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Abstract Aerial recovery of micro air vehicles (MAVs) presents a
challenging problem in multi-vehicle dynamics and control. This paper
presents a method for recovering MAVs in �ight using a mothership
and towed drogue, in which the mothership executes an orbit that
places the drogue in a stable, slower orbit that can be tracked by a
MAV. A method for modeling the dynamics of the mothership-cable-
drogue system, based on Gauss's principle, is presented. The di�eren-
tial �atness property of the system is exploited to calculate mothership
trajectories from desired drogue orbits, and a backstepping controller
is proposed that enables accurate mothership trajectory tracking. A
drag-based controller for the drogue is also described. Methods to en-
able the MAV to estimate and track the drogue orbit are discussed.
The modeling and control methods are illustrated through simulation
and �ight results.
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1 Introduction

In recent years, the use of unmanned air systems (UASs) has increased dramat-
ically in both military and civilian �elds, with applications ranging from intel-
ligence, surveillance, and reconnaissance (ISR) to wilderness search and rescue.
In most current applications large and costly UASs, such as the Predator and
the Global Hawk, are used for their high-altitude and long-endurance capabilities.
However, as the potential applications for UAS technologies increase, the emphasis
on smaller platforms is also growing. Micro air vehicles (MAVs), with wingspans
typically less than 15 inches, have the potential to open new application areas
and broaden the availability of UAS technology. The potential of MAVs is driven
primarily by their relatively low cost, superior portability, and, in some cases, im-
proved stealth. The net result is that MAVs may be used in greater numbers and
by personnel who otherwise would not have access to UAS technology. In certain
applications, the ability of individual personnel (such as soldiers, rescue workers,
or scientists) to carry and deploy MAVs in situ (on the battle�eld, in a disaster
area, or around volcanoes) would be of considerable bene�t.
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The ability to deploy MAVs locally and in large numbers opens many oppor-
tunities, but recovery of MAVs is problematic in certain scenarios. For instance,
if a soldier deploys a backpackable MAV on the battle�eld to gather time-critical
ISR information, it is undesirable for the MAV to return to the soldier because
this could disclose his/her location to the enemy. Additionally, if a large mother-
ship deploys multiple MAVs in a remote location for ISR, wild�re monitoring, or
other surveillance, the MAVs may not have su�cient range to return to a distant
base. Similarly, in disaster areas that are too remote or dangerous, MAV search or
monitoring platforms may not be recovered by ground personnel.

One solution to this problem is to use a mothership as an aerial recovery plat-
form for MAVs. The primary challenge with this approach is the high speed of
the mothership relative to the MAV, which makes direct MAV/mothership ren-
dezvous and capture impractical. Furthermore, aerial recovery must be highly ac-
curate, as the rendezvous and capture must be coordinated in both time and space.
The approach taken in the present work is to employ a capture device (drogue)
that is towed by a larger mothership, as shown in Figure 1. In this method, the
mothership enters an orbit designed to cause the towed drogue to execute an or-
bit of smaller radius and lower speed (less than the nominal speed of the MAV).
The MAV then enters the drogue orbit at its nominal airspeed and overtakes the
drogue with a relatively slow closing speed. In the terminal stages of rendezvous
and capture, a vision-based homing algorithm, such as proportional navigation
(PRONAV), is used to close the gap between MAV and drogue (Zarchan, 1990;
Siouris, 2004).

The aerial recovery approach described in this paper is therefore a challeng-
ing problem in multi-vehicle modeling and control involving three vehicles: MAV,
mothership, and drogue. This paper focuses on novel contributions to four key
elements of the aerial recovery problem:

1. Modeling of mothership-cable-drogue system (Section 2). We present an accu-
rate forward dynamics model to predict trajectories of a passive drogue for
given trajectories of the mothership. This N -link model, based on Gauss's
principle, enables simulation and testing of the interactions between the
mothership and a passive drogue.

2. Mothership path planning and control (Section 3). For the case of passive
drogues, which can only be controlled indirectly via the mothership, it is
necessary to have a method to calculate the orbit that the mothership must
execute to place the drogue in an orbit suitable for aerial recovery of a slower
MAV. An inverse dynamics model, based on the principal of di�erential �at-
ness, is developed to enable calculation of the required mothership orbit from
a speci�ed drogue orbit. A Lyapunov-based backstepping control law is also
developed to ensure accurate tracking of the orbit by the mothership.

3. Active drogue control for improved orbit tracking (Section 4). To complement
the indirect control of the drogue (via the mothership), we develop an active
drogue control approach based on modulation of the drogue drag coe�cient.
We show that the drogue orbit radius may be controlled by changing the
drag of the drogue. This approach will allow more accurate orbit tracking to
facilitate the �nal MAV/drogue rendezvous.
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4. MAV orbit estimation and tracking (Sections 5 and 6). After the mothership
and active or passive drogue establish a suitable orbit, the MAV must enter
the drogue orbit and approach the drogue for capture of the MAV to oc-
cur. We develop methods that enable the MAV to estimate the drogue orbit
from GPS data, and track the orbit in preparation for �nal rendezvous. Fu-
ture work will address the problem of �nal approach and docking, including
hardware design and PRONAV algorithms.

Figure 1 Basic aerial recovery concept. The mothership recovers a MAV by towing a
drogue that is actuated and can maneuver and communicate with the MAV
to facilitate successful capture.

As outlined, the primary purpose of this work is to model the dynamics of
mothership-drogue-MAV interactions, develop control laws to enable orbit genera-
tion and tracking, and validate these concepts primarily through simulation. Initial
experimental results are provided for the orbit-generation component of aerial re-
covery; future work will involve extensive �ight tests to validate and re�ne the
remaining components.

