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Abstract

In this paper we present a control scheme for im-
proving multiple vehicles formation maneuvering. The
advantage of this control scheme is that it makes it
easy to prescribe formation maneuvers, has stability
guarantees and adds a type of robustness to maneu-
vering formations through the use of group feedback.
For moving multiple vehicles in formation the added
advantages of this control scheme are explored through
simulation and hardware results using wheeled mobile
robots.

1 Introduction

Maneuvering multiple vehicles in formation has be-
come an active area of research in recent years. Ap-
plications for maneuvering formations range from syn-
thesizing a space-based interferometer [1] to searching
a grid using multiple mobile robots. There are sev-
eral important issues involved with maneuvering mul-
tiple vehicles in formation. In this paper we examine
these issues through examples and analysis of multiple
wheeled mobile robots.

Currently there are two common approaches for
robots to coordinate their control strategies to move in
formation. The first is leader-following [2], [3], [4]. In
leader-following, one robot is designated as the leader
and the remaining robots follow the leader’s motion off-
set by a distance. Leader-following essentially reduces
to a tracking problem where stability of the tracking
error is shown through standard control theoretic tech-
niques. The advantage of leader-following is that ma-
neuvers can be specified in terms of the leader’s mo-
tion. One disadvantage of leader-following is that the
leader’s motion is independant of the followers. Hence,
if the following robots are unable to maintain a small
tracking error, the leader does not slow down and for-
mation is broken. To compensate for this apparent lack
of robustness, group feedback must be added from the
followers to the leader. We hereafter refer to this spe-
cific form of feedback as formation feedback.

The second common approach to formation keep-
ing is the so called behavior-based approach [5], [6],
[7]. Behavior-based approaches place weightings on
certain actions for each robot and the group dynam-

ics emerge. The advantage of behavior-based schemes
is that the group dynamics implicitly contain formation
feedback by coupling the weightings of the actions. The
disadvantage of using behavior-based schemes is that
the emergent group dynamics are difficult to describe-
making it difficult to prescribe formation maneuvers
and show stability.

In examining the two most common approaches for
formation keeping, we have seen that there is a need
for a control scheme which easily prescribes forma-
tion maneuvers, allows for stability guarantees, and in-
corporates formation feedback. A recently introduced
scheme which possesses the needed attributes is the vir-
tual structure approach [8],[9]. In this approach, the
formation is treated conceptually as a virtual structure
with place-holders that represent the desired position
for each robot. As the virtual structure (or virtual
rigid body) evolves in time, the place-holders trace out
trajectories for each robot to track. In [8] a virtual
structure approach for spacecraft interferometry is pre-
sented which prescribes formation maneuvers and has
stability guarantees, but does not include formation
feedback. In [9] a virtual structure scheme is present
which includes formation feedback, but cannot guaran-
tee a formation converges to a final configuration. The
contribution of our work is to develop a virtual struc-
ture scheme which easily prescribes formation maneu-
vers, makes stability guarantees and includes formation
feedback.

To facilitate the development of our virtual structure
scheme we use the architecture shown in Figure 1. The
system R; represents the i** robot, with control in-
put vector u;, and the output vector y; represents the
measurable outputs of the robot. The system X; repre-
sents the local controller for the i** robot. The inputs
to K; are the output of the i** robot y; and the output
of the coordination mechanism block §&. We will refer
to & as the coordination variable. The outputs of K;
are the control vector u;, and the performance variable
z;. The system F represents the primary coordination
mechanism in our scheme. The formation control block
outputs the coordination variable which is broadcast
to each robot. In addition, the formation control block
outputs zp, which is used to calculate performance of



the formation. The inputs to F are the performance
variables from each robot z;, and the output of the
supervisor £z. The system G is a discrete event su-
pervisor which prescribes various formation maneuvers
for the robots through £€5. In [8] it was shown that
leader-following, behavior-based, and virtual structure
schemes are subsumed by this architecture. In the case
of a virtual structure approach, the coordination mech-
anism is accomplished through the virtual structure.
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Figure 1: Architecture for Robot Maneuvers

The remainder of the paper is organized as follows.
In Section 2 we describe the equations of motion for
each robot. In Section 3 we describe the equations
of motion for the virtual structure. In Section 4 we
present stability guarantees of a control scheme which
prescribes formation maneuvers for a virtual structure
and includes formation feedback. Section 4 constitutes
the main results of our paper. In Section 5 we present
simulation and hardware results of the proposed coordi-
nation scheme. We analyze and discuss the important
role formation feedback plays in maneuvering forma-
tions.

