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Abstract—This paper presents a vision-based collision avoid-

ance technique for Small and Miniature Air Vehicles (MAVs)

using local-level frame mapping and planning in spherical coor-

dinates. To explicitly address the obstacle initialization problem,

the maps are parameterized using the inverse time-to-collision

(TTC). Using bearing-only measurements, an extended Kalman

Filter (EKF) is employed to estimate the inverse TTC, azimuth,

and elevation to obstacles. Nonlinear observability analysis is used

to derive conditions for the observability of the system. Based

on these conditions, we design a path planning algorithm which

simultaneously minimizes the uncertainties in state estimation

while avoiding collisions with obstacles. The behavior of the

planning algorithm is analyzed and the characteristics of the

environment in which the planning algorithm is guaranteed to

generate collision-free paths for MAVs are described. Numerical

results show that the proposed method is successful in solving

the path planning problem for MAVs.

I. INTRODUCTION

In recent years, there has been significant research on the

development of Miniature Air Vehicles (MAVs) with important

military and civilian applications. In situations where a given

task might be either too dangerous or difficult, it may be

desirable to replace human-operated vehicles with MAVs [1].
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For many applications, MAVs are required to navigate in urban

environments where obstacles of various types and sizes may

hinder the success of the mission. MAVs must have the ability

to autonomously avoid collisions with buildings, trees, or other

obstacles. Accordingly, path planning is a desirable feature for

MAVs and has received significant attention [1]–[5].

The general framework for the path planning problem can

be described as follows: given a description of the envi-

ronment, find a feasible path between two configurations in

the environment that does not result in a collision with any

obstacles. The path planning problem can be grouped into

global path planning and local path planning. Global path

planning requires complete knowledge of the environment and

a static terrain. In that setting a feasible path from the start to

the destination configuration is generated before the vehicle

begins its motion [6]. The global path planning problem

has been addressed by many researchers and common solu-

tion techniques include potential fields methods, probabilistic

roadmap methods and cell decomposition methods [7].

On the other hand, local path planning is executed in

real-time during flight. The basic idea is to first sense the

obstacles in the environment and then determine a collision-

free path [2]. Local path planning algorithms require sensors

to detect obstacles. Among the suite of possible sensors, a

video camera is cheap and lightweight and fits the physical
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requirements of MAVs [2]. Since the camera measurements are

obtained in the body frame, it is most natural to create maps

and to plan paths directly in the local-level frame of the MAV.

References [8]–[11] develop vision-based local-level frame

mapping and path planning algorithms. The key idea is to

create polar and cylindrical maps and to plan paths using time-

to-collision (TTC) and bearing measurements obtained by a

camera, without transforming to the inertial frame. However,

because of projective geometry, a monocular camera really

only measures the bearing to the object. TTC can be estimated

by considering the change in the size of the object in the

image plane, but this estimate relies on accurately segmenting

the image, which can be a noisy process. Therefore, it is

a reasonable engineering choice to consider a monocular

camera as a bearing-only measurement device and use it to

estimate both TTC and bearing. Our previous work in [12]

develops an observability-based planning technique for MAVs,

where the TTC and bearing are estimated using bearing-only

measurements, and a two dimensional planning algorithm is

developed to minimize the uncertainties in the state estimates

while simultaneously avoiding collisions. However, in [12],

the obstacle initialization problem was not addressed and the

behavior of the planning algorithm was not carefully analyzed.

Feature initialization is a critical issue for a bearing-only

camera. Since the camera only provides the bearing to a

feature, the TTC estimate for the feature is uncertain when it

is initially observed or when the feature exhibits low parallax

during motion of the platform. The uncertainties are not well

represented by a Gaussian distribution in the context of an

extended Kalman Filter (EKF) [13]. There have been methods

presented for addressing the feature initialization problem in

the Simultaneous Localization and Mapping (SLAM) commu-

nity. The methods are classified into delayed and undelayed

initialization.

Delayed initialization methods consider the new observed

features separately from the map and accumulate depth infor-

mation over several video frames to reduce depth uncertainty

before adding the new features to the map [14]–[16]. However,

the drawback of using these methods for collision avoidance is

that the new observed obstacles do not contribute to the path

generation until they are added to the map. Reference [13]

develops an undelayed feature initialization method that can

handle the initialization of features at all depths within the

standard EKF framework using direct parametrization of in-

verse depth relative to the camera position from which a

feature was first observed. The inverse depth parametrization

represents a feature by a six-state vector, which is computa-

tionally expensive. Once the depth estimate is accurate enough,

the inverse depth parametrization is converted to Euclidean

XYZ form to speed up the computation.