Our approach is motivated by previous work on the dynamics of towed cable
systems. Skop and Choo (1971) show that if a towplane maintains a constant-
angular-rate orbit of radius R, and the drogue has su�cient aerodynamic drag,
then the drogue will execute a stable orbit of radius r � R. Furthermore, since
the angular rates of the towplane and the drogue must be the same, the speed
of the drogue will be less than the speed of the towplane. Murray (1996) designs
a path planning algorithm for the towplane with the objective of minimizing the
orbit radius of the drogue. In more recent work, Williams and Trivailo (2007a)
and Williams and Trivailo (2007b) give a detailed description of the dynamics of
circularly towed drogues and design strategies for moving from one orbit con�g-
uration to another. The objective in Williams and Trivailo (2007a) and Williams
and Trivailo (2007b) is precision pickup and delivery of payloads on the ground by
a �xed-wing aircraft. More recently, Williams and Ockels (2009) employed this ap-
proach to the problem of lifting payloads using multiple �xed-wing aircraft. Their
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work proved the concept's feasibility and studied the equilibria and stability of
such systems. The focus in Murray (1996), Williams and Trivailo (2007a), Williams
and Trivailo (2007b), and Williams and Ockels (2009) is on minimizing the orbit
radius of the drogue. For aerial recovery of MAVs, we take a di�erent approach to
the problem. As shown in Figure 1, rather than attempting to minimize the radius
of the orbit of the drogue, our objective will be to place the drogue in a stable
orbit whose radius r is greater than the minimum turning radius of the MAV.

2 Mathematical model of cable-drogue system

Mathematical models of cable-drogue or towed-cable systems are established in
the literature for both air and underwater environments. Several approaches to
modeling cable dynamics have been described. Choo and Casarella (1973) compare
various methods and describe the relative strengths and limitations of each. They
conclude that, despite the heavy computational workload required for implemen-
tation, the �nite element, or lumped mass technique is the most versatile of the
methods studied. Using the �nite element approach, the cable in the cable-drogue
system may be modeled as a �nite number of rigid links of uniform length, and
the drogue as a point mass, which is the last joint of the cable. Figure 2 depicts
this approach, with the cable modeled as N rigid links.

The approaches to modeling the cable dynamics described in the literature re-
quire that the internal and external forces are described explicitly. Murray (1996)
develops towed-cable dynamics based on the Lagrange approach, which requires
an explicit derivation of the tension in the cable. Cochran et al. (1992) develop
an approach to eliminating constraint forces in the cable that maintains constant
link lengths through a change of variables. Chin and Connell (2000) apply partial
di�erential equations to model the cable-body system and solve them using the �-
nite di�erence method. Turkyilmaz and Egeland (2001) develop a two-dimensional
dynamic model for a towed cable for seismic survey studies. Williams and Trivailo
(2007a) derives the equations of motion of the system by introducing cable attitude
angles. These methods result in dynamic model equations that are complicated
and di�cult to use for the purposes of simulation and control design.

Most of the methods reported in the literature use techniques that model the
cable as a series of N <∞ rigid links with lumped masses at the joints. As recom-
mended in Choo and Casarella (1973), we also followed this approach. However,
most researchers develop models based on Euler-Lagrange equations, which do not
scale well to a large number of links. As an alternative, we develop the mathemati-
cal model of cable-drogue systems using Gauss's Principle, as described in the work
of Udwadia and Kalaba (1996). A similar approach was used in the context of path
planning for UAVs in McLain and Beard (2000). As will be demonstrated in the
next section, this method is well-suited to problems with complex internal forces,
as seen in mothership-cable-drogue interactions. Rather than computing internal
forces between cable links directly, the kinematic constraints are employed.

2.1 Gauss's Principle

Consider a system of n particles of mass m1,m2, ...,mn. Let the vector pi =
(xi, yi, zi)T represent the position of the ith particle of this system in a rectangular
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Figure 2 N -link lumped mass representation of cable-drogue system

inertial reference frame (Udwadia and Kalaba, 1996). We assume that the ith par-
ticle is subjected to a given impressed force Fi(t), so that its acceleration without
constraints would be given by the vector ai = Fi(t)/mi. The three components of
the vector ai correspond to the accelerations of the ith particle driven by Fi in the
three mutually perpendicular coordinate directions. Thus the equations of motion
without constraints on the particles of the system can be written as

Ma(t) = F(x(t), ẋ(t), t), (1)

where

F(t) = (FT1 ,F
T
2 , ...,F

T
n )T

a(t) = (aT1 ,a
T
2 , ...,a

T
n )T

x(t) = (pT1 ,p
T
2 , ...,p

T
n )T

M = Diag(m1,m1,m1,m2, ...,mn,mn,mn).

In the presence of constraints, the acceleration of each particle at time t will
di�er from a(t). We denote this constrained acceleration by the 3n-vector ẍ(t) =
(p̈T1 , p̈

T
2 , ..., p̈

T
n )T . Gauss's principle asserts that, among all the accelerations that

the system can have at time t that are compatible with the constraints, the accel-
erations that actually occur are those that minimize

G(ẍ) = (ẍ− a)TM(ẍ− a) = (M1/2ẍ−M1/2a)T (M1/2ẍ−M1/2a). (2)

Assuming that the m constraints can be expressed as linear equality relations
between the accelerations of the particles of the system, the constraints will always
be of the standard form

A(ẋ,x, t)ẍ = b(ẋ,x, t), (3)

where the matrix A is m by 3n and the vector b is an m-vector.
Minimizing (2) subject to the constraint (3) implies that at each instant of time

t, the actual acceleration of the system of n particles is given by

ẍ = a+M−1/2(AM−1/2)+(b−Aa), (4)

where (·)+ is the unique Moore-Penrose inverse (Udwadia and Kalaba, 1996).
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2.2 Dynamic equations of cable-drogue systems using Gauss's Principle

Figure 2 depicts the cable-drogue system with the cable modeled as N rigid links.
The forces acting on each link are lumped and applied at the joints, and the
drogue is the last joint of the cable. Let pi = (xi, yi, zi)T ∈ R3, i = 1, 2, ..., N be
the location of the ith link. The position of the towplane or mothership is pm =
(xm, ym, zm)T ∈ R3. If the point masses associated with each link are uncon-
strained, then the dynamic equations describing their motion are

p̈i = ai, i = 1, 2, ..., N,
p̈m = am,

where ai, i = 1, 2, ..., N, and am ∈ R3 are the unconstrained accelerations
driven by the applied forces in three dimensions. Alternatively, de�ning x =
(pT1 ,p

