (from Lemma 1) and they correspond
to L0h and L1

fvi
. Therefore, Vi > 0 and J− ̸= 0 are the sufficient

conditions for the rank of the observability matrix being two.
Definition 2: An RPMG Gln (Definition 1) is called a proper

RPMG if all the edges between robot nodes satisfy the conditions
of Lemma 2 and all the edges between robots and landmarks satisfy
Lemma 3.
In a proper RPMG each edge ηij between two robots contribute
three linearly independent rows to the observability matrix of a proper
RPMG and each edge ηik between a robot and a landmark contributes
two linearly independent rows to the observability matrix of a proper
RPMG. Using three linearly independent rows of Uij in (15) and
two linearly independent rows of Uik in (19), we can write the
observability matrix of a proper RPMG Gln as

O =

{
Oij
Oik

}
, i, j = 1, · · · , n; k = 1, · · · , l (21)

where Oij =
[
03×3(i−1) I3 03×(3(j−1)−3i) Ōij 03×3(n−j)

]
and

Oik =
[
02×3(i−1)) Ōik 02×3(n−i)

]
.
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Fig. 2. The observability conditions between these four possible configura-
tions of a connected, 3-node RPMG are identical.

Remark 4: The observability matrix O in (21) is not the original
observability matrix of the graph Gln. Since the rows of (21) consist of
the linearly independent rows after elementary row operations, from
Lemma 1 we know that the rows of the observability matrix in (21)
span the same observable space spanned by the original observability
matrix.

B. Observability Analysis Without Landmarks

In this section we derive the conditions for achieving the maximum
rank of the observability matrix for the graph G0

n without landmarks.
We first discuss the observability properties for a 3-node graph G0

3.
Lemma 4: If a three node proper RPMG G0

3 is connected, then
the rank of the observability matrix is six.

Proof: There are four possible configurations of a connected
graph G0

3, shown as sub-figures (a) through (d) in Fig. 2. We can
write the transformed observability matrix for these configurations
using (21) as

Oa =

[
I3 Ō12 0
I3 0 Ō13

]
Ob =

[
I3 Ō12 0
0 I3 Ō23

]
Oc =

 I3 Ō12 0
0 I3 Ō23

I3 0 Ō13

 Od =

[
I3 0 Ō13

0 I3 Ō23

]
.

We perform elementary operation on Oa, Ob, Oc, and Od
by multiplying them by elementary operation matrices Ea =[

03 I3
−O12 O12

]
where O12 =

 1 0 −∆y12
0 1 ∆x12
0 0 1

, Eb =

[
I3 −Ō12

03 I3

]
, Ec =

 I3 −Ō12 03

03 I3 03

−I3 Ō12 I3

, and Ed = I6

respectively to get

EaOa = EbOb = EdOd =

[
I3 0 Ō13

0 I3 Ō23

]
,

EcOc =

 I3 0 Ō13

0 I3 Ō23

0 0 0

 .
Therefore, Lemma 1 implies that the observability sub-matrix of all
the four configurations have six linearly independent rows and that
these rows span the same observable space.

Remark 5: The elementary operation matrix Ed for observability
matrix Od in Lemma 4 is Identity because Od is already in a reduced
row echelon form.
From Lemma 4 we can say that the rows of two edges for a proper
RPMG with a common node are independent. The following lemma
is an extension of this idea.

Lemma 5: If a graph G0
n is a proper RPMG and has the form of a

2-level tree (see figure 3(f)) which consists of a root node and n− 1
leafs directly connected to the root, then the rank of the associated
observability matrix is 3(n− 1).

(a) (c)(b)

(d) (e) (f)

Fig. 3. An example of converting an arbitrary connected RPMG to a 2-level
tree.

Proof: Without loss of generality, assume that the root node of
the 2-level tree is labelled as n. The system observability matrix will
then be of the form

O2−level =


I3 0 0 · · · Ō1n

0 I3 0 · · · Ō2n

...
. . .

...
0 0 · · · I3 Ōn−1,n

 (22)

Clearly, the rank is 3(n− 1).
Theorem 2: If the graph G0

n is a proper connected RPMG then
the rank of the associated observability matrix is 3(n− 1).

Proof: Using Lemma 4, any connected 3-node subgraph in the
larger graph can be replaced with any other connected 3-node sub-
graph, without affecting the rank of the system observability matrix
because their associated observability sub-matrices span the same
observable sub-space. A connected graph G0

n can be transformed to
a 2-level tree using following algorithm.