This paper explores a vision-based local-level frame map-

ping and planning technique for MAVs. Using bearing-only

measurements obtained by a monocular camera, we employ

an EKF to estimate the inverse TTC, azimuth, and elevation

angles to near-by obstacles, and then construct a map in local-

level spherical coordinates. The spherical map is parameter-

ized using the inverse TTC, azimuth and elevation, which

allows the obstacle initialization problem to be addressed

explicitly. In addition, compared to using a switching strategy

between the inverse depth parametrization and Euclidean XYZ

representation, parameterizing the map only using the inverse

TTC, azimuth, and elevation enhances the computational ef-

ficiency. We perform the observability analysis of the state

estimation process from bearing-only measurements and find

the conditions for the observability of the system. Based

on the derived conditions, we design the planning algorithm

that minimizes the uncertainties of the state estimates while

simultaneously avoiding collisions with obstacles. We analyze

the behavior of the planning algorithm and describe the

characteristics of the environment in which the algorithm is
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guaranteed to generate collision-free paths for the MAV.

The paper is organized as follows. Section II describes our

approach to vision-based spherical mapping in the local-level

frame using the inverse TTC, azimuth, and elevation. Nonlin-

ear observability analysis of the system is also presented. In

Section III, a planning algorithm is presented based on the

observability conditions. Section IV analyzes the behavior of

the planning algorithm. Section V presents numerical results

that demonstrate the effectiveness of the algorithm.

II. VISION-BASED LOCAL-LEVEL FRAME MAPPING IN

SPHERICAL COORDINATES

In this section we will build a map using the inverse TTC

to obstacles in the local-level frame of the MAV. The map is

constructed in spherical coordinates by estimating the inverse

TTC, azimuth, and elevation to obstacles. We then perform a

nonlinear observability analysis of the state estimation problem

using bearing-only measurements, and find the conditions for

complete observability of the system.

A. Estimates of inverse TTC, azimuth, and elevation

We construct the obstacle map in the local-level frame,

where the local-level frame is the body frame with roll and

pitch angles removed. The origin of the local-level frame is

the MAV’s center of mass. The x-axis points out the nose of

the airframe when the airframe has a zero pitch angle, the y-

axis points out the right wing when the airframe has a zero

roll angle, and the z-axis points into the Earth. Throughout the

paper we will assume zero wind conditions. Let V represent

the ground speed of the MAV and let ψ and θ represent the

heading and pitch angles respectively. With the zero wind

assumption, the ground speed V is equal to the airspeed,

which can be measured by a differential pressure sensor. In

this paper, we assume that V is available to the estimation

and planning algorithms. Figure 1 shows the motion of the ith

obstacle relative to the MAV in the local-level frame, where

Oi represents the obstacle, and ri, η i and ξ i are the range,

azimuth, and elevation to the obstacle. The positive directions

of azimuth η i and elevation ξ i are defined as the right-handed

rotation about the z-axis and y-axis of the local-level frame

respectively. Based on Fig. 1, the equations of motion of the

Fig. 1. This figure shows the motion of the ith obstacle relative to the
MAV. The current MAV configuration is qt . The obstacle is represented by
Oi. The pitch angle is represented by θ . The range, azimuth and elevation to
the obstacle are represented by ri, η i and ξ i. The ground speed is represented
by V .

obstacle relative to the MAV in terms of the range, azimuth,

and elevation are given by

ṙi = −V cosθ cosη i cosξ i −V sinθ sinξ i, (1)

η̇ i =
V cosθ sinη i

ri cosξ i − ψ̇, (2)

ξ̇ i =
V cosθ cosη i sinξ i −V sinθ cosξ i

ri , (3)

where we assume coordinated turn conditions ψ̇ = g
V tanϕ ,

and where g is the acceleration due to gravity and ϕ is the

roll angle of the MAV. Let τ i =V/ri represent the inverse TTC

to the obstacle. Substituting τ i into Eqs. (1) - (3) and adding

process noise gives the equation of motion of the ith obstacle

relative to the MAV in the local-level frame in terms of the

inverse TTC, azimuth, and elevation as

ẋi = f(xi,u)+wi

=


(τ i)2 cosθ cosη i cosξ i +(τ i)2 sinθ sinξ i

τ i cosθ sinη i

cosξ i − ψ̇

τ i cosθ cosη i sinξ i − τ i sinθ cosξ i

+wi,(4)
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where xi = [τ i,η i,ξ i]⊤ is the state, u= [ϕ ,θ ]⊤ is the controlled

input, and the process noise wi is a Gaussian random vector

with zero mean and covariance matrix Qi.