2 Robot Equations of Motion

The equations of motion for differentially driven
wheeled mobile robots may be decomposed into the
kinematic and dynamic equations. The kinematic
equations are:

z = vcos(h), (1)
y = vsin(0), ()
6 =w, ®3)

where (z,y) is the location of the robot center, 8 is its
angle in the intertial frame, v is the velocity of the robot
in the direction of # and w is the angular velocity of the
robot about the axis center. The dynamic equations
are :

mo = F, 4)
Jw=r, (5)

where m is the mass, J is the inertia, F' is force, and 7
is the torque.

Two types of controls for mobile robots can be de-
rived based upon these the equations of motion. A
kinematic robot model assumes the kinematic equa-
tions describe a robot’s motion with v and w as control
inputs. Many mobile robot control schemes and plat-
forms presented in the literature assume this model. A
more realistic robot model uses the kinematic and dy-
namic equations of motion with F' and 7 as the inputs.

In section 4 we present a formation control scheme
for both a kinematic and a dynamic model. The kine-
matic equations of motion contain a nonholonomic
constraint that makes even regulation difficult [10].
Some results for nonholonomic tracking tracking have
been obtained, but the trajectories must satisfy certain
constraints [11]. A common technique used to sim-
plify the dynamics is feedback linearization of a point
off the center of the wheel axis which we denote as
Z; = (zhi,yni)T [12],[4]. Fortunately, the zero dynam-
ics are stable for regulation tasks, and asymptotically
stable for tracking tasks if the reference trajcetory is
well behaved. While feedback linearization is used in
this paper to simplify the tracking laws for each robot,
the virtual structure approach is general enough to al-
low other nonholonomic tracking controllers to be used.
An off-axis point on the robot can be described by

o= () -(Grisy). o

Differentiating twice, we get:

.. F; — Fsign(v) .y 2
s _ Thi _ ) B 7 7 W
Z; (yhz) R(ez) TL,-—rl}Slgn(w) + viw; (7)
Setting F;, and 7; to:
% - L,'(,UZ + @Sign(v) + R(_g) Ug
% —vjw + G2 sign(w) Y \uy )
(8)

Equation (7) reduces to:

oo ."lfh,' . Ugi _ .
= ()= ()= @

A . . .
where u,; = (uzi,uy;)T . In this case feedback lineariza-
tion reduces the equations for block R; to double inte-
grator dynamics.

3 Virtual Structure Equations of Motion

A virtual structure can be thought of as a virtual
rigid body. When describing a rigid body, we charac-
terize its motion by the center of mass. Similarly for a
virtual rigid body we can characterize its motion by a
virtual center of mass denoted (2., y.). Moving the vir-
tual center of mass translates the position of the forma-
tion. In addition to translating the virtual rigid body,
we can specify an orientation for the virtual rigid body



through 6',. The virtual center of mass and its associ-
ated orientation €, become the center for a non-inertial
frame of reference which we denote O' = (z.,y.,6%). As
a matter of notation, variables in the non-inertial frame
will be primed and variables in the inertial frame will be
un-primed. The rest of the virtual rigid body is fixed in
the primed coordinates to the center of the non-inertial
frame O'. For robot formation maneuvers, each robot
is assigned a position on the virtual rigid body. As the
virtual rigid body evolves in time, the desired position
traces out a desired trajectory for each robot to follow.
These points are denoted (z},,y;,;) in Cartesian coor-
dinates and (D),,6;,) in polar coordinates. Figure 2
shows a picture of the virtual rigid body. Thus, the
virtual rigid body may be parameterized as

C(t) = (2L(t),yL (), 04(t), x5 ()", ya ()" (10)
= (zl(t), 9. (1), 0,(t), Da(t)", 051",  (11)

where xh(t) = (2ly(t),...,ohg®)T, ¥a(t) =
Wha0), - Y a@®)T, D) = (D), , Da®)T
and O'(t) = (6,(t),...,8%4(t))?. Using this parame-
terization, we can relate the desired position for each
robot from the non-inertial frame back to the inertial
frame. This yields the following equations for the it*
desired position of each robot denoted as z;4:

