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Abstract

This paper presents a vision-based navigation frame mapping and path planning

technique for collision avoidance for Miniature Air Vehicles. A depth map that

represents the range and bearing to obstacles is obtained bycomputer vision.

Based on the depth map, an extended Kalman Filter is used to estimate the range

and bearing. Using this information, a map, constructed in polar coordinates, is

created in the navigation frame of the MAV. The Rapidly-Exploring Random Tree

algorithm is employed to find a collision-free path in the navigation frame. The

proposed algorithm was successfully implemented in both simulation and flight

tests.
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1. Introduction

Miniature Air Vehicles (MAVs) have the potential to performtasks that are

too difficult or dangerous for human pilots. For example, they can monitor criti-

cal infrastructure and real-time disasters, perform search and rescue, and perform

in-storm weather measurements [1]. For many of these applications, MAVs are

required to navigate in urban or unknown terrains where obstacles of various types

and sizes may hinder the success of the mission. MAVs must have the capability

to autonomously plan paths that do not collide with buildings, trees, or other ob-

stacles. Therefore, the path planning problem for MAVs has received significant

attention [1][2][3] [4][5].

The general framework for the path planning problem can be described as fol-

lows: given a description of the environment, find a feasible path between two

configurations in the environment that does not result in a collision with any ob-

stacles. Three common solutions to the path planning and obstacle avoidance

problems are probability roadmap, potential fields, and cell decomposition [6].

The probability roadmap planner produces fast paths to the goal with computa-

tion measured in seconds [7][8] [9][10]. It consists of two phases: preprocessing

and query processing. The preprocessing phase constructs aroadmap by taking

random samples from a configuration space and connecting these configurations

to other nearby configurations. The query phase connects thestart and goal con-

figurations to the roadmap. While the original probability roadmap planners were

designed for holonomic vehicles, Reference [11] extends theprobability roadmap

to nonholonomic vehicles. The potential field planner was originally described in
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[6][12][13] and its basic idea is to construct an attractiveforce at the goal and a

repulsive force on the obstacles, which are functions of thecurrent state. Potential

fields cannot guarantee collision-free paths since they often produce local minima.

Cell decomposition methods partition a configuration space into cells, which are

connected to generate a graph. Search algorithms like A* or Dijkstra’s algorithm

are applied to the graph for finding a path from the initial to goal configurations

[14][15].

All path planning methods require some computation time to generate a new

trajectory after detecting obstacles on the current trajectory, adding time con-

straints to the path planning problem. It is possible that the MAV will be required

to avoid new obstacles while the path planning algorithm is in the middle of execu-

tion. This observation motivates the use of a multi-level path planning algorithm.

Reference [16] presents a hierarchical path planning schemeusing wavelets for

agents operating in partially known environments so that the computational cost

can be managed. Wavelets are used to obtain an approximationof the environment

at different level of fidelity, causing a cell decompositionof the environment with

variable resolution. Based on the cell decomposition, Dijkstra’s algorithm is used

to plan paths at each time globally. Reference [17] designs a local replanning al-

gorithm that extends the results of Ref. [16] using the localization property of the

wavelet transform so that the path is planned globally once and is replanned lo-

cally at each time step. Reference [18] improves the performance of the local path

planning strategy in Ref. [17] using the sensor data directlyto construct a sector-

like multi-resolution decomposition of the agent’s immediate environment. The
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cell decomposition is constructed in polar coordinates compatible to the on-board

sensor data and a path is planned locally based on the cell decomposition.

The contribution of this paper is that we design a vision-based local path plan-

ner within a multi-tiered path planning system. The path planning system consists

of three tiers: global, local and reactive path planners. The global path planner

generates an inertial path from the current configuration tothe goal. The local path

planner (the focus of this paper) modifies portions of the global path to maneuver

around obstacles that were not in the original global map, but that have been de-

tected by the vision sensor. The reactive planner responds to pop-up threats where

collisions are imminent. Each tier acts at a different time scale and has a de-

creasing computation time. The global path planner reacts to obstacles where the

predicted time-to-collision is greater thanTttc1 seconds and requires the longest

computation time. The local path planner reacts to obstacles where the predicted

time-to-collision isTttc2-Tttc1 seconds and requires less computation time. The

reactive path planner reacts to obstacles where the predicted time-to-collision is

0-Tttc2 seconds and requires very little computational resources.