Since the camera directly measures the azimuth and eleva-

tion angles, the measurement at time step k is given by

zi
k = h(xi

k)+vi
k =

 η i
k

ξ i
k

+vi
k, (5)

where the measurement noise vi
k is a Gaussian random vector

with zero mean and covariance matrix Ri
k. Based on Eqs. (4)

and (5), the inverse TTC, azimuth, and elevation are estimated

using the standard continuous-discrete EKF algorithm [17].

When an obstacle is observed for the first time, we initialize

the azimuth and elevation using the measurement data. The

uncertainties of the initial inverse TTC to the obstacle can be

well approximated by a Gaussian distribution with the mean

τ0 and the standard deviation στ0 [13]. The values for τ0 and

στ0 are set empirically such that the region within 2στ0 away

from τ0 spans a range of the TTC from close to the camera

up to infinity. Let zi
k represent the measurement for the new

observed obstacle and let Ri
k represent the covariance matrix of

measurement noise for that obstacle. The state for the obstacle

is initialized as [τ0,zi
k
⊤
]⊤ and the error covariance matrix is

initialized as

 σ2
τ0

0

0 Ri
k

.

B. Local-level frame mapping in spherical coordinates

We build a map directly in the local-level frame instead

of the inertial frame. Accordingly, we save the computational

expense, and remove the errors associated with transforming

the camera data from the local-level frame to the inertial frame,

at the expense of updating the map using body motion. Since

we do not assume that GPS is available, we must compute

the map in the local-level frame because we do not have

knowledge of the inertial location. We construct a map in

spherical coordinates, which is more compatible with bearing
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Fig. 2. This figure shows the local-level frame map in spherical coordinates.
The origin of the map is the current location of the MAV. The blue dots are
a numerical representation of the 95% uncertainty region in the inverse TTC
for each obstacle.

information obtained by the camera, allowing the data to be

processed more efficiently. The maps are constructed using

the inverse TTC, azimuth and elevation, as shown in Fig. 2.

The origin of the map is the current location of the MAV. The

blue dots are a numerical representation of the 95% uncertainty

region in the inverse TTC for each obstacle.

C. Observability analysis

We use the EKF to estimate the inverse TTC, azimuth, and

elevation to obstacles using bearing-only measurements. In

order to bound the error covariance computed by the EKF, the

system should be observable. We use the nonlinear observabil-

ity theory developed in [18], which states that the observability

is achieved when a system satisfies the nonlinear observability

rank condition. Accordingly, we analyze the observability of

the system for the ith obstacle given by Eqs. (4) and (5) by

computing the rank of the observability matrix. For an angle

α , define cα , cosα and sα , sinα . The observability matrix

is computed using Lie derivatives as described in [18]. The

0th order Lie derivative is

L0
f (h) =

 η i

ξ i

 . (6)
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The 1st order Lie derivative is given by

L1
f (h) =

∂L0
f (h)

∂xi f =

 τ i cθ sη i

cξ i
− ψ̇

τ icθ cη i sξ i − τ isθ cξ i

 . (7)

The 2nd order Lie derivative is given by

L2
f (h) =

∂L1
f (h)

∂xi f

=



2(τ i)2c2
θ sη i cη i

c2
ξ i

− ψ̇
τ icθ cη i

cξ i

2(τ i)2sθ cθ cη i s2
ξ i −2(τ i)2sθ cθ cη i c2

ξ i

+2(τ i)2c2
θ c2

η i cξ i sξ i −2(τ i)2s2
θ cξ i sξ i

−
(τ i)2c2

θ s2
η i sξ i

cξ i
− τ icθ sη i sξ i ψ̇


. (8)

The first five rows of the observability matrix is then computed

as

Oi =



0 1 0

0 0 1
cθ sη i

cξ i

τ icθ cη i

cξ i

τ icθ sη i sξ i

c2
ξ i

Oi
41 Oi

42 Oi
43

Oi
51 Oi

52 Oi
53


, (9)

where

Oi
41 = cθ cη i sξ i − sθ cξ i ,

Oi
51 =

4τ ic2
θ sη i cη i

c2
ξ i

−
ψ̇cθ cη i

cξ i
,

where it can be shown that subsequent Lie derivatives result in

additional rows that do not add to the rank of Oi, and where

the other coefficients Oi
42, etc, do not affect the rank of Oi.