T
2 , · · · ,pTN )T and a = (aT1 ,a

T
2 , · · · ,aTN )T gives

ẍ = a. (5)

However, the motion of the point masses associated with each link are constrained
by the relationship

‖p1 − pm‖2 = l2,

‖pi+1 − pi‖2 = l2, i = 1, 2, ..., N − 1,

where L is the cable length and l = L/N is the length of each link. These position
constraints may also be expressed in matrix form as

φ(x,pm) ,


‖p1 − pm‖2 − l2
‖p2 − p1‖2 − l2

...
‖pN − pN−1‖2 − l2

 = 0. (6)

Di�erentiating (6) with respect to time results in the velocity constraint

ψ(x,pm) ,


(p1 − pm)T (ṗ1 − ṗm)
(p2 − p1)T (ṗ2 − ṗ1)

...
(pN − pN−1)T (ṗN − ṗN−1)

 = 0. (7)

Assuming that the motion of the mothership (pm, ṗm, p̈m) is known, the acceler-
ation constraints can be written in matrix form as

A(x)ẍ = b(ẋ, ṗm, p̈m), (8)

where

A =


(p1 − pm)T 0 · · · 0
−(p2 − p1)T (p2 − p1)T · · · 0

...
. . .

. . .
...

0 · · · −(pN − pN−1)T (pN − pN−1)T

 ,
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b = −


‖ṗ1 − ṗm‖2
‖ṗ2 − ṗ1‖2

...
‖ṗN − ṗN−1‖2

+


(p1 − pm)T p̈m

0
...
0

 .

Based on Gauss's principle, the actual acceleration of the cable-drogue sys-
tem (5) subject to the constraints (8) is given by (4). The initial conditions for the
system must be chosen such that both φ(x,pm) = 0 and ψ(x,pm) = 0.

As indicated by McLain and Beard (2000), one of the drawbacks of this method
is that while solving (4), numerical errors may cause the constraints φ(x,pm) and
ψ(x,pm) to drift from zero. When this happens, Equation (4) no longer represents
the physical dynamics of the cable. That is to say, no mechanism serves to drive
the constraints back to zero. To mitigate this problem, Equation (4) is modi�ed
as (McLain and Beard, 2000)

ẍ = a+M−1/2(AM−1/2)+(b−Aa)− γ1(
∂φ

∂x
)Tφ− γ2(

∂ψ

∂x
)Tψ,

where γ1 and γ2 are positive constants that are tuned through simulation to give
satisfactory convergence for the selected link lengths of the cable model. For ex-
ample, for a 1000 meter cable modeled as 10 links (100 meters per link), γ1 and
γ2 were given the values of 0.05 and 0.002, respectively. The additional two terms
cause the ODE solution to decrease the gradient of the constraints until they are
not violated. Selecting γ1 and γ2 properly guarantees that the modi�ed equation
approximately represents the dynamics of the constrained physical system. The
mass matrix M = Diag(ml,ml, ...,ml,md,md,md) ∈ R3N×3N , where mc is the to-
tal mass of the cable, ml = mc/N is the mass of each link, and md is the mass of
the drogue.

2.3 Dynamic model simulation results

The model presented in the previous section enables simulation of the mothership-
drogue dynamics. The simulation architecture used in this and subsequent simu-
lations is shown in Figure 3. In the simulations presented in this paper wind is
not considered, and the air density does not vary as a function of altitude. Future
work will address these issues.

Mothership 

Dynamic with Orbit 

Tracking Control

Cable-Drogue

Dynamic

MAV with Vision 

Based Tracking 

Control

Cable-Drogue 

Guidance 

Control

Figure 3 Simulation system. The mothership �ies in a constant-radius orbit and does
not feel tension from cable-drogue system. Passive and active drogue modes
are selectable by the user.
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Key simulation parameters are shown in Table 1 for a simulation in which
the mothership follows a �xed circular orbit at a constant velocity while towing
a passive drogue. Figure 4 shows that the steady radius of the drogue oscillates
between 115 and 119 m. The steady state drogue velocity is approximately 19.5
m/s, which is larger than the velocity of the MAV. Therefore, for the conditions
considered, the MAV cannot rendezvous with the drogue. Figure 5 shows the two-
dimensional top-down view and three-dimensional view of the simulated system.
The cable bows outward under the e�ect of the aerodynamic drag.

Table 1 Parameters for simulation of passive and active drogue control

Mothership Airspeed Altitude Orbit Radius
50 m/s 1000 m 300 m

Cable Links Length Diameter Mass
10 900 m 0.01 m 0.01 kg

MAV Airspeed
16.67 m/s
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Figure 4 Simulation of passive drogue motion in response to a circular mothership
orbit. Shows north and east motion of the drogue (left) and the radius,
velocity and distance to the MAV of the drogue (right). Steady state is
reached after approximately 150 s.

3 Mothership path planning and control

The previous section described methods for deriving the forward dynamic equa-
tions for the mothership-cable-drogue system, which enables us to calculate the
motion of the drogue for a given motion of the mothership. In this section we
develop methods for the inverse problem: calculating the required mothership tra-
jectory to achieve a desired drogue trajectory. We also develop a Lyapunov-based
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backstepping algorithm to cause the mothership to track the desired orbit ac-
curately, with the goal of achieving accurate drogue orbits. We assume that the
drogue is passive, i.e., it is only controlled indirectly via the mothership and cable,
and that it is instrumented with a small autopilot and therefore has access to its
own acceleration, angular rates, airspeed, and GPS location. Under these assump-
tions, the basic idea is to control the motion of the mothership so that the drogue
enters a speci�ed stable orbit whose radius r is greater than the minimum turning
radius of the MAV, at an airspeed that is slightly below the nominal airspeed of
the MAV.

Drogue

MAV

Mothership

MAV

Drogue

Mothership

Figure 5 Top-down and 3D views of the simulated mothership and passive drogue.
The dots on the cable represent joints.