This paper explores a vision-based navigation frame mapping and path plan-

ning technique for designing the local path planner. This technique is motivated

by the observations that only local information is important for the local path

planning problem and it is much easier to create maps and planpaths directly in

the navigation frame of the MAV using the camera data withouttransforming to

the inertial frame. A single strap-down camera is employed to measure the range

and bearing to obstacles since it is cheap and lightweight. Using computer vision
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based time-to-collision estimation, we obtain a depth map at each time step. Based

on the depth map, we use the extended Kalman Filter (EKF) to estimate range and

bearing and the nearest neighbor (NN) approach to address the data association

problem in the navigation frame. We create a map in the navigation frame us-

ing polar coordinates. We then apply the Rapidly-Exploring Random Tree (RRT)

algorithm to plan collision-free paths in the navigation frame.

The proposed algorithm can solve the path planning and multiple obstacles

avoidance problems for a MAV operating in an unknown environment and has the

following unique features:

• The world map is constructed using polar coordinates in the navigation

frame of the MAV without transforming the camera data to the inertial

frame.

• The EKF is used to estimate the range and bearing to obstaclesin the nav-

igation frame and to address measurement uncertainties produced by the

camera.

• The nearest neighbor approach is used for addressing the data association

problem in the navigation frame.

• The RRT algorithm is applied to the navigation frame map for planning

collision-free paths.

The proposed path planning algorithm is separated into three categories: com-

puter vision, mapping and guidance. Figure 1 shows the information flow of the
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the path planning algorithm. The video stream sent by the camera is processed by

time-to-collision estimation to generate range and bearing measurements to ob-

stacles. Using these measurements and IMU measurements from the MAV, the

localizer employs the EKF to estimate the range and bearing.Based on the lo-

cations of the obstacles, the map builder creates a map in thenavigation frame

using polar coordinates. The path planner then applies the RRT algorithm to plan

a collision-free path. The path is smoothed by the path smoother and sent to the

autopilot.

Figure 1: The information flow of the proposed path planning algorithm. The video stream is
processed by time-to-collision estimation to generate a depth map that provides noisy range and
bearing measurements to obstacles. The localizer filters the measurements to estimate the range
and bearing to obstacles. The map builder creates a map basedon the locations of the obstacles
in the navigation frame. A collision-free path is planned bythe path planner and smoothed by the
path smoother. The autopilot maneuvers the MAV to follow thesmoothed path.

This paper is organized as follows. Time-to-collision estimation used to obtain

the depth map is described in Section 2. Section 3 describes the vision-based

mapping in the navigation frame using polar coordinates. InSection 4, the RRT

algorithm is applied to the map for finding a collision-free path. Sections 5 and 6
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present simulation and flight test results for the proposed algorithm.

2. Time-to-collision estimation

Time-to-collision estimationis an approach to visual collision detection where

an image sequence from a forward looking camera is processedto measure the

seconds to collision for surfaces in the scene. In this section, we review the dom-

inant approaches in the literature for monocular visual collision detection and es-

timation. These methods can be summarized in four categories: structure from

motion, ground plane methods, flow divergence and insect inspired methods.

Structure from motion (SFM) is the problem of recovering themotion of the

camera and the structure of the scene from images generated by a moving cam-

era. SFM techniques [19] provide a sparse or dense 3D reconstruction of the

scene up to an unknown scale and rigid transformation, whichcan be used for

obstacle detection when combined with an independent scaleestimate for met-

ric reconstruction, such as from inertial navigation to provide camera motion or

from a known scene scale. Modern structure from motion techniques generate

impressive results for both online sequential and offline batch large scale outdoor

reconstruction. Recent applications include online sparsereconstruction during

MAV flight for downward looking cameras [20], and visual landing of helicopters

[21][22]. However, SFM techniques consider motion along the camera’s optical

axis, as found in a collision scenario, to be degenerate due to the small baseline,

which results in significant triangulation uncertainty near the focus of expansion

which must be modelled appropriately for usable measurements.
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Ground plane methods [23][24], also known as horopter stereo, stereo homog-

raphy, ground plane stereo or inverse perspective mapping use an homography

induced by a known ground plane, such that any deviation fromthe ground plane

assumption in an image sequence is detected as an obstacle. Aknown ground

plane forms a constant disparity surface orhoropter in an image sequence after

compensating for perspective effects. Using an estimate ofthe camera motion

from odometry, sparse feature tracking or dense optical flow, a homography can

be computed resulting in a registration of the ground plane in an image sequence.