Lemma 1 gives the conditions under which the system for the

ith obstacle is observable.

Lemma 1: The ith obstacle, whose motion is given by

Eqs. (4) and (5), is observable at time t if and only if at least

one of the following three conditions is satisfied (a) η i(t) ̸= 0,

(b) ξ i(t) ̸= θ(t), and (c) ϕ(t) ̸= 0, where η i(t) and ξ i(t) are

the azimuth and elevation angles to the obstacle, and ϕ(t) and

θ(t) are the roll and pitch angles of the MAV.

Proof: The observability matrix given by Eq. (9) loses

rank if and only if all elements in the first column are

zero. Accordingly, the ith obstacle, whose motion is given by

Eqs. (4) and (5), is unobservable if and only if all elements

in the first column are zero. Oi
31 is equal to zero at time t

if and only if η i(t) = 0. Oi
41 is equal to zero at time t if

and only if ξ i(t) = θ(t). Oi
51 is equal to zero at time t if

both η i(t) = 0 and ψ̇ = g
V tanϕ = 0, which implies ϕ(t) = 0.

Therefore, the system is unobservable at time t if and only if

all three conditions η i(t) = 0, ξ i(t) = θ(t), and ϕ(t) = 0 are

simultaneously satisfied.

The conditions in Lemma 1 state that the system is observ-

able when the MAV does not directly fly toward the obstacle.

When the MAV is not flying directly at the obstacle, parallax

can be used to estimate time-to-collision.

III. PATH PLANNING IN THE LOCAL-LEVEL FRAME

The convergence and boundedness of the EKF are achieved

when the system is fully observable [19]. Bounds on the

EKF error covariance Pi for the ith obstacle are related to

the observability of the system given by Lemma 2 as shown

in [19].

Lemma 2 ( [19]): Suppose that there exist positive real

scalars α1, α2, β1, β2 such that β1I ≤ Oi⊤Oi ≤ β2I and

α2I ≥ CiCi⊤ ≥ α1I then,(
1

β2 +
1

α1

)
I ≤ Pi

k ≤
(

α2 +
1
β1

)
I, (10)

where Ci is the controllability matrix and I is the identity

matrix.

The novel result in this paper is a the path planning

algorithm that minimizes the uncertainties of the inverse TTC,

azimuth, and elevation estimates while simultaneously causing

the MAV to avoid collisions. Based on Lemma 2, we see that

the minimum eigenvalue of the matrix Oi⊤Oi determines the

upper bound on the error covariance. To minimize the upper
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bound on the error covariance, the minimum eigenvalue should

be maximized, which is equivalent to minimizing the inverse

of the minimum eigenvalue. This implies that minimizing the

inverse of the minimum eigenvalue will minimize the uncer-

tainties of the inverse TTC, azimuth, and elevation estimates.

In addition, when the system is unobservable, which corre-

sponds to the case where the MAV directly flies toward the

obstacle as shown in Lemma 2, the rank of the observability

matrix is two and the inverse of the minimum eigenvalue

is infinite. When the system is observable, the rank of the

observability matrix is three and the inverse of the minimum

eigenvalue is finite. Minimizing the inverse of the minimum

eigenvalue ensures that the observability conditions given by

Lemma 1 are satisfied, causing the MAV to avoid flying toward

the obstacle. Accordingly, the minimization of the inverse of

the minimum eigenvalue will minimize the uncertainties of

the state estimation as well as steer the MAV away from

the obstacle. Therefore, the minimization of uncertainties and

obstacle avoidance are complementary.

Besides collision avoidance, the objective of the planning

algorithm is to move the MAV to a goal location, where the

MAV requires knowledge of its own inertial position and the

inertial position of the goal. Accordingly, for goal seeking, the

planning algorithm requires the use of GPS.