~_ [2L(t) + Dly(t) cos(6.(t) + 6},)
s (yé(t) + Dl (1) sin(6(t) + ogb) -1

Note that we have allowed all of the parameters of
the virtual structure, ((¢), to vary with time except
0;. This parameter can vary with time, however, we
are concerned with formation maneuvers which pre-
serve the overall formation shape. Thus, varying 6.,
rotates the formation, varying z.(¢) and y.(t) trans-
lates the formation, and multiplying D}, by some pa-
rameterization 7(t) expands or contracts the formation.
Combinations of rotations, translations and expan-
sions/contractions will constitute the formation ma-
neuvers considered in the remainder of this paper. The
virtual structure parameters act as the coordination
variable &, in the architecture shown in Figure 1. Here-
after, we refer to the parameters of the virtual structure
¢ as the coordination variable &.

4 Main Result

In this section we present a control scheme for per-
forming formation maneuvers which is easy to de-
scribe, makes stability guarantees, and includes forma-
tion feedback. To prescribe a formation maneuver we
must evolve £ to &2, the final desired values of the co-
ordination variables. We also need to guarantee that
z; tracks z;q4. This motivates the following definition.

e A formation maneuver is asymptotically
achieved if £(t) — €% and z;(t) — ziq(t) as
t — o0.

The formation control block F in Figure 1 is responsi-
ble for forcing & — £;. The local control block K; in
Figure 1 is responsible for guaranteeing that z; — z;q4-
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Figure 2: The virtual structure or virtual rigid body.

To motivate the dynamics for £ we first note that our
mobile robots have velocity constraints. The coordina-
tion variable has physical meaning since it is related
to z;q - To take into account the velocity constraints,
the coordination variable needs to be bounded. One
way to bound the coordination variable is to evolve it
as a vector of first order systems with saturation. Such
a vector of first order systems has its j** component
given by:

b=kt (6 -6)). (3)

where ¢ = (£8,...,£4)T is a constant vector. If we
use Equation (13), the virtual structure evolves towards
its final goal without formation feedback. In order to
include formation feedback we augment Equation (13)
by a nonlinear gain dependent on the quantity z; — z;4.
In designing this nonlinear gain we would like for the
virtual structure to slow down and stop as the robots
get out of formation. We would also like the virtual
structure to move towards its final goal if the robots
are maintaining formation. One such nonlinear gain,
v, is given by:

1
B KF¢(Z17"' 7zN)+ kl_l B KF¢(Z) + kl_l

v . (19)

where ¢(Z) is a continuously differentiable function
which measures how the robots maintain formation,
K, ky are constants. To simplify the notation, we will
use the variable Z to denote a vector of robot positions.
This gives the quantities:

Z=(z1,...,z3)" (15)
Z, = (zfd, ... 7z%d)T (16)
Z=7-17, (17)

We may differentiate these quantities to get the velocity

vectors Z~, Z.4, Z and the acceleration vectors Z, Z4, Z.
Thus, ¢(Z) is a function of all the robot positions and
must be continuously differentiable so that our Lya-
punov arguments will hold. We also require that if ¢



is large then at least one of the Z; is large. The con-
stant Kp weights the importance of our performance
measure ¢(Z). v has the two desired properties for a
nonlinear gain discussed above, i.e., ¢ = c0o = v =0
and ¢ > 0= v — k1.

There are many possible candidates which measure
the performance of the formation maneuver, ¢(Z). One
possible candidate for ¢(Z) is the average tracking error
of the robots given by:

#(Z) = %ZTZ. (18)

Another possible candidate for ¢(Z) is a squared er-
ror metric for formations given in [13] which may be
stated mathematically as:

FE(Z(1),£(t)) =
al (19)
D (#:(€) — %1 () (#:(6) — i11()),

i=1

where FE(Z,§) is the formation error and where the
indices are defined modulo N, i.e., N+1 = 1. Thus we
may let ¢(Z) = FE(Z(t),£(t)).

The nonlinear gain «(Z) can be incorporated into
the evolution of the j** component of £ in the following

manner.
b= @K (g6-€), @)

where ¢7 is again a vector of constants. The j com-
ponent of acceleration ; is given by:

& =—(Z) (Sech2 (%(fj)) 5:‘)

(21)
+2y(@ e (4(Z)) K tanh l(é-))
Y N K)o
which can be shown to be continuous as long as ¢(Z)
is continuously differentiable.