The registered images from the homography induced by the ground plane are

then differenced, and any non-zero residual is defined to be an obstacle not on the

ground plane. This approach has been widely used in environments that exhibit a

dominant ground plane, such as in the highway or indoor ground vehicle commu-

nity, however the ground plane assumption is not relevant for aerial vehicles.

Flow divergence methods rely on the observation that objects on a collision

course with a monocular image sensor exhibit expansion orlooming, such that

an obstacle projection grows larger on the sensor as the collision distance closes

[25][26]. This expansion is reflected in differential properties of the optical flow

field, and is centered at the focus of expansion (FOE). The FOEis a stationary

point in the image such that expansion rate from the FOE orpositive divergenceis

proportional to the time-to-collision. Flow divergence estimation can be noisy due

to local flow correspondence errors and the amplifying effect of differentiation, so

techniques rely on various assumptions to improve estimation accuracy. These

include assuming a linear flow field due to narrow field of view during terminal
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approach [25][27][26][28], assuming known camera motion and positioning the

FOE at the image center [29][30][31][32], or known obstacleboundaries for mea-

surement integration [28][29][33]. These strong assumptions limit the operational

envelope, which have lead some researchers to consider the qualitative properties

of the motion field rather than metric properties from full 3Dreconstruction as

sufficient for collision detection [34][26]. However, thisdoes not provide a mea-

surement of time-to-collision and does not localize collision obstacles in the field

of view.

Insect vision research on the locust, fly, and honeybee show that these insects

use differential patterns in the optical flow field to navigate in the world. Specifi-

cally, research has shown that locusts use expansion of the flow field or “looming

cue” to detect collisions and trigger a jumping response [35]. This research has

focused on biophysical models of the Lobula Giant Movement Detector (LGMD),

a wide-field visual neuron that responds preferentially to the looming visual stim-

uli that is present in impending collisions. Models of the LGMD neuron have

been proposed [36] which rely on a “critical race” in an arrayof photoreceptors

between excitation due to changing illumination on photoreceptors, lateral inhibi-

tion and feedforward inhibition, to generate a response increasing with photore-

ceptor edge velocity. Analysis of the mathematical model underlying this neural

network shows that the computation being performed is visual field integration of

divergence for collision detection, which is tightly coupled with motor neurons to

trigger a flight response. This shows that insects perform collision detection, not

reconstruction. This model has been implemented on ground robots for experi-
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mental validation [37][38][39], however the biophysical LGMD neural network

model has been criticized for lack of experimental validation [40], and robotic

experiments have shown results that do not currently live upto the robustness of

insect vision, requiring significant parameter optimization and additional flow ag-

gregation schemes for false alarm reduction [41][42]. Whileinsect inspired vision

is promising [43], experimental validation in ground robotics has shown that there

are missing pieces. Specifically, Graham argues “[this model] ignores integration

over the the visual field...how do inputs (to LGMD) become related to angular size

and velocity [40]?” Thisaggregationor grouping of flow consistent with collision

has shown to be a critical requirement to a successful model.

Figure 2: Time-to-collision estimation survey.

Figure 2 shows a summary of the different approaches to time-to-collision.

This review shows that time to collision estimation methodsfor small UAVs re-
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quire aggregation to determine obstacle boundaries and to handle false alarms

from correspondence errors, while modelling the uncertainty in time to collision

measurements from the degenerate motion along the optical axis.