Let τg
t , ηg

t and ξ g
t represent the inverse TTC, azimuth,

and elevation to the goal configuration at time t, and let

xg
t = [τg

t ,η
g
t ,ξ

g
t ]

⊤. Let xi
t = [τ i

t ,η i
t ,ξ i

t ]
⊤ represent the state for

the ith obstacle in the MAV’s local-level frame map, and let

νt = [xg
t
⊤
,x1

t
⊤
, · · · ,xn

t
⊤]⊤. Let It represent the index set of all

n obstacles at time step t and let τ l represent the minimum

inverse TTC to obstacles that the local planning algorithm

reacts to. Let Bt = {i ∈It : τ i
t ≥ τ l ,η i

t ≤ π
2 ,ξ

i
t ≤ π

2 } represent

the index set of obstacles with the inverse TTC no less than τ l

and with the azimuth and elevation no greater than π
2 . Define

the utility function S : R3n+3 → R as

S(νt) =
a1

(τg
t )

2 +a2(ηg
t )

2 +a3(ξ g
t )

2

+
n

∑
i=1

biIBt (i)

λmin(Oi⊤Oi)
, (11)

where a1, a2, a3, bi, i = 1, · · · ,n are positive weights,

λmin(Oi⊤Oi) is the minimum eigenvalue of the matrix Oi⊤Oi,

and IBt (i) is the indicator function that is equal to one when

i ∈ Bt and zero otherwise. Minimizing the first three terms

of Eq. (11) drives the MAV to the goal. The fourth term

penalizes the weighted sum of the inverse of the minimum

eigenvalue for all obstacles. By minimizing the fourth term,

the algorithm achieves two objectives simultaneously. First, it

minimizes the uncertainties in the inverse TTC, azimuth, and

elevation estimates. Second, the MAV is steered around the

obstacles. We use a look-ahead policy over the horizon T to

design the path planner. The cost function to be minimized is

given by

J =
∫ t+T

t
S(νρ)dρ, (12)

subject to the constraints

ẋg
ρ = f(xg

ρ ,uρ),

ẋi
ρ = f(xi

ρ ,uρ), i = 1, · · · ,n,

|ϕρ | ≤ ϕmax, (13)

|θρ | ≤ θmax.

To solve the constrained optimization problem, we discretize

the time horizon T as an m-step look-ahead horizon {t, t +

∆t, · · · , t+m∆t}, where ∆t =T/m. Equation (12) then becomes

J =
m

∑
j=1

S(νt+ j∆t). (14)

While a variety of techniques could be used to solve this look

ahead problem, in this paper we solve for the optimal path

over the m-step look-ahead horizon by using the nonlinear
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optimization function fmincon in MATLAB [20]. After solv-

ing for the optimal path, the first step of the path is followed

before resolving the optimization algorithm at the resulting

configuration.

IV. ANALYSIS

In this section, we analyze the behavior of the planning

algorithm and describe the characteristics of the environments

in which the algorithm is guaranteed to generate collision-free

paths for the MAV. We focus our analysis on the environments

with spherical obstacles and assume that the locations of

the obstacles are perfectly known, i.e. without estimation

uncertainties.

To avoid spherical obstacles, we must satisfy

V
τ i

ρ
≥ Ri

s, i = 1, · · · ,n, ∀ρ ∈ [t, t +T ], (15)

where Ri
s is the radius of the ith obstacle. To guarantee collision

avoidance, it is necessary to establish a minimum turn away

distance di
min from each obstacle. The minimum turn away

distance is evaluated at the horizontal plane of the MAV’s

center of mass. Let ϕmax represent the maximum roll angle

of the MAV and let θmax represent the maximum pitch angle.

The minimum turning radius of the MAV is then given by [21]

rmt =
V 2 cosθmax

g tanϕmax
. (16)

Lemma 3 establishes the minimum turn away distance for the

MAV to avoid a spherical obstacle Oi with radius Rs using the

planning algorithm.

Lemma 3: Using the planning algorithm which minimizes

the cost function (12) subject to the constraints (13) and (15),

avoidance of a collision with a spherical obstacle Oi with the

radius Rs is guaranteed if the distance of the MAV to the

obstacle satisfies d >
√
(Rs + rmt)2 − r2

mt −Rs.

Proof: Consider the worst case scenario where a MAV

is flying perpendicular to a spherical obstacle Oi and the

MAV’s center of mass and the center of the obstacle are

in the same horizontal plane. Figure 3 shows the geometry

of the worst case scenario projected onto the x-y plane of

the inertial frame. The minimum turn away distance from

the obstacle di
min can be determined when the maximum roll

angle and the maximum flight path angle are applied and the

generated circular trajectory with the minimum turning radius

rmt is tangent to the boundary of the spherical obstacle. The

horizontal plane passing through the tangent point intersects

the surface of the obstacle, generating a circle with the

radius R′
s. Based on the geometry, the planning algorithm

is guaranteed to avoid the obstacle if the distance from the

MAV to the obstacle is greater than
√
(R′

s + rmt)2 − r2
mt −Rs.