1) Choose any node and label it as the root as shown in Fig. 3 (a).
2) Select the nodes whose path from the root consists of two

edges(three nodes including root) as shown in Fig. 3 (b). Each
such path can be represented as a 3-node subgraph G0

3.
3) If a valid 3-node subgraph is found, perform a subgraph

replacement (see Fig. 3 (c)) so that nodes j and i are both
a distance of one away from the root node and repeat step 2.
If a valid subgraph G0

3 is not found, continue to step 4.
4) Search for a three node subgraph G0

3 that includes the root
node and two nodes (nodes j and i) distance one away from
the root node that contain an edge between these two nodes
(see Fig. 3 (d)).

5) If a valid 3-node subgraph was found, perform a subgraph
replacement that maintains the edges between the root node
and nodes i and j, but removes the edge between nodes i and
j (see Fig. 3 (e)). Repeat step 4 until Gn0 is transformed into
a 2-level tree.

To show that this algorithm transforms a connected proper RPMG to
a 2-level tree, first consider steps 2 and 3. Every time step 2 finds
a valid subgraph, the distance of node i to the root node will be
decreased from two to one. Because the graph is connected, the root
node will be connected to any other node within a finite number of
steps. Therefore, as steps 2 and 3 continue to execute, all nodes will
be brought to a maximum of distance one away from the root node.
This is similar to the graph shown in Fig. 3(e). Steps 4 and 5 simply
remove any redundant edges. Therefore, this algorithm converts any



6

l

i j

l

i j

RobotLandmarkEdge 
(a) (b)

Fig. 4. Two robots and one landmark RPMG G1
2.

connected graph to a 2-level tree. The algorithm is also a recursive
way of performing elementary row operations on the rows of the
observability matrices of sub-graphs G0

3 to show that the observability
matrix of the connected and proper RPMG G0

n is equivalent to the
observability matrix of a 2-level tree. Furthermore, we can say that
the basis of the observable space of a connected proper RPMG G0

n is
the rows of O2−level and from Lemma 5, the rank of the observability
matrix is 3(n− 1).

C. Observability Analysis With Known Landmarks

In this subsection, we assume that landmarks of known location are
observed by robots within the network, providing information about
the global coordinate system. We derive conditions for complete
observability of the graph Gln. First we derive the conditions for
the observability of a single robot.

Lemma 6: The rank of the observability matrix of a proper RPMG
Gl1 (one robot and l landmarks) is three if there are at least two
landmarks (l ≥ 2) and the robot and two landmarks are not on the
same line (i.e., ηi1 ̸= ηi2).

Proof: Consider a proper RPMG G2
1 with one vehicle and two

landmarks such that ηi1 ̸= ηi2. Using (21) the observability matrix

of graph G2
1 can be written as, O =

[
Ōi1
Ōi2

]
. To find the number

of linearly independent rows we perform elementary row operations

on O by multiplying by Ei12 =


∆yi2
∆y12

0 −∆yi1
∆y12

0

−∆xi1
∆y12

1 ∆xi1
∆y12

0

− 1
∆y12

0 1
∆y12

0

−∆x12
∆y12

−1 −∆x12
∆y12

1

 to

obtain

Ei12O =

[
I3

01×3

]
.

This implies that two different landmarks provides three independent
rows to the observability matrix. Therefore, from Theorem 1 the
single robot states are completely observable, i.e., rank(O) = 3.

From Lemma 6 we know that, if all of the n vehicles in the group
are directly connected to two different landmark, then the system is
completely observable (rank(O) = 3n). However, due to limited
sensor range and bearing all of the vehicles in the group may not
be able to see two landmarks. The following lemmas and theorem
show how cooperative localization can overcome constraints posed
by sensor limitations.

Lemma 7: Given a 3-node RPMG G1
2 with two robots and one

landmark, if the graph G1
2 is proper then the rows of the observability

matrix of the two configurations of G1
2 shown in Fig. 4(a) and

Fig. 4(b) spans the same observable space.
Proof: The two configurations shown in Fig. 4(a) and Fig. 4(b)

only differs in the landmark l connection. In configuration (a) the
landmark is directly connected to the ith node whereas in configu-
ration (b) the landmark is directly connected to the jth node. The
observability matrix for the configurations shown in Fig. 4(a) and (b)

(a) (b) (c)

Fig. 5. An example of converting an arbitrary connected RPMG with
landmark to a two-level tree.

can be written using (21) as

Oa =

[
I3 Ōij
Ōil 02×3

]
, Ob =

[
I3 Ōij

02×3 Ōjl

]
. (23)

We can perform elementary operation on Oa by multiplying by

the elementary operation matrix Eijl =
[

I3 03×2

−Ōil I2

]
to show

that EijlOa = Ob. Therefore, from Lemma 1 we can say that the
observability matrix of both the configurations spans the same space.