One such approach to time-to-collision estimation which addresses these ob-

servations isexpansion segmentation[44]. Expansion segmentation provides (i)

a detection of significant “collision danger regions” of significant positive diver-

gence in inertial aided video, and (ii) an estimate of maximum likelihood time-to-

collision within the danger regions. Using the inertial velocity of the vehicle and

the camera frame rate, the time to collision estimate can be used to recover range.

Formally, expansion segmentation is the labeling of collision and non-collision

nodes in a conditional Markov random field. The minimum energy binary label-

ing is determined in an expectation-maximization framework to iteratively esti-

mate labeling using the mincut of an appropriately constructed affinity graph, and

the parameterization of the joint probability distribution for time to collision and

appearance. This joint probability provides a global modelof the collision re-

gion, which can be used to estimate maximum likelihood time-to-collision over

optical flow likelihoods, which is used to aid with local motion correspondence

ambiguity [44].

3. Vision-based mapping for MAVs in the navigation frame

A depth map can be obtained from time-to-collision estimation and inertial

measurements. In this section, we first use the depth map to obtain the range and

bearing measurements in the navigation frame. Based on thosemeasurements,
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we estimate the range and bearing using the EKF and address the data associa-

tion problem in the navigation frame using the nearest neighbor approach. We

then create a map in the navigation frame using polar coordinates because this

representation is ideally matched to camera information.

3.1. Range and bearing measurements

Time-to-collision estimation approach gives the range measurements to ob-

stacles by multiplying time-to-collision by the groundspeed of the MAV, which

is given byv = V + vw, whereV is the airspeed,v is the groundspeed, andvw is

the wind velocity relative to the inertial frame. Accordingly, a depth map, which

represents the range and bearing to obstacles in the navigation frame, can be ob-

tained. Figure 3 shows a 20× 20 (in units of pixels) depth map of a simulated

obstacle. In the depth map, the red pixels provide range measurements and their

corresponding positions provide bearing measurements. For instance, the pixel at

the jth row and theith column provides the bearing to the obstacle given by

η = tan−1

(

i− rx+1
2

f

)

, (1)

θ = tan−1





j − ry+1
2

√

f 2 +(i− rx+1
2 )2



 ,

whereη andθ are the azimuth and elevation of pixel(i, j), rx andry represent the

number of pixels along the horizontal and vertical directions in the image plane,

and f is the focal length in units of pixels. Note that Eq. (1) computesη andθ in

the body frame. In order to use them in this paper, they need tobe transformed to
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the navigation frame which is the body frame with MAV roll andpitch removed.
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Figure 3: A 20×20 (in units of pixels) depth map. The red pixels give the range to the obstacle
and their positions give the bearing to the obstacle in the body frame.

Since the measurement uncertainties produced by the cameraincrease as the

distance from the MAV increases, we use thesweet spotmeasurement model with

Gaussian distribution [45] to represent the time-to-collision uncertainties [44].

The observation made by the camera at time stepk is given by the linear mea-

surement model

zk = xk +vk, (2)

wherexk = [rk,ηk]
T is the state and the measurement noisevk is a Gaussian ran-

dom vector with zero mean. We assume that the covariance matrix Rk of vk has a

diagonal structure

Rk =







σ2
rk

0

0 σ2
ηk






. (3)
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The variance of the range measurementσ2
rk

is a function fr(rk) of the rangerk

from the obstacle to the camera. The variance of the bearing measurementσ2
ηk

is

also a functionfη(rk) of the range. Accordingly, we use thesweet spotmodel

σ2
rk

= fr(rk) = a1(rk−a2)
2 +a0, (4)

σ2
ηk

= fη(rk) = α fr(rk),

wherea0, a1, a2 andα are model parameters. In this paper, we leta2 = 0, which

implies that the noise is at its minimum value at the origin ofthe navigation frame.

