
Noname manuscript No.
(will be inserted by the editor)

Bearing-only Cooperative Localization
Simulation and Experimental Results

Rajnikant Sharma · Stephen Quebe · Randy Beard · Clark Taylor

Received: date / Accepted: date

Abstract In cooperative localization a group of robots
exchange relative position measurements from their ex-
teroceptive sensors and their motion information from

interoceptive sensors to collectively estimate their po-
sition and heading. For the localization errors to be
bounded, it is required that the system be observable,

independent of the estimation technique being used.
In this paper, we develop a test-bed of three ground
robots, which are equipped with wheel encoders and

omnidirectional cameras, to implement the bearing-only
cooperative localization. The simulation and experimen-
tal results validate the observability conditions, derived

in [1], for the complete observability of the bearing-only
cooperative localization problem.
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1 Introduction

In cooperative localization a group of robots exchange
relative position measurements from their exteroceptive
sensors (e.g., camera, laser, etc.) and their motion in-

formation (velocity and turn rate) from interoceptive
sensors (e.g., IMU, encoders, etc.) to collectively esti-
mate their states. Cooperative localization has been an

active area of research (e.g., [2–9]) because it provides
several potential advantages, including increased local-
ization accuracy, sensor coverage, robustness, efficiency,

and flexibility.

Recently, estimation algorithms such as the Extended
Kalman Filter (EKF) [10], Minimum Mean Square Es-
timator (MMSE) [3], Maximum Likelihood Estimation

(MLE) [11], Particle Filter [12], and Maximum A Pos-
teriori (MAP) [13], have been used to solve the co-
operative localization problem. These algorithms can

be used either in centralized [6] or decentralized man-
ner [3,10,13]. For the localization errors to be bounded,
it is required that the system be observable, indepen-

dent of the estimation technique being used.

Several authors have carried out observability anal-

ysis of the cooperative localization problem. Initial re-
sults regarding the observability of cooperative local-
ization were reported by Roumeliotis and Bekey [10].

They used linear observability analysis to show that
the states of the robots performing cooperative localiza-
tion are unobservable, but can be made observable by

providing global positioning information to one of the
robots. In [10] it was assumed that the absolute vehicle
heading is measured directly and does not need to be

estimated. Furthermore, linear approximation of a non-
linear system can provide different structural properties
regarding the observability [14,15]. Martinelli et al. [16]

investigates the nonlinear observability of cooperative
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localization for two robots without heading measure-

ments. They compared the observability properties of
range and bearing measurements and showed that with
either type of measurement, the maximum rank of the

observability matrix is three, i.e., not fully observable.
The analysis in [16] shows that relative bearing is the
best observation between the robots. The part of the

system which is observable is in general larger than for
the other relative observations (relative distance and
relative orientation). Accordingly, [16] uses polar coor-

dinates for the observability analysis.

In our previous work [1], we have extended the ob-
servability analysis presented in [16] from 2 to n robots,

with bearing-only measurements. The extension for n >
2 is not obvious because of the dynamically changing set
of n(n − 1)/2 different relative bearing measurements
leading to 2n(n−1)/2 possible configurations. Further-

more, since the robot states in [16] are not observable
with respect to a global reference frame, and since it
has been shown that two landmarks are needed for the

observability of a single vehicle [17–19], in [1] we have
derived the number of landmarks needed for full observ-
ability of a group of n robots performing cooperative

localization. In contrast to [10], we have assumed that
the heading of each robot is not directly measured but
must be estimated.

In [1], we have used the Relative Position Measure-
ment Graph (RPMG) to represent a group of robots.
The nodes of an RPMG represent vehicle states and the

edges represent bearing measurements between nodes.
We have established a relationship between the graph
properties of the RPMG and the rank of the system ob-

servability matrix. We have proved that for a connected
RPMG, the observability matrix for a team of n robots,
which has size 3n× 3n will have rank 3(n− 1). We also

derive conditions under which landmarks observed by
a subset of robots enable the system to become fully
observable.