Lemma 8: Given the RPMG Gln , if it is proper and connected
then the associated observability matrix is equivalent (observability
matrix of both graphs span the same space) to the observability matrix
of a 2-level tree.

Proof: Consider a connected proper RPMG Gln(example for l =
1 is shown in Fig. 5(a)). We can write the observability matrix for
the graph Gln using (21). To show that the observability matrix of
a connected proper RPMG Gln is equivalent (observability matrix of
both graphs span the same space) to the observability matrix of a
2-level tree we perform following steps.

• First we perform elementary operations only on the rows of
the observability matrix of the edges between robots (subgraph
G0
n). From Theorem 2 we know that these operations leads

to the observability matrix of a 2-level tree. Therefore, the
resulting observability matrix of the graph Gln is equivalent to
the observability of the 3-level tree (Example shown in Fig 5(b))
with landmarks on level three. In the 3-level tree the path
between each landmark and the root consists of two edges,
including edge ηji between the root and the ith node (landmark
is directly connected to ith node) and edge ηil between landmark
l and the ith node. The path between each landmark and the root
can be represented as a subgraph G1

2 with two robots and one
landmark. There are l such subgraphs in the graph Gln.

• Next we perform elementary operations on the rows of the
observability matrix of each subgraph G1

2 associated with each
landmark. From Lemma 7 we know that the resulting observ-
ability matrix of the graph Gln is equivalent to the observability
matrix of a two-level tree (see Fig. 5(c)) with n − 1 robot-to-
robot leafs and l leafs between root and landmarks.

Theorem 3: Given a proper RPMG Gln, if for each robot there
exists a path to at least two landmarks and the robot and two
landmarks are not on the same line (i.e., ηi1 ̸= ηi2, ∀ i = 1, · · · , n)
then the system is completely observable, i.e., the rank of the
observability matrix is 3n.

Proof: There are two scenarios for paths between landmarks. (1)
All the robots are directly connected to the landmarks. For this case,
from Lemma 6 we know that the proper RPMG Gln is completely
observable if l ≥ 2 and ηi1 ̸= ηi2,∀ i = 1, · · · , n. (2) Consider the
general case where the proper RPMG Gln is connected and only a
subset of nodes measure landmarks. In this case all of the robots are
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not directly connected to landmarks, but there exists a path between
each robot and the landmarks. From Lemma 8 we know that the
observability matrix of a connected proper RPMG Gln is equivalent
to the observability matrix of a 2-level tree. Therefore connected
proper RPMG Gln can be replaced by a two-level tree with n − 1
robot to robot leafs and l leafs between the root and landmarks.
Furthermore, from Lemma 5 we know that for a 2-level tree all of
the 3(n−1) rows of the observability matrix of n−1 edges between
all robots are linearly independent. Therefore, we only consider a
subgraph (two-level) G2

2 which consists of three edges, including an
edge ηij between the root (jth node) and ith node and two edges
ηj1 and ηj2 between the root and two landmarks. Using (21) the
observability matrix for this sub-graph G2

2 is given by

O =

 I3 Ōij
02×3 Ōj1
02×3 Ōj2

 (24)

We perform elementary operation on (24) using

Eij12 =



1 0 0 ∆yi2
∆y12

0 −∆yi1
∆y12

0

0 1 0 −∆xi1
∆y12

1 ∆xi1
∆y12

0

0 0 1 − 1
∆y12

0 1
∆y12

0

0 0 0
∆yj2
∆y12

0 −∆yj1
∆y12

0

0 0 0 −∆xj1
∆y12

1
∆xj1
∆y12

0

0 0 0 − 1
∆y12

0 1
∆y12

0

0 0 0 −∆x12
∆y12

−1 ∆x12
∆y12

1


to obtain the reduced row echelon form

Eij12O =

[
I6

01×6

]
(25)

This implies that two landmarks add three linearly independent
rows to the observability matrix of graph G2

n, which are linearly
independent to the 3(n−1) existing rows. Therefore, the rank of the
observability matrix for the RPMG Gln with l = 2 is 3n.
Additional videos of simulation and experimental results related to
bearing-only cooperative localization can be found in [22].

IV. CONCLUSION

In this paper we have shown that the observability properties of a
system performing cooperative localization can be characterized by
the properties of its relative position measurement graph (RPMG).
Using graph theoretic properties and nonlinear observability theory,
we have shown that for a connected proper RPMG G0

n without
landmarks, the maximum rank of the observability matrix is 3(n−1).
Furthermore, we have shown that to achieve full observability, all
nodes in the graph must have a path to at least two different landmarks
of known location.
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