3.2. Range and bearing estimation using the EKF

Based on the measurements, we employ the EKF to estimate the range and

bearing. Since the obstacle map is in the navigation frame ofthe MAV, which is

located at the origin, we need to derive the equations of motion of each obstacle

relative to the MAV. Figure 4 shows the motion of an obstacle relative to the MAV

in the navigation frame, wherer andη are the range and bearing to the obstacle

andB is the location of the obstacle in the navigation frame. Basedon Fig. 4,

Figure 4: The motion of an obstacle relative to the MAV. The range and bearing to the obstacle are
represented byr andη . The location of the obstacle is represented byB.

the equation of motion of the obstacle relative to the MAV in terms of range and
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bearing is given by

ṙ = −vcosη , (5)

η̇ =
v
r

sinη − ψ̇,

Let x = [r,η ]T be the state and letf(x) represent the right hand side of Eq. (5)

andh(xk) = xk. We rewrite Eq. (5) and Eq. (2) as the standard form of the state

transition and observation models for the EKF

ẋ = f(x)+w,

zk = h(xk)+vk, (6)

wherew is the process noise that is assumed to be a Gaussian zero meanwhite

noise with the covariance matrixQ andvk is the measurement noise that is as-

sumed to be a Gaussian zero mean white noise with the covariance matrixRk.

Based on Eq. (6), the range and bearing are estimated using thestandard continuous-

discrete time EKF algorithm [46]. When measurements for a specific obstacle are

not available, we only use the prediction model.

3.3. Data association

The camera observations must be associated with the existing obstacles in the

map during the flight in order for the EKF to converge. In addition, the MAV may

revisit obstacles that already exist in the map after an extended period of time.

The challenge is to associate the new camera measurements with those obstacles.
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These two problems motivate data association algorithms that relate sensor ob-

servations with the features included in the map. A data association algorithm is

composed of two elements: a test to determine the compatibility between a sensor

observation and a map feature, and a selection criterion to choose the best match

among the set of possible matches [47]. Since the nearest neighbor algorithm

has minimal computational complexity, we use it to solve thedata association

problem directly in the navigation frame, which saves the computational cost of

transforming the data to the inertial frame.

The nearest neighbor algorithm is a classical technique in tracking problems

[48]. The normalized squared innovation test is employed todetermine compat-

ibility, and the smallest Mahalanobis distance is used to select the best match-

ings. Suppose that a set ofn obstacles{O1, · · · ,On} exist in the map at time step

k. Let xki = [rki,ηki]
T and x̂ki = [r̂ki, η̂ki]

T , i = 1, · · · ,n represent the actual and

the estimated states of the obstacles respectively and letPki represent the covari-

ance of the estimation error for theith obstacle. Similarly, letz′k j = h(xk j) and

zk j = h(xk j)+ vk j, j = 1, · · · ,m represent the theoretical and actual observations

of a set ofmmeasurements{M1, · · · ,Mm} and letRk j be the covariance matrix of

vk j. LetOi j represent theith existing obstacle that corresponds to thejth measure-

ment. Thejth measurementM j and its corresponding obstacleOi j at time stepk

are then related by the implicit measurement function [47]

g(xki j ,z
′
k j) = z′k j −h(xki j ) = z′k j −xki j = 0. (7)
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Note that the second equality of Eq. (7) results from the factthat h(xki j ) = xki j .

Equation (7) states that the relative location between the theoretical observation

of the measurement and the corresponding obstacle must be zero.

The nearest neighbor algorithm simply pairs each measurement with the ob-

stacle considered most compatible according to Eq. (7). We rewrite the right hand

side of Eq. (7) as

g(xki j ,zk j) = zk j − x̂ki j +(z′k j − zk j)− (xki j − x̂ki j ) (8)

= λki j j +(z′k j − zk j)− (xki j − x̂ki j ),

whereλki j j
△
= g(x̂ki j ,zk j) = zk j − x̂ki j represents the innovation of the pairing be-

tween thejth measurementM j and its corresponding obstacleOi j at time stepk

and the covariance ofλki j j can be obtained as

Ski j j = cov(z′k j − zk j)+cov(xki j − x̂ki j ) (9)

= Rk j +Pki j .

The compatibility betweenM j andOi j is determined using the innovation test that

measures the Mahalanobis distance as

D2
ki j j

△
= λ T

ki j jS
−1
ki j jλki j j < χ2

β , (10)

whereχ2
β is the chi-square distribution withβ degrees of freedom andβ is the

desired confidence level. This test determines a subset of the existing obstacles
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that are compatible with the measurementM j . The nearest neighbor selection

criterion chooses the obstacle with the smallest Mahalanobis distance.