In recent decades, control strategies to address related problems have appeared
in the literature. The concept of di�erential �atness of the system is exploited
in Murray (1996) to plan towplane paths that minimize the motion of the drogue.
This work shows that the trajectory of the towplane is uniquely prescribed by
the motion of the drogue. Unfortunately, the algorithm as presented in Murray
(1996) has numerical stability issues. In Williams and Trivailo (2007a), sequen-
tial quadratic programming is used to plan open-loop trajectories for the tow-
plane. Williams and Trivailo (2007b) addresses the problem of entering and exiting
the orbit with the cable deployed, and open-loop strategies are derived that mini-
mize the tension on the cable and the drogue. Williams and Trivailo (2007b) also
addresses the problem of deploying the cable from the towplane using a winch after
the towplane is in its orbit. The majority of prior work in this area is related to the
dynamics and stability of the drogue; few studies have explored speci�c strategies
for accurate control of the mothership-cable-drogue system.

3.1 Mothership orbit calculation using di�erential �atness

The concept of di�erential �atness has been proved to be useful in the design of ad-
vanced control and supervision schemes for nonlinear systems. Fliess et al. (1995)
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introduces the measure to de�ne �at systems and apply the di�erential �atness
theory to vertical take-o� aircraft and articulated ground vehicles. Lu et al. (2005,
2007, 2008) show the application of di�erential �atness in vehicle trajectory track-
ing problems using neural networks to implement dynamic inversion. We make use
of this property to calculate the inverse dynamics relating a desired drogue orbit
to the required orbit of the mothership.

De�nition The system ẋ = f(x,u, t) where the states x ∈ Rn and the inputs
u ∈ Rm, is di�erentially �at if we can �nd a set of variables y ∈ Rm called �at
outputs and integers r and q such that

y = h(x,u, u̇, ü, · · · ,u(r))
x = h1(y, ẏ, ÿ, · · · ,y(q))
u = h2(y, ẏ, ÿ, · · · ,y(q+1))

that satisfy the system state equations.
Assuming that the only forces on the drogue are aerodynamic forces, gravity,

and tension forces from the cable, the cable-drogue system is di�erentially �at
using the trajectory of the drogue as a �at output. Therefore, specifying the desired
trajectory of the drogue will dictate the required trajectory for each cable link,
and, consequently, for the mothership.

Suppose that the trajectory of the drogue is C∞, i.e., it has derivatives of all
orders. We can then compute the tension components in the N th link of the cable
(at the end attached to the drogue) from

T xN = mN ẍN − F xN
T yN = mN ÿN − F yN
T zN = mN z̈N − F zN +mNg,

where F xN , F
y
N , F

z
N are the aerodynamic forces acting on the drogue, expressed in

the inertial frame. Assuming the length of each link is a constant l = L/N , the
location of the (j − 1)th mass point (located at the (j − 1)th joint) is related to
the jth mass point using

xj−1 = xj + l
T xj
‖Tj‖

yj−1 = yj + l
T yj
‖Tj‖

zj−1 = zj + l
T zj
‖Tj‖

j = 2, 3, · · · , N,

where ‖ · ‖ denotes the Euclidean norm. Consequently, the forces on the (j − 1)th

mass point can be calculated by

T xj−1 = mj−1ẍj−1 − F xj−1 + T xj
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T yj−1 = mj−1ÿj−1 − F yj−1 + T yj
T zj−1 = mj−1z̈j−1 − F zj−1 + T zj +mj−1g

j = 2, 3, · · · , N, .

At each time step, these equations are applied recursively to each link of the cable
until the trajectory of the mothership is calculated.

3.2 Mothership trajectory tracking using Lyapunov-based control law

Once the desired trajectory of the mothership is calculated using methods from
the previous section, a Lyapunov-based backstepping approach (Khalil, 2002) can
be used to �nd the control inputs that cause the mothership to track that trajec-
tory. This is inspired, in part, by the work of Skjetne et al. (2004) and Aguiar and
Hespanha (2007). Skjetne et al. (2004) proposes an output maneuvering controller
for a class of strict feedback nonlinear processes and applies it to path-following
for fully actuated ships. Aguiar and Hespanha (2007) combine adaptive switch-
ing supervisory control with a nonlinear Lyapunov-based (backstepping) tracking
control law for underactuated autonomous vehicles.

The dynamic equations of the mothership can be written as

ṗn = V cosχ cos γ
ṗe = V sinχ cos γ
ṗd = −V sin γ

V̇ = −g sin γ − D

m
+

1
m
T +

Fv
m

γ̇ = − g
V

cos γ cosφ+
g

V
(cosφ)n+

Fχ
mV cos γ

χ̇ =
L

mV cos γ
sinφ+

Fγ
mV

φ̇ = uφ

where n = L
mg is the (controlled) load factor. The control inputs are the thrust

T , load factor n, and roll angle command uφ. The tension forces in the inertial
coordinate system can be expressed in velocity coordinates via the transformationFVFχ

Fγ

 =

 cos γ cosχ cos γ sinχ sin γ
− sinχ cosχ 0

− sin γ cosχ− sin γ sinχ cos γ

T x1T y1
T z1

 ,

where (T x1 , T
y
1 , T

z
1 ) are the components of tension in the inertial frame for the �rst

cable element connected to the mothership.
Assuming that the desired trajectory pd(t) ∈ R3 is smooth (it has derivatives

of all orders), and de�ning the candidate inputs as uc , (T, n, sinφ)T , then rear-
ranging the dynamic equations of the mothership yields V̇γ̇

χ̇

 =

 −g sin γ − D
m + Fv

m

− g
V cos γ cosφ+ Fχ

mV cos γ
Fγ
mV

+

 1
m 0 0
0 g
V cosφ 0

0 0 L
mV cos γ

 T
n

sinφ


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= F + Guc,

where

F =

 −g sin γ − D
m + Fv

m

− g
V cos γ cosφ+ Fχ

mV cos γ
Fγ
mV

 , G =

 1
m 0 0
0 g
V cosφ 0

0 0 L
mV cos γ

 , uc =

 T
n

sinφ

 .