With the vector of first order systems given in Equa-
tion (20), the virtual structure evolves towards its final
goal and includes formation feedback. The control law
for the robots must allow them to track their desired
trajectories traced out by the virtual structure. To ac-
complish this, a PD control law with a feed-forward
term is used for z;, i.e.,

(Kyi)Zs, (22)

where kp; = diag(kps, kpy) and ky; = diag(kva, kvy)-
We may collect the controls for all the robots into a
single vector given by

Uy = % = Zig — (Kpi)Z; —

Wl,... ut\)T =Z=%2—AZ-BZ,  (23)

where A = diag(kps, kpy;--- » kpe, kpy), and B =
diag(kve, kvys - -« > Kvz) Koy)-

Using these tracking laws on each robot and the con-
trol law for the coordination variable, we can show that
formation maneuvers can be asymptotically achieved.
Before proceeding we prove the following lemma which
will aid in obtaining our convergence results.

Lemma 1 If the desired location for each robot is
given by Equation (12) then

(1) §=0=Z,=0.
(2)€=0andé=0=%Z,=0.

Proof: Computing z;q which constitute the components
of Z we get:

5o = [Tt D;’d cos(f; + 0;4) — Dédélc sin(6; + 674)
7 \gl + Digsin(0), + 8}) + Di 6. cos(8. + 8y) )’
(24)

Computing Z;q which constitute the components of Z
we get:
4+ D_;d cos(6, + 6;,) — 2D;.d0:; sin
~ D}, (62)? cos(8, + 0}) — Db sin
jje + D}y sin(8] + 0,) + 2D, cos
—Di4(6%)? sin(6;, + 6}) + D;;6 cos

Y
0.+ 6,

—_

)
)
e+ 0i4)

0. + 0i4)
(25)

AN

By hypothesis we have &, =0, ., =0, g, =0, §. =0,
. =0,60. =0, D), =0, and D}, = 0. Plugging these
values into Equations (24) and (25) yields parts (1) and
(2). [ |
Part(1) of Lemma 1 states that if the velocity of the
coordination variable is zero, then the desired velocity
of each robot is zero. Part(2) of Lemma 1 states that
if the coordination variable has zero velocity and ac-
celeration, then the desired acceleration of each robot
is also zero. The reason we require that both velocity
and acceleration of the coordination variable be zero is
that Z9 is in the inertial frame may thus be a function
of both ¢ and § which are in the non-inertial frame.
Lemma 1 will be useful in obtaining stability results.

Theorem 2 Let ¢ be given by Equation (20) and
let the tracking laws for the robot be given by Equa-
tion (23). Then the robot formation maneuvers are
asymptotically achieved.

Proof: Consider the Lyapunov function candidate:
1oz s .5 2T =
V=§§ §+§Z AZ + -7 Z,

DN | =

Differentiating we arrive at:

M 1 T .
- - 4 o 2T 2
V= —fy(Z)Kj;tanh (E(gj — §j)> (& - §j) —7Z BZ.

Let ¥ = {QV = 0}, where Q = RM x R2N x RN
T

and (€5,Z7,Z )T € Q. Let £ be the largest invariant
set contained in ¥. On the set £,V =0. When V =0
we must have Z = Z? and either ¢ = ¢4 or v(Z) = 0.
First we show that on ¥, fy(Z) # 0. Suppose that
at time ¢; the robots enter & where v(Z) = 0. Then
we have from Equations (20) and (21) that £ = 0 and



£ = 0. Applying Lemma 1 part(2) gives Z¢ = 0 and

74 = 0. Since ~Z = 0 on X, this implies 7 =17¢=0.
In addition v(Z) = 0 implies, by our requirements on
¢(Z), that at least one of the Z; be large. Writing

Z. = 0 and Z = 0 in component form gives Z;q = 0
and z; = 0. Plugging in these values and a large value
for Z; into the control law in Equation (22) gives Z; =
0 — k;;(%;) — ky;(0). This means that one of the Z; is
a large value, so it is immediately integrated to a non
7ero velocity, z;. Thus, we have z; # 0, z;g = 0 =

7z; # 0 = Z # 0 which gives that on £, y(Z) # 0.