3.4. Mapping in the navigation frame using polar coordinates

For the local path planning problem, only the information about the local ar-

eas around the MAV is important. This observation motivatesthe use of on-board

camera data to build a map directly in the navigation frame instead of the in-

ertial frame. Accordingly, we save the computational resources of transforming

the camera data from the navigation frame to the inertial frame, at the expense

of updating the map from body motion. Since the information about the envi-

ronment is obtained by on-board cameras, Cartesian coordinates are not the most

efficient method of representing the information. We createthe map using polar

coordinates, which are more compatible with the range and bearing information

obtained by the camera and allow the data to be processed moreefficiently. Fig-

ure 5 shows the map in the navigation frame using polar coordinates. The origin

of the map is the current location of the MAV. The circles represent the obstacles

and the ellipses around them represent the range and bearinguncertainties. The

map only stores obstacles at the range from the MAV less thanv∗Tttc1, wherev

is the groundspeed. Obstacles at the range greater thanv∗Tttc1 will be removed

from the map and will be considered as new obstacles if they are observed again.

4. Path planning in the navigation frame

Given the map, a path can be planned for the MAV to maneuver to its goal lo-

cation while avoiding the obstacles. In this section, we usethe Rapidly-Exploring
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Figure 5: The map in the navigation frame of the MAV using polar coordinates. The origin of the
map is the current location of the MAV. The circles representthe obstacles and the ellipses around
them represent the range and bearing uncertainties.

Random Tree (RRT) algorithm to plan a collision-free path.

The RRT algorithm was initially developed in [49] and has beenwidely used in

robot path planning. The RRT algorithm can quickly search thespace of possible

solutions by extending a tree in random directions in the configuration space as

described in Algorithm 1. When the RRT algorithm is employed toplan a path

for the MAV, the nodes of the tree are potential MAV waypointsand the branches

are paths to the waypoints. The tree initially consists of the MAV’s location as a

single node. A random configuration is generated and the treeis extended toward

this configuration, creating a new branch and node as outlined in Algorithm 1.

When a path is found or a maximum number of iterations is reached, the RRT

algorithm terminates.

The path generated by the RRT algorithm may include numerous extraneous

configurations that may cause unnecessary maneuvering, andshould therefore be

smoothed. We design a fast and effective configuration elimination algorithm to
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Algorithm 1: Rapidly-Exploring Random Tree algorithm

Initialize a tree containing one node - the current configuration of the MAV;1

while A path has not been found and the maximum number of iterationsis2

not reacheddo
rand← A random MAV configuration;3

near← The configuration in the tree that is closest torand;4

if the tree can be connected fromnearto randwithout collisionthen5

Extend the tree fromnear to rand;6

end7

end8

smooth the path. This algorithm walks through the path from the beginning to

end nodes, eliminating unnecessary nodes along the way. It initially looks at the

first node and tries to find the last node in the path to which thefirst node can be

directly connected without collision. It is guaranteed to at least connect to one

node in the graph. If the only node that can be connected is thenext node in

the path, the algorithm moves forward one step and tries to connect the second

node to the last possible node. If the first node can be connected to any other

node, all intermediate nodes are eliminated and the algorithm moves forward to

the connecting node and repeats the process until a connection to the end node is

found. Using this algorithm, all intermediate nodes that can be skipped without

causing any collision are eliminated from the path.

The RRT algorithm requires computation time to generate paths. The MAV

may still collide with new obstacles while the RRT algorithm is in the middle of

execution. We use the following scheme to address this problem. Suppose that

the objective of the proposed algorithm is to find a collision-free path fromxinit to
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xgoal, wherexinit andxgoal represent the initial and goal configurations. Define the

functionWt = waypointRRT
(

xt ,xgoal,Mt
)

to represent the RRT algorithm, where

xt is the initial configuration for the RRT algorithm at time stept, Mt is the nav-

igation frame map, andWt =

[

Wt,1, Wt,2, · · · , Wt,nt

]