Step 1. Error dynamics: Let e , p− pd be the tracking error in the inertial
frame, where p = (pn, pe, pd)T is the location of the mothership. The dynamic
equation for the inertial tracking error is then given by

ė = ṗ− ṗd.

Step 2. Error convergence: De�ne the Lyapunov candidate function V1 , 1
2e
Te,

which has the time derivative

V̇1 = eT ė

= eT (ṗ− ṗd). (9)

At this stage of the development, we consider ṗ as a virtual control, where V̇1

can be made negative de�nite by setting ṗ equal to ṗd − k1e for some positive
constant k1. Introducing the error variable

zd , ṗd − k1e,

and adding and subtracting −k1eTe in Equation (9) gives

V̇1 = −k1eTe + eT (ṗ− zd).

Step 3. Backstepping for zd: Consider the augmented Lyapunov candidate func-
tion

V2 , V1 +
1
2
(ṗ− zd)T (ṗ− zd) =

1
2
eTe +

1
2
(ṗ− zd)T (ṗ− zd),

with Lie derivative

V̇2 = −k1eTe + (ṗ− zd)T (e + p̈− żd).

From the mothership dynamic equations, we have

p̈ =

cos γ cosχ−V sin γ cosχ −V cos γ sinχ
cos γ sinχ −V sin γ sinχ −V cos γ cosχ
− sin γ −V cos γ 0

 V̇γ̇
χ̇


= M(F + Guc),
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where

M ,

cos γ cosχ−V sin γ cosχ −V cos γ sinχ
cos γ sinχ −V sin γ sinχ −V cos γ cosχ
− sin γ −V cos γ 0

 .

Therefore

V̇2 = −k1eTe + (ṗ− zd)T (e + MF + MGuc − żd).

By constraining V , γ, and χ to reasonable values, the matrices M and G will be
full rank. The product of two full-rank matrices is also full rank, and therefore
MG is invertible. De�ne

ξ , (MG)−1[żd −MF− e− k2(ṗ− zd)],

where k2 is a positive constant, and

η , sinφ.

If we select(
T
n

)
=
(

1 0 0
0 1 0

)
ξ, (10)

and

zd2 , η −
(
0 0 1

)
ξ,

then the time derivative of the zd2 can be written as

ż2
d = η̇ −

(
0 0 1

)
ξ̇

= uφ cosφ−
(
0 0 1

)
ξ̇,

and

uc =

Tn
η

 = ξ + zd2

0
0
1

 .

Thus

V̇2 = −k1eTe− k2(ṗ− zd)T (ṗ− zd) + (ṗ− zd)T (MG

0
0
1

 zd2).

Step 4. Backstepping for zd2 : Consider the augmented Lyapunov candidate func-
tion

V3 , V2 +
1
2
(zd2)2,
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with the time derivative

V̇3 = −k1eTe− k2(ṗ− zd)T (ṗ− zd) + zd2(żd2 + (ṗ− zd)TMG

0
0
1

)

= −k1eTe− k2(ṗ− zd)T (ṗ− zd) + zd2(uφ cosφ−
(
0 0 1

)
ξ̇ + (ṗ− zd)TMG

0
0
1

).

If we choose

uφ =
1

cosφ
[
(
0 0 1

)
ξ̇ − (ṗ− zd)TMG

0
0
1

− k3z
d
2 ], (11)

where k3 is a positive constant, then the time derivative of V3 becomes

V̇3 = −k1eTe− k2(ṗ− zd)T (ṗ− zd)− k3(zd2)2 ≤ 0. (12)

Therefore, according to the Lyapunov stability theorem (Khalil, 2002), the
point (eT , (ṗ− zd)T , zd2)T = 0 is uniformly asymptotically stable, and from
Equation(12) we have

V3(t) ≤ V3(0)

‖e(t)‖2 +
∥∥ṗ(t)− zd(t)

∥∥2
+ [(zd2(t)]2 ≤ ‖e(0)‖2 +

∥∥ṗ(0)− zd(0)
∥∥2

+ [(zd2(0)]2.

Thus by the appropriate selection of k1, k2, and k3, e is bounded and converges to
a neighborhood of the origin. The control inputs (T, n, uφ) are given by Equation
(10) and (11).

3.3 Mothership path planning and control simulation results

In this section, the methods developed in Sections 3.1 and 3.2 are used to simu-
late trajectory calculation and control of the mothership, given a desired drogue
orbit. Table 2 contains the parameters used in the simulation. The desired circular
trajectory (pdrn , p

dr
e , p

dr
d ) of the drogue can be written in parametric form as

pdrn (t) = Rdr sin(
V dr

Rdr
t)

pdre (t) = Rdr cos(
V dr

Rdr
t)

pdrd (t) = −900 m,
t = [0,+∞).
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where Rdr and V dr are de�ned in Table 2. The desired initial position
(pmn (0), pme (0), pmd (0)), velocity V m, and radius Rm of mothership to achieve the
speci�ed drogue orbit may be calculated using the di�erential �atness property:

(pmn (0), pme (0), pmd (0)) = (99.57, 96.86, −908.71) m
V m = 20.84 m/s
Rm = 138.91 m.

Thus the initial position error of the mothership is (−99.57, 33.14, 91.29) m. Fig-
ure 6 shows simulation results of the desired and actual trajectories of the moth-
ership, as well as the tracking error in the absence of wind. We see that the moth-
ership tracks the desired trajectory after a 50 second transient. Figure 7 shows
simulation results of the desired and actual trajectories of the drogue, as well as
the tracking error in the absence of wind. We see that the drogue converges to its
desired trajectory after a 70 second transient. Figure 8 shows the time evolution
of the characteristic parameters of the mothership. Since the initial position error
of the mothership is large compared to the airspeed of the mothership, the con-
trol inputs all go to their limits in the �rst 50 second transient, and after that the
mothership enters a steady state. The tension force in the cable acts on the moth-
ership in the centripetal direction. The result is that, even though the roll angle
φ goes to zero in the steady state, the mothership is still able to �y in a circular
orbit.