In this paper, we develop a test-bed of three ground
robots, which are equipped with wheel encoders and
omnidirectional cameras, to implement the bearing-only

localization. We present simulation and experimental
results to validate the observability conditions [1] for
the complete observability of the bearing-only cooper-

ative localization problem.

The paper is organized as follows. In Section 2 we
describe bearing-only cooperative localization and for-

mulate the problem. In Section 3 we summarize the
observability analysis results obtained in [1]. The sim-
ulation and experimental results are presented in Sec-

tion 4. In Section 5 we give our conclusions.

Robot

Landmark  

Measurement

i

j

Fig. 1 Relative position measurement graph (RPMG). The
nodes of an RPMG represent vehicle states and the edges
represent bearing measurements between nodes.

2 Bearing-only Cooperative Localization

Consider n robots moving in a horizontal plane per-

forming cooperative localization. We can write the equa-
tions of motion for the ith robot as

Ẋi = fi(Xi, ui) ,

Vi cosψi
Vi sinψi
ωi

 , (1)

where Xi = [xi yi ψi]
⊤ ∈ R3 is the robot state, includ-

ing robot location (xi, yi) and robot heading ψi, and
ui = [Vi, wi]

⊤ is the control input vector. We assume

that onboard introspective sensors (e.g., encoders) mea-
sure the linear speed Vi and angular speed ωi of the
robot. Without loss of generality, we assume that robots

cannot move backward (Vi ≥ 0, i = 1 · · ·n). Each ve-
hicle has an exteroceptive sensor to measure relative
bearing to other vehicles and known landmarks that

are in the field-of-view of the sensor. Relative bearing
from the ith robot to the jth robot or landmark can be
written as

ηij = tan−1

(
yj − yi
xj − xi

)
− ψi. (2)

For cooperative localization, each robot exchanges
its local sensor measurements (velocity, turn rate, and

bearing to landmarks and other robots) with their neigh-
bors. Let NM

i be the set of neighbors for which robot
i can obtain bearing measurements, and let NC

i be the

set of neighbors with which robots i can communicate.
In this paper, we assume that NM

i = NC
i and we will

therefore denote the set of neighbors asNi. To represent

the connection topology of the robots we use a relative
position measurement graph (RPMG) [20] which is de-
fined as follows.

Definition 1 An RPMG for n robots performing co-

operative localization with l different known landmarks
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is a directed graph Gln , {Vn,l, En,l}, where Vn,l =

{1, · · · , n, n + 1, · · · , n + l} is the node set consisting
of n robot nodes and l landmark nodes and En,l(t) ⊂
{Vn,0×Vn,l} = {ηij}, i ∈ {1, · · · , n}, j ∈ {1, · · · , n, n+
1, · · · , n+ l} is the edge set representing the availability
of a relative bearing measurement. We use m to denote
the number of edges in the RPMG. An example RPMG

(G3
5 with m = 7) is shown in Fig. 1.

Additionally, without loss of generality we assume that
robots maintain a safe distance from each other and

from landmarks, i.e., Rij > 0, ∀i, j = 1, · · ·n and land-
marks Rik > 0, ∀i = 1, · · ·n; k = 1, · · · , l.

2.1 Cooperative Localization implementation

The objective of the cooperative localization is to esti-

mate the combined state X̂(k) = [X̂1(k), · · · , X̂n(k)]
⊤.

We use an extended information filter(EIF) to imple-
ment the bearing-only cooperative localization. In the

information filter instead of state X̂ and covariance
P (k) the information vector ŷ(k) and information ma-
trix Y (k) is updated. The information matrix and in-

formation vector can be computed as

Y (k) = P (k)−1 (3)

ŷ(k) = Y (k)X̂(k) (4)

Similar to an extended kalman filter (EKF) the EIF

has two steps. The first is the prediction step, which is
given below.