On the set & we have established that Z = Z? and
£ = ¢4, From Equation (20) £ = f=é=0. Using
£ = 0 in Equation (21) implies £ = 0. Comblmng‘f 0
with Lemma 1 part(1) we have Z¢ = 0 = Z = Z¢ = 0.
Additionally combining § 0 and § 0 with Lemma 1
part(2) we have that Z¢ = 0. Plugging in Z4 = 0

and Z = 0 into the control law in Equation (23), we
must have Z = Z¢. Therefore, by Lasalle’s invariance
principle ¢ = ¢4 and Z — Z¢ asymptotically as t — oco.

|

5 Simulation and Hardware Results

We present simulation and hardware results which
were obtained using three robots in BYU’s MAGICC
lab!. The control scheme implemented is the one out-
lined in Theorem 2 with ¢(Z) given by Equation (18).
The control gains on the robots were chosen to be
kp, = 10, k, = 16. The simulation and hardware re-
sults illustrate some practical advantages of including
formation feedback.

A sequence of formation maneuvers were run on
three robots. Using a combination of elementary trans-
lations and rotations the robots were able to cover a
grid. Several different gains were chosen for the coor-
dination variable and the values for Kz were chosen
to be Kp =0, Krp = 5 and Kr=10. Simulation and
hardware plots of z; and z;4 are shown in Figures 3, 4,
5, 6, 7 and 8 which illustrate the importance of forma-
tion feedback. The gains on the coordination variable
shown in these plots were chosen to be k1 = 2.3 and
K = 0.2. In Figures 3 and 4, Kr was chosen to be
zero which corresponds to no formation feedback. Both
plots show that the virtual structure moves around the
grid, ignoring the robots. The virtual structure does
not slow down for the robots who break formation and
miss portions of the grid. It took 45(sec) to perform
the maneuver sequence with Kr = 0.

Contrast the case of no formation feedback to the
case of formation feedback with Kr = 5 and Kr = 10
shown in Figures 5, 6, 7 and 8. Significantly, the virtual
structure slows down as the following robots are unable
to track their desired position. The robots maintain
formation and cover the entire grid. It took 70(sec) to
complete the sequence of maneuvers for Ky = 5 and
it took 80(sec) to complete the sequence of maneuvers
for Kr = 10. Although it took longer to complete

1See [14] for a detailed description of the lab.

the maneuver, formation feedback allowed the robots
to maintain formation.

The same sequence of maneuvers was also run with
slower gains on the coordination variable for the pre-
vious three values of Kr. With lower gains on the co-
ordination variable, the robots were able to maintain
formation for all three values of Kr. However, it is
hard to know a priori the gains to use for £ so that the
robots maintain formation. For example in the case of
no formation feedback shown in Figures 3 and 4, the
robots stay in formation for the first leg of the maneu-
ver. Thereafter, the tracking error increases and the
robots break formation. To overcome this problem,
gain scheduling could be used, but that would require
large amounts of memory to accommodate every possi-
ble maneuver sequence for three robots. Clearly using
formation feedback does not require large amounts of
memory and makes the gains for £ more robust with
respect to maintaining formation.

A final advantage gained by formation feedback is
that it made formation keeping more robust to syn-
chronization issues, differences in timing among each
robot, and the manufacture variability on each robot.

Formation Maneuvers

— actual
— - desired

Figure 3: The (z,y) path taken in simulation by three
robots with Kr = 0 and with no initial forma-
tion error.

Formation Maneuvers
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Figure 4: The (z,y) path taken in hardware by three
robots with Kr = 0 and with no initial forma-
tion error.
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Figure 5: The (zr,y) path taken in simulation by three
robots with Kr = 5 and with no initial forma-
tion error.

Formation Maneuvers

Figure 6: The (z,y) path taken in hardware by three
robots with Kr = 5 and with no initial forma-
tion error.

6 Conclusions and Discussion

In this paper we have shown that traditional meth-
ods for keeping formation allow for some but not all of
the following: easily prescribed formation maneuvers,
stability guarantees, and formation feedback. We have
developed a virtual structure control scheme for keep-
ing formation which addresses all of these attributes.
Simulation and hardware results have shown that for-
mation feedback reduces formation error.
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