Table 2 Parameters for simulation of mothership orbit calculation and control

Mothership Initial Position Velocity Range Mass
(0, 130, -1000) m 18-27 m/s 1.76 kg

Drogue Desired Airspeed Desired Altitude Desired Orbit Radius
V dr = 15 m/s 900 m Rdr = 100 m

Cable Mass Length Diameter
0.01 kg 100 m 0.01 m

MAV Airspeed
16.67 m/s

4 Active drogue control for improved orbit tracking

The previous section described a method for controlling the orbit of a passive
drogue indirectly through path planning and control of the mothership. In this
section we present a method to control the drogue orbit directly through drag
modulation, with the objective of improving upon the control achieved through
indirect control alone. It is assumed that the drogue is �tted with drag-inducing
spoilers.

Most towed-cable systems described in the literature (e.g., Skop and Choo,
1971; Murray, 1996; Turkyilmaz and Egeland, 2001; Williams and Trivailo,
2007a,b,a; Williams et al., 2008) are based on a passive (unactuated) drogue. Our
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Figure 6 Mothership trajectory and error driven by Lyapunov-based backstepping
control law in the absence of wind.
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Figure 7 Drogue trajectory and error driven by Lyapunov-based backstepping control
law in the absence of wind

approach is motivated by Skop and Choo (1971), which shows that under zero-
wind conditions, if the mothership �ies in a constant-angular-rate orbit of radius
R, and the drogue has su�cient aerodynamic drag, then the motion of the drogue
has a stable orbit of radius r � R. Since the angular rates of the towplane and the
drogue are identical, i.e.,

ω =
Vm
R

=
VN
r
,



18 L. Sun, M.B. Colton, D.C. Carlson and R.W. Beard

0 50 100 150 200 250
−20

0

20

40

60

Time (s)

T
hr

us
t (

N
)

0 50 100 150 200 250
0

0.5

1

1.5

Time (s)

Lo
ad

 fa
ct

or

0 50 100 150 200 250
−50

0

50

Time (s)

R
ol

l (
de

g)

0 50 100 150 200 250
−15

−10

−5

0

5

Time (s)

P
itc

h 
(d

eg
)

Figure 8 Time evolution of the thrust T , load factor n, roll angle φ, path angle γ of
the mothership.

where ω is the angular rate of the towplane and the drogue, and the Vm and VN
are the airspeeds of the mothership and the drogue, respectively, then

VN = r
Vm
R
. (13)

Therefore, we can regulate the drogue to a desired radius rd by regulating the ve-
locity of the drogue to V dN = rdVm/R. A simple method to regulate drogue velocity
is to add spoilers to the drogue and to regulate the spoilers with the control law

CDN = (KP +
KI

s
)(VN − V dN ),

where CDN is the (spoiler-controlled) drag coe�cient, V dN is the desired airspeed
of the drogue, VN is the current airspeed, s is the Laplace variable, and KP and
KI are positive proportional and integral gains, respectively.

4.1 Active drogue control simulation results

Simulations were created to demonstrate that the drag coe�cient can be used
e�ectively to control the drogue radius. To compare the di�erence between the
drogue motion with and without active control, the drag controller is switched on
at t = 150 s. Given the parameters in Table 1, if the desired drogue radius is 60
m, then the desired drogue velocity is V dN = 10 m/s (see (Equation 13)). Figure 9
shows that the steady state radius of the drogue converges to a smaller radius that
oscillates between 54 m and 58 m. The steady state drogue velocity oscillates be-
tween 9 and 9.5 m/s, allowing the chasing MAV to overtake and rendezvous with
the drogue.
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Figure 9 Simulation of drogue motion using active drag control. Shows north and
east motion of the drogue (left) and the radius, velocity and distance to the
MAV of the drogue (right). Drag control is activated at t = 150 s. The steady
state radius is smaller than without drag control.

5 MAV orbit estimation

In previous sections, a method was described for achieving a desired drogue orbit
by controlling the orbit of the mothership and the drag of the drogue. The pur-
pose of this section is to describe methods for another important element of MAV-
drogue rendezvous: the mathematical description of the drogue's orbit and the esti-
mation of the orbit parameters from GPS data. In Section (6) we discuss methods
to enable the MAV to track the drogue orbit in preparation for �nal rendezvous.
For this paper, it is assumed that there is communication between the drogue and
MAV, allowing the drogue to transmit its position and heading (from an on-board
GPS receiver) to the MAV. The drogue orbit is estimated from the transmitted
data and a coordinated rendezvous approach is taken, rather than treating the
drogue as a target during the initial stages of rendezvous. The MAV assumes the
same orbit as the drogue, allowing a more natural initial rendezvous approach.
During the �nal stages of rendezvous, when the relative position between the MAV
and drogue is small, it is necessary to use some other rendezvous algorithm (e.g.,
vision-based proportional navigation). This section focuses on the problem of esti-
mating the drogue orbit from GPS data. Section 6 describes a method that enables
the MAV to track the drogue orbit. Future work will address the �nal approach
and docking of the MAV and drogue through the use of vision-aided proportional
navigation, such as that described in (Barber et al., 2007). This work is, in some
ways, related to research on autonomous aerial refueling of UAVs, which has been
proposed using vision alone (Kimmett et al., 2002) and integrated vision and GPS
(Mammarella et al., 2008). Unlike work on aerial refueling, however, aerial recov-
ery research must address the issue of dissimilar speeds of the mothership and
MAV. Furthermore, in the approach taken in this paper the MAV must travel in a
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circular or elliptical path to achieve docking with the drogue, whereas docking for
aerial refueling can be accomplished with roughly linear trajectories.