Since R′
s < Rs, we choose di

min =
√
(Rs + rmt)2 − r2

mt −Rs >√
(R′

s + rmt)2 − r2
mt −Rs as the minimum turn away distance

from the obstacle. Accordingly, if the distance to the obstacle

is greater than di
min, the optimization problem is feasible and

the algorithm will generate a path that avoids the obstacle.

Fig. 3. This figure shows the worst case scenario where the MAV is flying
perpendicular to a spherical obstacle Oi. The MAV’s center of mass and the
center of the obstacle are in the same horizontal plane.

For the environments with multiple spherical obstacles,

we specify the conditions under which the planning algo-

rithm is guaranteed to generate collision-free paths for the

MAV. Let C represent the configuration space. For two

configurations q1 = [q1n,q1e,q1d ,q1ψ ,q1θ ]
⊤ ∈ C and q2 =

[q2n,q2e,q2d ,q2ψ ,q2θ ]
⊤ ∈ C , where qin, qie, and qid , i = 1,2,
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represent North, East and Down coordinates, and qiψ and qiθ ,

i = 1,2, represent the heading and pitch angles, define the two

dimensional distance between q1 and q2 projected on x-y plane

of the inertial frame

∥q1 −q2∥2D ,
√
(q1n −q2n)2 +(q1e −q2e)2. (17)

For a configuration q and the ith obstacle Oi, we define the

two dimensional distance between q and the boundary of Oi

as di
q = min

q′∈∂Oi
∥q′ − q∥2D. Let di j = min

pi∈∂Oi,p j∈∂O j
∥pi − p j∥2D

represent the shortest two dimensional distance between the

points along the boundaries of the ith obstacle Oi and the jth

obstacle O j. Let q0 represent the initial MAV configuration and

let qOi = [qOin,qOie,qOid ,qOiψ ,qOiθ ]
⊤ represent the configura-

tion of the ith obstacle’s center. Let I represent the index

set of obstacles and let D , {(i, j) ∈ I ×I : |qOid −qO jd | ≤

(Ri
s + R j

s)} represent the set of obstacle pairs in which the

altitude difference between each two obstacles is no greater

than the sum of their radii. We introduce the notion of local

sparseness as Definition 1.

Definition 1: An environment is said to be locally sparse if

di j > max{di
min,d

j
min}, ∀(i, j) ∈ D

The local sparseness property of an environment means

that each two obstacles in the environment with the altitude

difference between them less than the sum of their radii are

separated by a distance that is is greater than the maximum

of their minimum turn away distances. Theorem 1 describes

the collision avoidance behavior of the planning algorithm.

Theorem 1: If the environment is locally sparse and the

initial MAV configuration satisfies di
q0

> di
min, ∀i ∈ I , then

the planning algorithm, which minimizes the cost function (12)

subject to the constraints given by (13) and (15), is guaranteed

to generate trajectories that will avoid the obstacles for all time

t.

Proof: For the obstacle pairs that are not contained in

D , there exists an altitude gap between each two obstacles.

It is obvious that if the planning algorithm can maneuver

the MAV to avoid one of the two obstacles then it can

maneuver the MAV to avoid the other. We therefore focus on

collision avoidance for the obstacle pairs that are contained

in D . Consider that the MAV is initially located at q0 with

di
q0

> di
min, ∀i ∈ I , and that it will collide with an obstacle

Oi if it flies along its initial heading, as shown in Fig. 4.

Since di
q0
> di

min and the environment is locally sparse, which

implies di j > max{di
min,d

j
min}, in the worst case scenario the

planning algorithm leads to a collision-free path from q0 to qA

on the boundary of Oi with direction tangent to the boundary,

where d j
qA > d j

min. This means that the MAV certainly has

the capability to avoid the obstacle O j when it reaches qA.

In addition, since d jk > max{d j
min,d

k
min}, in the worst case

scenario the planning algorithm leads to a collision-free path

from qA to qB on the boundary of O j with direction tangent to

the boundary, where dk
qB

> dk
min. This process can be repeated

infinitely which implies that the MAV does not collide with

any obstacle for all time t.