Y (k + 1|k) = (F (k)Y (k|k)−1F (k)⊤ +B(k)Q(k)B(k)⊤)−1

(5)

ŷ(k + 1|k) = Y (k + 1|k)X̂(k + 1|k) (6)

X̂(k + 1|k) = X(k|k) + Tsf(X̂(k|k), u(k)) (7)

where Fk =


F1 0 · · · 0

0 F2 · · · 0
... · · ·

. . . 0
0 0 · · · Fn

, B(k) =

B1

...

Bn

, and

Q(k) =

Qi(k) 0 0

0
. . . 0

0 0 Qn(k)

 is covariance of noise in

the control input. The matrix Fi and Bi are the system

jacobian with respect to state Xi and control ui, which

are given below

Fi = I3 + Ts
∂fi
∂Xi

|Xi=Xi(k) =

 1 0 −ViTs sinψ(k)
0 1 ViTs cosψ(k)
0 0 1

 ,
(8)

Bi = Ts
∂fi
∂ui

|ui=ui(k)

Ts cosψk 0
Ts sinψk 0

0 Ts

 , (9)

and Qi(k) =

(
σ2
vi 0
0 σ2

ωi

)
, where σvi and σωi are the

standard deviation in velocity input and turn rate input

respectively.

The measurement update step is given as

Y (k + 1|k + 1) = Y (k + 1|k) +
∑

Hij(k)
⊤σ−2

ηijHij(k)

ŷ(k + 1|k + 1) = ŷ(k + 1|k) · · ·

+
∑

Hij(k)
⊤R−1

ij (µij +HijX̂(k + 1|k))

The scalar µij represents the innovation

µij = ηij − hij(x(k + 1|k)) (10)

and σηij is standard deviation of the noise in the bearing
measurement. The row vector Hij is the measurement
jacobian

Hij(k) =
∂hij
∂X

|X=X(k). (11)

The EIF is dual of the EKF and the EKF is a quasi-
local asymptotic observer for nonlinear systems and its

convergence and boundedness are achieved when the
system is fully observable [21].

2.2 Lie Derivatives and Nonlinear Observability

To determine the observability of the entire system rep-

resented by the RPMG we use the nonlinear observabil-
ity rank criteria developed by Hermann and Krener [22]
which is summarized in the next paragraph.

Consider a system model with the following form

Σ :
Ẋ = f(X,u) = [f⊤1 (X1, u1), · · · , f⊤n (Xn, un)]

⊤

y = h(X,Z) = [h⊤1 (X,Z) · · ·h⊤m(X,Z)]⊤

(12)

where X = [X⊤
1 X

⊤
2 · · ·X⊤

n ]
⊤ ∈ R3n is the state of the

system, Z = [Z⊤
1 Z

⊤
2 · · ·Z⊤

l ]
⊤ ∈ R2l is the position vec-

tor of all landmarks, Zi = [xi yi]
⊤ is the position vector

of ith landmark, hi : R3n×R2l 7→ R is the measurement
model of the ith sensor, u ∈ Λ ⊆ R2n is the control in-

put vector, and g : R3n × Λ 7→ R3n. We consider the
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special case where the process function g can be sepa-

rated into a summation of independent functions, each
one excited by a different component of the control in-
put vector, i.e.,

Ẋ = f(X,u) = fv1V1 + fω1ω1 + · · ·+ fvnVn + fωnωn
(13)

The zeroth-order Lie derivative of any (scalar) function

is the function itself, i.e., L0hk(X,Z) = hk(X,Z). The
first-order Lie derivative of function hk(X,Z) with re-
spect to fvi is defined as

L1
fvi
h = ∇L0h · fvi (14)

∇ represents the gradient operator, and · denotes the

vector inner product. Considering that L1
fvi
hk(X,Z) is

a scalar function itself, the second-order Lie derivative
of hk(X,Z) with respect to fvi is