Ideally, the drogue will travel in a circular orbit in a plane parallel to the
ground. In practice, the actual drogue orbit is not circular and in the horizon-
tal plane due to (1) wind and other disturbances, and (2) the numerical approx-
imations inherent in the inverse dynamics to �nd the required mothership orbit
from the desired circular drogue orbit. Consequently, for estimation purposes, the
drogue orbit will be treated as an arbitrarily rotated ellipse. The parametric equa-
tions for a planar elliptical orbit are given by

x− x0 = a cos(t) cos(ψ)− b sin(t) sin(ψ)
y − y0 = a cos(t) sin(ψ) + b sin(t) cos(ψ) (14)

where x0 and y0 describe the center of the ellipse, a and b are the major and minor
axes respectively, and ψ is the angle of rotation of the ellipse measured from the
x-axis. The strategy taken in this paper is to estimate the orbit along which the
drogue is traveling, projected onto the plane parallel to the ground. The MAV
tracks that orbit using a longitudinal controller, and a separate control loop is used
to match the MAV and drogue altitudes.

5.1 Fitzgibbon's method

Early numerical methods for estimating the parameters of an ellipse were based
on general conic �tting, which could result in estimates that actually represented
other conics (hyperbolas or parabolas). Fitzgibbon et al. (1999) developed a con-
strained least-squares �tting method for ellipses by including a constraint to guar-
antee that the solution must be an ellipse. Fitzgibbon's approach begins with the
general equation for a conic,

F (x, y) = a1x
2 + a2xy + a3y

2 + a4x+ a5y + a6 = 0, (15)

and adds an ellipse-speci�c constraint given by

4a1a3 − a2
2 > 0. (16)

This is an inequality constraint, requiring that the left side of the equation be
greater than zero to result in the equation of an ellipse. It has been shown that
recasting this as an equality constraint, in which (16) is still satis�ed, results in
valid parameter estimates whose values are not dependent on the particular con-
stant value used on the right side of (16). Essentially, since (15) can be multiplied
by a constant and the result is the same ellipse, (16) can be set to an arbitrary
constant without loss of generality. Thus (16) can be written as

4a1a3 − a2
2 = 1, (17)

where the right side of the equality is arbitrarily set to the value of 1. This pro-
cedure is desirable because the solution of the constrained optimization problem
is more straightforward for the case of equality constraints. Using the method of
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Lagrange multipliers proposed by Gander (1981), the estimation problem can be
posed as

DTDa = λCa subject to aTCa = 1, (18)

where

D =



x2
1 x1y1 y2

1 x1 y1 1
...

...
...

...
...
...

x2
i xiyi y2

i xi yi 1
...

...
...

...
...
...

x2
N xNyN y2

N xN yN 1

 , (19)

C =


0 0 2 0 0 0
0−1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (20)

and

a =
[
a1 a2 a3 a4 a5 a6

]T
. (21)

Solving (18) yields six possible solutions for a; the correct least-squares solution
is the eigenvector that corresponds to the smallest positive eigenvalue. These gen-
eral ellipse parameters can be used to solve for the parameters in the parametric
equations of an ellipse, described by (14).

5.2 Numerically stable improvement

Fitzgibbon's method has the drawback that the computation of the eigenvalues
is sometimes unstable and can yield in�nite or complex results. This arises from
the fact that DTD is often nearly singular. Halir and Flusser (1998) proposed
a method for improving the accuracy and speed of the algorithm. This method,
which is based on Fitzgibbon's method, makes use of the special structure of the
matrices to eliminate the singularities. The result is unstable only if all of the
points lie on the same line, in which case there is no suitable approximation for an
ellipse.

5.3 Recursive least squares

The method introduced by Halir and Flusser is used to obtain an estimate of orbit
parameters from the �rst several GPS data points provided by the drogue. Once an
initial estimate of the orbit is calculated using this method, recursive least squares
(RLS) (Moon and Sterling, 2000) is used to update the estimate for each new
GPS data point received from the drogue. The parameters to estimate are again
represented by the vector a de�ned in Equation (21). The parameter estimates are
updated using the following equations:
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γn+1 =
1

λ+ xTn+1Pnxn+1

an+1 = an − γn+1Pnxn+1xTn+1an

Pn+1 =
1
λ

(
Pn − γn+1Pnxn+1xTn+1Pn

)
,

where P is initialized as the identity matrix. The vector x represents the most
recent GPS data received from the drogue, and λ is the forgetting factor, which
controls the responsiveness of the estimates and the level of �ltering.

5.4 MAV orbit estimation simulation results

The Halir-Flusser method followed by RLS was applied to simulated GPS data
from the drogue, with additive Gaussian noise with a standard deviation of 5 m.
Figure 10 shows the resulting estimated elliptical orbit. Figure 11 shows the evo-
lution of the estimate of x0 (the north position of the center of the ellipse) as new
GPS data points are included in the recursion. It is clear that the estimate con-
verges to the true value of 50 m. Figure 12 shows the evolution of the estimate of
the ellipse major axis. Again, the estimate converges to the true value. Estimates
for the other ellipse parameters (minor axis, rotation angle, and east location of
the center) follow similar trends.

6 MAV orbit tracking

The objective is for the MAV to insert itself onto the drogue orbit at a point be-
hind the drogue, and then track the orbit at a speed slightly greater than that of
the drogue until rendezvous occurs. This section describes methods that enable the
MAV to enter and track the drogue orbit. The approach taken in this paper is to
decouple longitudinal control (for altitude tracking) from lateral control (for hori-
zontal orbit tracking). The horizontal orbit is the elliptical projection of the drogue
orbit onto the horizontal plane, which is estimated using the methods described in
the previous section.
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Figure 10 Estimated orbit from simulated noisy data.. The solid line represents the
true orbit. The circles represent simulated noisy GPS data points. The dashed
line represents the estimated orbit.
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Halir-Flusser method and
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major axis using the
Halir-Flusser method and
RLS

6.1 Lateral control

The lateral control to achieve elliptical orbit tracking of the MAV is done using
a vector �eld method Nelson et al. (2007). Whether the MAV is on or o� of the
elliptical orbit, its desired heading is calculated using

dy = −b2 (x− x0) + k(y−y0)
a

(
1− (x−x0)

2

a2 − (y−y0)2
b2

)
dx = a2 (y − y0) + k(x−x0)

a

(
1− (x−x0)