Fig. 4. This figure shows the planning algorithm maneuvers the MAV to
avoid multiple obstacles.

In Theorem 1, we assumed that the environment is locally

sparse in order to provide a theoretical guarantee for collision

avoidance behavior of the planning algorithm. However, we

note that local sparseness is only a sufficient condition, and

that there may be many environments that do not satisfy this
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condition, but where the MAV may still maneuver without

collisions.

V. NUMERICAL RESULTS

The feasibility of the observability-based planning algorithm

was tested using a simulation environment developed in MAT-

LAB/SIMULINK, as shown in the subfigures on the right in

Fig. 5. The simulator uses a six degree of freedom model

of the aircraft, where a North-East-Down (NED) coordinate

system is used. The covariance matrix of the process noise

for each obstacle was Qi =


0.00001 0 0

0 0.0001 0

0 0 0.0001


and the covariance matrix of the measurement noise was

Ri =

 0.0012 0

0 0.0012

. The values for the initial inverse

TTC and its standard deviation were set at τ0 = 0.06 and

στ0 = 0.03. The groundspeed was V = 13 m/s. The maximum

roll and pitch angles for the MAV were 30◦ and 15◦ respec-

tively. The weights were selected as ai = 1,∀i = 1, · · · ,3 and

bi = 10,∀i = 1, · · · ,n. A look-ahead policy over the horizon

of 6 seconds was used. We tested the algorithm for multiple

obstacle avoidance scenarios. We also conducted Monte Carlo

simulations to test the collision avoidance and goal reaching

performance of the algorithm with varying measurement un-

certainties in the environments with varying minimum two

dimensional distance between obstacles. The objective of the

Monte Carlo simulations are to illustrate that performance

degrades gracefully as we relax the zero noise assumption and

the assumption of local sparseness.

A. Multiple obstacle avoidance

In the multiple obstacle avoidance scenario, the MAV

was commanded to maneuver through twenty-five spherical

obstacles between waypoint S (0,100,-20) and waypoint E

(600,700,-100), as shown in the subfigures on the right in

Fig. 5.

Figure 5 shows the evolution of the maps using the inverse

TTC parametrization in the local-level frame and the update

of the actual paths followed by the MAV in the inertial frame.

Subfigures on the left show the local-level frame maps in

spherical coordinates. Subfigures on the right show the actual

paths. Based on the figures, when the obstacle is first observed,

the 95% uncertainty region of the inverse TTC includes τ = 0.

Accordingly, the uncertainties in the inverse TTC map to

the infinity depth. As time progresses, parallax reduces the

uncertainties which become progressively smaller, causing the

uncertainties in the depth to be reduced. Figure 6 shows the

tracking error and ±2σ bounds for the inverse TTC, azimuth,

and elevation to the obstacle with x and y coordinates at

(150,250).

B. Monte Carlo simulation

The local sparseness conditions of Theorem 1 are only

sufficient for collision avoidance of the local planning al-

gorithm. When the environment is not locally sparse, the

algorithm may still generate collision-free paths. Accordingly,

we conduct Monte Carlo simulations to demonstrate this is

true and to quantify the expected behavior of the algorithm. In

addition, in Section IV the analysis of the performance of the

planning algorithm does not consider estimation uncertainties

in the loop. We therefore conduct Monte Carlo simulations

to test the performance of the algorithm when the estimation

uncertainties are taken into account.

For each environment with a fixed minimum two dimen-

sional distance between obstacles, we executed 100 simulation

runs. In each simulation run, the MAV was maneuvered from

the initial position (120,120,-60) to the end position (580,580,-

60) through an environment with a fixed minimum two di-

mensional distance. The environment is constructed such that

each obstacle is added to the environment based on a uniform

distribution over the cubic area with the South-West-Down
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Fig. 5. This figure shows the evolution of the maps using the inverse TTC
parametrization in the local-level frame and the update of the actual paths
followed by the MAV in the inertial frame.
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(c) Elevation tracking error

Fig. 6. This figure shows the tracking error and ±2σ bounds for the inverse
TTC, azimuth, and elevation to the obstacle with x and y coordinates at
(150,250).

corner (100,100,-20) and the North-East-Up corner (600,600,-

100) until no more obstacle can be added. The radius of all

obstacles is 20 meters. We evaluate two criteria: the number of

collisions and the percentage of runs where the MAV reached

the goal. We say that the MAV reaches the goal if it is

maneuvered to the goal in t < 100 seconds without collisions.