L2
fvifvi

h = ∇L1
fvi
h · fvi . (15)

Higher order Lie derivatives are computed similarly.
Additionally, it is possible to define mixed Lie deriva-

tives, i.e., with respect to different functions of the pro-
cess model. For example, the second-order Lie deriva-
tive of hk with respect to fvj , given its first derivative

with respect to fvi , is

L2
fvifvj

h = ∇L1
fvi
h · fvj . (16)

Based on the preceding expressions for the Lie deriva-
tives the observability matrix is defined as the matrix

with rows

O =
{
∇Lpfvi ,··· ,fvj ,fωi ,··· ,fωj hk(X,Z)

}
(17)

where i, j = 1, · · · , n; k = 1, · · · ,m; p ∈ N. The impor-
tant role of this matrix in the observability analysis of

a nonlinear system is demonstrated by Theorem 1.

Theorem 1 A system is locally weakly observable if its
observability matrix whose rows are given in (17) has

full rank, e.g., in our case rank(O) = 3n.

Additionally, we assume that the robot sensors have
limited sensor range ρsensor and limited field of view.

Therefore, agents can only measure the bearing of those
robots and landmarks that are located within the foot-
print of the sensor. Therefore, the graph Gln will likely

have a time varying topology.

3 Graph-based Observability Analysis

In this section, we summarize the conditions for the ob-

servability of the graph Gln derived in [1]. In a graph
Gln there are two types of edges: an edge between two
robots, and an edge between a robot and a landmark.

The linearly independent rows of the observability sub-
matrix of an edge serve as building block for the ob-
servability conditions for the graph Gln.

The observability matrix of an edge between two
robots can be written using gradients of Lie derivatives
(detailed derivation is given in [1]) up to second-order

as

Oij =



−∆yij ∆xij −R2
ij ∆yij −∆xij 0

sψi −cψi J+
i −sψi cψi 0

−sψj cψj 0 sψj −cψj −J+
j

−2∆xij −2∆yij 0 2∆xij 2∆yij 0

0 0 −Jψ 0 0 Jψ
cψi sψi J−

i −cψi −sψi 0
−cψj −sψj 0 cψj sψj −J−

j


.

(18)

The next lemma provides conditions for the max-
imum rank of the observability matrix of an edge be-
tween two robots.

Lemma 1 ( [1]) The rank of Oij given by (18) (edge

between two robots) is three if

1. Vi > 0,
2. Vj > 0,
3. the ith robot, which is measuring the bearing, does

not move along the line joining the two robots,
4. the jth robot does not move perpendicular to the line

joining the two robots.

Similarly, the observability matrix corresponding to an
edge between a robot and a landmark, using the gradi-

ents of Lie derivatives up to second order, as

Oik =


−∆yik ∆xik −R2

ik

sψi −cψi J+

−2∆xik −2∆yik 0
cψi sψi J−

 (19)

where J+ = ∆xikcψi + ∆yiksψi and J
− = ∆yikcψi −

∆xiksψi.

Lemma 2 ( [1]) The rank Oik given by (19)(edge be-
tween a robot and a landmark) is two if

1. Vi > 0,

2. the robot does not move along the line joining the
robot and the landmark.

Next, we define a proper RPMG.
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Definition 2 An RPMG Gln (Definition 1) is called

a proper RPMG if all the edges between robot nodes
satisfy the conditions of Lemma 1 and all the edges
between robots and landmarks satisfy Lemma 2.

Next, theorem, which is proved in [1], summarize the

observability conditions for a proper RPMG G0
n with-

out any landmarks.

Theorem 2 ( [1]) If the graph G0
n is a proper con-

nected RPMG then the rank of the associated observ-
ability matrix is 3(n− 1).

It should noted that the maximum rank of the observ-

ability matrix of RPMG G0
n without any landmarks is

less then 3n, therefore, the system in not completely ob-
servable. Next theorem provides the conditions for the

complete observability of the system in the presence of
known landmarks.