2

a2 − (y−y0)2
b2

) (22)
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and

tan(ψ) =
∂y

∂x
. (23)

Figure 13 shows a simulation of the MAV entering and tracking an elliptical
orbit using the vector �eld approach. In this simulation, the MAV starts in the
center of the ellipse, enters the elliptical orbit, and executes a complete orbit. The
MAV tracks the orbit to within one meter, as shown in Figure 14.
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Figure 13 Elliptical orbit tracking.
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the drogue orbit, and the
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trajectory as it tracks the
desired orbit, starting from
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center of the orbit.
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elliptical orbit for a single
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6.2 Longitudinal control

The longitudinal control of the MAV is used to match the altitude of the MAV to
that of the drogue. The commanded altitude for the MAV is the altitude of the
drogue at its current position. The autopilot calculates a desired angle of attack for
the MAV using a PID controller. In simulation, the altitude of the MAV matches
the altitude of the drogue to within 1 m for an entire orbit..

7 Flight test results

Flight tests were conducted to demonstrate the mothership-drogue interactions
modeled in previous sections. In these tests, the mothership (a twin prop, 55-inch
wingspan, battery-powered, autonomous aircraft with a Kestrel autopilot; see Fig-
ure 15) was hand launched while towing a hemispherical drogue instrumented with
a GPS data logger (Figure 16).

The mothership autonomously maintained a speci�ed circular orbit, and the
resulting orbit of the drogue was observed using the on-board GPS data logger.
Figure 17 shows the mothership and drogue orbits in the horizontal plane. In this
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case the speci�ed radius of the mothership was approximately 85 m, the moth-
ership velocity was 14 m/s, and the cable length was 125 m. The resulting orbit
radius and velocity of the drogue were 55 m and 9 m/s, respectively. This result
illustrates the feasibility of achieving stable drogue orbits at a smaller radius and
decreased speed, which is a necessity for aerial MAV recovery, and con�rms the
simulation results presented in Section 2. Figure 18 shows the orbits of the moth-
ership and drogue in the North-vertical plane. Due to wind, the drogue orbit is
tilted out of the horizontal plane, despite the horizontal mothership orbit. This
validates the approach taken in Section 5, in which the drogue orbit was treated
as an out-of-plane ellipse, and parameters of the projection of this ellipse on the
horizontal plane were estimated. Furthermore, the advantages of utilizing decou-
pled altitude and orbit tracking control laws, as described in Section 6, are also
reinforced. Although a MAV did not track the drogue orbit in this set of experi-
ments, the results show a relatively consistent and stable drogue orbit that could
be estimated and tracked by a MAV in future experiments.

Figure 15 Mothership used in
preliminary �ight tests

Figure 16 Hemispherical drogue used
in preliminary �ight tests
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Figure 17 Experimental orbits of
mothership and drogue with
125 m cable and mothership
velocity of 13.5 m/s
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Figure 18 Experimental altitude
data for mothership and
drogue with 125 m cable and
mothership velocity of 13.5
m/s
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8 Conclusions and future work

In this paper we presented a novel approach to the aerial recovery problem for
micro air vehicles. In this approach, a mothership tows a drogue that establishes
a stable orbit at a speed that is slow enough to allow the MAV to overtake the
drogue as it moves along its orbit trajectory. The approach is motivated by the
need to have a small relative velocity between the MAV and the recovery vehi-
cle, which is not practical if the mothership is to capture the MAV directly. The
focus of this work is on modeling the system's dynamics, developing mothership
control laws to enforce drogue orbits, developing methods to enable a MAV to esti-
mate elliptical drogue orbits, and designing control laws to allow the MAV to track
the drogue. A novel multi-link dynamic model, based on Gauss's Principle, has
been shown to accurately represent the mothership-cable-drogue dynamics, and a
simulation environment was developed to enable simulation of mothership-drogue
dynamic interactions. An inverse dynamics method for calculating the required
mothership orbit to achieve a desired drogue orbit was also presented. Using a
Lyapunov-based backstepping approach, a control law was designed to enable sta-
ble tracking of the required orbit by the mothership. Experimental results demon-
strated the feasibility of controlling the mothership to establish a stable orbit of
a towed drogue. An approach to controlling the drogue directly, using drag coef-
�cient control, was developed and simulated, showing that it is feasible to control
the drogue orbit by changing the drag of the drogue. Finally, methods to enable
the MAV to estimate and track the drogue orbit were developed. These methods
will allow the MAV to synchronize its motion with that of the drogue, in prepara-
tion for a �nal coordinated rendezvous.

The methods developed in this work are essential components of aerial recovery
of MAVs. Their feasibility was demonstrated through simulation and experimen-
tal �ight test results. Although we have addressed some of the key questions in
aerial recovery, many important challenges remain that will be addressed in future
work. First, the trajectory generation method should be able to account for wind,
allowing the mothership to modify its orbit to result in an essentially �at drogue
orbit in the presence of wind. In the �ight tests presented in this paper, we showed
that wind disturbances result in non-horizontal drogue orbits. Current work seeks
to address this problem by (1) designing appropriate inclined mothership orbits
to result in horizontal drogue orbits in the presence of wind, and (2) employing
active drogue control (via spoilers and active tether extension/contraction control)
to compensate for wind disturbances. Future work will advance these approaches
through control design, simulations, and additional �ight tests. Second, improve-
ments must be made to the recursive orbit estimation algorithms presented in this
paper to guarantee that the recursive estimates describe an ellipse, and not some
other conic. A Kalman �lter with nonlinear state constraints is being explored as
a solution to this problem (Julier and LaViola, 2007; Yang and Blasck, 2006; Si-
mon and Chia, 2002). Third, methods must be developed to allow the MAV, which
is traveling behind the drogue in a stable orbit, to approach and dock with the
drogue. We are exploring the use of vision-aided proportional navigation, such as
that described in (Barber et al., 2007), in which a MAV tracks and lands in the
back of a moving truck. Ongoing experimental �ight tests will allow us to validate
and re�ne each component of the aerial recovery process.
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