Figure 7 plots the average number of collisions over 100

simulation runs and percentage of runs where the MAV

reached the goal versus the minimum two dimensional dis-

tance between obstacles for the case where the standard

deviation for both azimuth and elevation measurement noise

is two degrees and for the case where the obstacle locations

are perfectly known. The solid lines show the results for

the case with the standard deviation two degrees and the

dashed lines show the results for the case where the obstacle
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locations are perfectly known. When the standard deviation is

two degrees, the number of collisions decreases dramatically

as the minimum two dimensional distance between obstacles

increases from 5 to 20 meters. After the minimum distance

is greater than 20 meters, the number of collisions decreases

slowly. Similar phenomenon happens to the percentage of runs

where the MAV reached the goal. This is because that more

sparse environments cause less collisions. Given V = 13 m/s,

ϕmax = 30◦, θmax = 15◦, and Ri
s = 20 meters, the minimum

distance satisfying the local sparseness condition is 19.42

meters. Accordingly, when the minimum distance is greater

than or equal to 20 meters, the environments are locally

sparse and the local planning algorithm guarantees collision-

free paths if the obstacle locations are perfectly known, which

corresponds to the dashed line in Fig. 7 (a). Because of the

existence of estimation uncertainties, the MAV still encounters

a small number of collisions during its flight to the goal,

which corresponds to the solid line in Fig. 7 (a). In addition,

when the minimum distance between obstacles is 10 and 15

meters, the average number of collisions is less than one. This

shows the local planning algorithm generates collision-free

paths for environments that are not locally sparse, and the local

sparseness of the environment is only a sufficient condition for

collision avoidance behavior of the planning algorithm.

To take into account the effect of estimation uncertain-

ties, we also conduct Monte Carlo simulations to test the

performance of the algorithm with varying measurement un-

certainties. The minimum two dimensional distance between

obstacles is fixed at 20 meters. Similarly, we evaluate the

number of collisions and the percentage of runs where the

MAV reached the goal. Let σm represent the standard deviation

for both azimuth and elevation measurement noise. Figure 8

(a) plots the average number of collisions over 100 simulation

runs versus σm. Figure 8 (b) plots the percentage of runs where

MAV reached the goal versus σm. Based on the figure and
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Fig. 7. This figure shows the statistical performance of the observability-
based planning algorithm implemented in environments with varying min-
imum two dimensional distance between obstacles for the cases with and
without measurement uncertainties. Subfigure (a) plots the average number
of collisions over 100 simulation runs versus the minimum two dimensional
distance between obstacles. Subfigure (b) plots the percentage of runs where
the MAV reached the goal versus the minimum two dimensional distance
between obstacles.

as expected, as the standard deviation of the measurement

noise increases, the number of collisions increases and the

percentage of runs where the MAV reached the goal decreases.
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Fig. 8. This figure shows the statistical performance of the planning
algorithm with varying measurement uncertainties. Subfigure (a) plots the
average number of collisions over 100 simulation runs versus σm. Subfigure
(b) plots the percentage of runs where MAV reached the goal versus σm.



12

VI. CONCLUSIONS

This paper presents a vision-based local-level frame map-

ping and planning technique for MAVs operating in unknown

environments. To explicitly address the obstacle initialization

problem, we construct local-level frame maps in spherical

coordinates using the inverse TTC, azimuth, and elevation to

obstacles. Using bearing-only measurements, we employ an

EKF to estimate the inverse TTC, azimuth, and elevation, and

perform an observability analysis of state estimation to find

the conditions under which the system is observable. Based on

the observability conditions, we design a planning algorithm

that minimizes the uncertainties in the state estimation process

while simultaneously avoiding collisions with obstacles. We

describe the characteristics of the environments in which the

planning algorithm is guaranteed to generate collision-free

paths for MAVs.

We note that the planning algorithm developed in Section III

does not assume that the obstacles are spherical. In order

to analyze the algorithm and to make concrete statements

about its performance, we made three, admittedly unrealistic,

assumptions in Section IV, namely that the obstacles are

spherical, that the estimation algorithm returns perfect noise

free estimates of the position of the obstacles, and that

the environment is locally sparse. We have shown through

Monte Carlo simulations that the performance of the algorithm

degrades gracefully when the second two assumptions are

relaxed. Since the algorithm itself does not use the spherical

assumption, the first assumption is similarly benign.
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