Theorem 3 ( [1]) Given a proper RPMG Gln, if for

each robot there exists a path to at least two landmarks
and the robot and two landmarks are not on the same
line (i.e., ηi1 ̸= ηi2,∀ i = 1, · · · , n) then the system is

completely observable, i.e., the rank of the observability
matrix is 3n.

An alternative method for obtaining complete observ-
ability without landmarks is derived in the nest theo-

rem.

Theorem 4 Given a RPMG G0
n, if it is proper, con-

nected, and one of the robot has its position and heading
measurement from GPS then the system is completely

observable, i.e., the rank of the observability matrix is
3n.

Proof If RPMG G0
n is proper and connected then from

Theorem 2 there are 3(n−1) linearly independent rows
in the observability matrix and if one of the robot mea-
sures its position and heading directly from a GPS re-

ceiver then three linearly independent rows, which are
linearly independent to the existing 3(n− 1) rows, are
added. Therefore, the rank of the observability matrix

becomes 3n and system becomes completely observable.

4 Results

In this section, we present simulation and hardware re-
sults to validate the observability conditions discussed

in the previous section.

4.1 Simulation Results

The simulation environment consists of five homoge-
nous ground robots and two landmarks. Each robot is

equipped with an encoder, which provides the robot’s
linear and rotation velocities, and a omini-directional
camera, which measure bearing from other robots and

landmarks in the sensor range Rsensor. We assume that
the noise in encoder and camera measurement are Gaus-
sian. Following are the different simulation parameters

of a robot used in the simulation results presented in
this paper.

– Sensing range of the omni-directional camera (Rsensor =

120m).
– Linear velocity of the robot (V = 5 m/s).
– Sampling time period Ts = 0.1 s.

– Initial pose uncertainty (σx0 σy0 σψ0 ] = [5m 5m 0.2rad]).
– Standard deviations of process noise in encoder [σv σω]

T =
[0.2m/s 0.2rad/s]T .

– Standard deviation of measurement noise σηij =
0.1rad.

To numerically prove the Theorem 3, we define a
metric for the existence of a path between two nodes
in the RPMG. For this, we make use of the ideas of
k-connectivity [23].

The adjacency matrix of a proper RPMG can be
defined as A = [aij ] ∈ R(n+l)×(n+l) where

aij =

{
1 if sin ηij(Rsensor −Rij) > 0 and i ∈ [1, n]

0 otherwise

(20)

The k-connectivity matrix is defined as

Ck , In+l +A+A2 + · · ·+Ak (21)

and the entry Ck(i, j) can be interpreted as the number
of paths of k-hops or less that connect node i to node

j. Next we define a metric β(G2
n) for RPMG with two

landmarks which summarizes all of the conditions in
Theorem 3.

β(G2
n) =

{
1 if

∏
1=1,n Cn(i, n+ 1)Cn(i, n+ 2) > 0

0 otherwise

(22)

From Theorem 3 we can say that if β(G2
n) = 1 then

the system is completely observable. In Fig. 2, we plot
the smallest singular value of the actual nonlinear ob-
servability matrix and β(G2

5). It can be seen that when

β(G2
5) = 1 then each robot node in RPMG has path

to two landmarks and the system is completely observ-
able. On the other hand, when β(G2

5) = 0 then all of

the robots in the do not have path to two landmarks
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Fig. 2 Connectivity vs Observability: The dashed red curve
represents the connectivity, of a RPMG with five robots and
two landmarks, as defined in (22). The solid blue curve repre-
sents the smallest singular value of the nonlinear observability
matrix as defined in (17). When β(G2

5) = 1 then each robot
node in RPMG has path to two landmarks and the system is
completely observable. On the other hand, when β(G2

5) = 0
then all of the robots in the do not have path to two land-
marks and system is unobservable.
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Fig. 3 Initial topology for bearing-only cooperative local-
ization. The black circles represent the initial position uncer-
tainty (3σ). The black diamonds represent the initial position
estimates of robots. The red circles are the true initial posi-
tions of the robots. The dashed blue line represents an edge
(bearing measurement) between two nodes. Two numbered
squares are the two known landmarks.
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Fig. 4 True trajectories of all of the five robots. The tra-
jectories are generated by following way-points, and the way-
points are chosen such that the RPMGG2

5 remains connected.

and system is unobservable. This numerically proves

the Theorem 3.

We run the bearing-only cooperative localization al-
gorithm for four different cases. In the first case the

measurements from the landmarks are not used for esti-
mation. In the second case bearing measurements from
only one landmark are considered, and in the third case

bearing measurements from two landmarks are consid-
ered. Finally, we do not consider any landmarks, how-
ever, the absolute position and heading of a robot from

a GPS receiver are fused with inter robot bearing mea-
surements to perform the cooperative localization. The
Fig. 3 shows the initial topology of the RPMG with

five robots and two landmarks. Initially, the RPMG is
connected and the waypoints for all of the five robots
are chosen such that the RPMG is remains connected.

The actual trajectories of all of the five robots is shown
in Fig. 4, and the Fig 5 shows the true and estimated
trajectories of the second robot, for all of the four cases.

It can be seen that estimated trajectories for CL with
two landmarks and GPS (first robot) are closest to the
true trajectory. The comparison for position error (sec-

ond robot) for all the four cases is shown in Fig 6 and
Fig. 7.

Fig 8, Fig. 9, and Fig. 10 show the plots for the

second robot’s estimated uncertainty (3σ) in X, Y , and
ψ respectively for all of the four cases. It can be seen
that the uncertainty for two landmarks and GPS case is

lower then the uncertainty related to no landmark and
one landmark. This is because with two landmarks or
absolute position and heading measurement of a robot

from GPS the system is observable.
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Fig. 5 The second robot trajectories:(1) The true trajectory
is represented by the dashed curve. (2) The estimated trajec-
tory using CL with no landmarks is represented by solid curve
with circles.(3) The estimated trajectory using CL with only
one landmarks is represented by the solid curve with squares.
(4)The estimated trajectory using CL with two landmarks is
represented by the solid curve with stars. (5) The estimated
trajectory using CL, when Robot 1’s position and attitude is
measured using a GPS, is represented by the solid curve with
diamonds.
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Fig. 6 The comparison of second robot’s error in X direc-
tion. This figure shows the plots of error in X direction with
no landmark, one landmark, two landmark, and with GPS
measurements of the Robot 1. The error with no landmark
and one landmark is higher than error with two landmarks
and GPS because in last two case the system is observable.
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Fig. 7 The comparison of second robot’s error in Y direc-
tion. This figure shows the plots of error in Y direction with
no landmark, one landmark, two landmark, and with GPS
measurements of the Robot 1. The error with no landmark
and one landmark is higher than error with two landmarks
and GPS because in last two case the system is observable.
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Fig. 8 The comparison of second robot’s estimation
uncertainty(3σx) in X direction. This figure shows the plots
of error covariance in X direction with no landmark, one
landmark, two landmark, and with GPS measurements of the
Robot 1. The error with no landmark and one landmark is
higher than error with two landmarks and GPS because in
last two case the system is observable.

4.2 Experimental Results

For experimental validation we use three stinger robots

(see Fig. 11) with serializer controller. For turn rate
and velocity measurement wheel encoders are used. For
bearing measurement we use an omnidirectional camera

and an EEE pc for onboard processing and communi-
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Fig. 9 The comparison of second robot’s estimation uncer-
tainty (3σy) in Y direction. This figure shows the plots of
error covariance in Y direction with no landmark, one land-
mark, two landmark, and with GPS measurements of the
Robot 1. The error with no landmark and one landmark is
higher than error with two landmarks and GPS because in
last two case the system is observable.
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Fig. 10 The comparison of second robot’s estimation uncer-
tainty (3σpsi) in heading. This figure shows the plots of error
covariance in ψ direction with no landmark, one landmark,
two landmark, and with GPS measurements of the Robot 1.
The error with no landmark and one landmark is higher than
error with two landmarks and GPS because in last two case
the system is observable.

cation. The experimental setup is shown in Fig. 12. It
consist of three robots with different color (green, blue,
and orange) for their identification. The snapshot of the

experimental area taken from the omnidirectional cam-
era on the orange robot is shown in Fig. 13. The robots
communicate with each other on a wireless network us-

ing a router. We use an overhead camera to obtain the

true robot states and compare the estimated states. We

use color segmentation to find the bearing of the robots
and landmarks which are in the image plane of a om-
nidirectional camera.

To do cooperative localization, the robots needed
a reliable method of exchanging information with one
another. To meet this need we designed a software sys-

tem that enabled multiple agents to discover and re-
liably communicate with one other over a small local
area network. We called this system the Agent Manage-

ment System. In the Agent Management System each
robot was represented by a single software construct we
called a Software Agent. The Software Agent was a sin-

gle process, run on the robot’s onboard computer that
concurrently managed the robot’s processing and com-
munication. There were two core elements that enabled

the Software Agents to communicate reliably. The first
element was peer discovery. The second was message
handling. Peer discovery enabled the Software Agents

to find each other maintain an active directory of all
other agents that it could communicate with. As soon
as a Software Agent process started, it began listening
for and periodically broadcasting a short discovery mes-

sage across the local area network. When another Soft-
ware Agent heard one of these messages, it sent back a
reply informing the sending agent its contact informa-

tion (an IP address and port number). Within a short
period of time all software agents had a list of every ac-
tive agent on the network. Each agent would continue

pinging each other (at a less frequent interval) if the
neighboring robot failed to reply to a certain number
of pings, it was removed from the list of available robot’s

to communicate with. With a reliable list of neighbor-
ing agents to communicate with, the agents were able to
start sending information back and forth between each

other. Each message was serialized and sent as a single
UDP packet. When received, the Software Agent would
put the messages in a single message queue that could

be read from and processed. We elected to use the UDP
protocol because we needed small rapid measurements
from each robot in order to make good cooperative esti-

mates. Using the Agent Management System, we were
able to design, test, and record our experiment for co-
operative navigation and control.

Following parameters are used for the experiment

– Linear velocity of the robot (V = 0.2 m/s).
– Sampling time period Ts = 0.1 s.
– Standard deviations of process noise in encoder [σv σω]

T =

[0.08m/s 0.12rad/s]T .
– Standard deviation of measurement noise σηij =

0.13rad.

Fig. 14 shows the trajectory of all of the three robots,

which are computed (1) using only encoders, (2)using
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Fig. 11 The Stinger robot. This robot is equipped with a
serialize controller, two wheel encoders, an omnidirectional
camera, and Asus EEE computer.

bearing-only cooperative localization, and (3)using the
overhead camera. It can be seen that the trajectories

computed using bearing only cooperative localization
are closer to the trajectories computed using the over-
head camera. The estimation error plots (X, Y , and

ψ) of the blue robot are shown in Fig. 15, 16, and 17.
It can be seen that the estimation error of all of the
states using bearing-only cooperative localization with

two landmarks is bounded, however, the estimation er-
ror using only encoder measurement drifts.

Additional videos of simulation and experimental

results related to bearing-only cooperative localization
can be found in [24].

5 Conclusion

In this paper, we develop a test-bed of three ground
robots, which are equipped with wheel encoders and
omnidirectional cameras, to implement the bearing-only
cooperative localization. The simulation and experimen-

tal results validate the observability conditions, derived
in [1], for the complete observability of the bearing-only
cooperative localization problem.
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