is the waypoint path

planned by the RRT algorithm, wherent is the number of the waypoints. Let

the length of each path segment for the RRT algorithm‖Wt,i+1−Wt,i‖2 = l ,(i =

1, · · · ,nt −1), wherel is chosen such that 2v∗T > l ≥ v∗T, wherev is the ground-

speed of the MAV andT is the computation time of the RRT algorithm. At time

stept = 0, choose a configurationx0 such that collisions do not exist fromxinit tox0

and‖xinit − x0‖2 = l . The functionwaypointRRT
(

x0,xgoal,M0
)

is then executed

based on the mapM0 and the MAV is maneuvered tox0 simultaneously. Since

l ≥ v∗T, the execution of the functionwaypointRRT
(

x0,xgoal,M0
)

will finish

and a waypoint pathW0 will be generated before the MAV reachesx0. When the

MAV reachesx0 at time stept = t1, let xt1 = W0,2. The MAV is maneuvered toxt1.

The functionwaypointRRT
(

xt1,xgoal,Mt1

)

is simultaneously executed to generate

a waypoint pathWt1 based on the mapMt1 if collisions exist. Otherwise, letWt1 =
[

W0,2, W0,3, · · · , W0,n0

]

. Repeat this process until the MAV reaches the

goal. Finally, a collision-free waypoint path

[

xinit , x0, xt1, xt2, · · · , xgoal

]

from xinit to xgoal is generated.

5. Simulation

The feasibility of the mapping and collision avoidance algorithms was tested

using a simulation environment developed in MATLAB/SIMULINK. This sim-
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ulator uses a six degree-of-freedom model for the aircraft,where a North-East-

Down (NED) coordinate system is used. The algorithm is tested on two scenarios

as described below.

5.1. Scenario I

In the first scenario, the MAV was commanded to maneuver through twenty-

five 20m×20m×100mobstacles between waypointS (0,100,-40) and waypointE

(600,700,-40). Figure 6 shows the terrain for the first scenario, where the square

sign represents waypointS and the plus sign represents waypointE. A 20×20

pixel depth map was used. The parameters for the sweet spot measurement model

were set ata0 = 0.1528,a1 = 0.004, a2 = 0 andα = 0.00002. The covariance

matrix of the process noise wasQ =







10 0

0 0.0076






and the groundspeed was

v = 10m/s.

Figure 6: The terrain for the first simulation scenario. The MAV is maneuvered through twenty-
five obstacles between waypointS (0,100,-40) and waypointE (600,700,-40), which are repre-
sented by the square and plus signs respectively.
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Figure 7 shows the update of the map and the evolution of the corresponding

path as obstacles are observed. Subfigures on the left show the navigation frame

maps and paths based on the available information about the obstacles at different

time. The ellipses represent the estimated locations and sizes of the obstacles.

The plus sign in subfigure (i) represents the waypointE in the navigation frame.

Subfigures on the right show the inertial paths. The final pathfollowed by the

MAV between the two waypoints is shown in Figure 8. Figure 9 shows the track-

ing error for the range and bearing to the obstacle at (150,250,-40) using the EKF,

where the solid lines represent the tracking error and the dashed lines represent

the positive and negative square roots of the error covariance.

5.2. Scenario II

In the second scenario, the MAV was commanded to maneuver through a sim-

ulated city called ”Megacity” for which ground truth range was available. This

path followed waypointS (-250,-400,-60) to waypointE (250,150,-60) as shown

in Figure 10. A 640×480 pixel depth map was used. The parameters for the sweet

spot measurement model were set ata0 = 0.1528,a1 = 0.001, a2 = 0 andα =

0.00002. The covariance matrix of the process noise wasQ =







10 0

0 0.0076







and the groundspeed wasv = 10m/s. Figure 11 shows the maps and the corre-

sponding collision-free paths as the MAV maneuvered through the megacity ter-

rain. Subfigures in the first and second columns show the camera views and the

depth maps at different time steps. Subfigures in the third column show the update

of the map and the evolution of the path in the navigation frame. Subfigures in the
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Figure 7: The update of the map and the evolution of the path inthe first simulation scenario.
Subfigures on the left show the navigation frame maps and paths based on the available information
about the obstacles at different time. The ellipses represent the estimated locations and sizes of
the obstacles and the plus sign in subfigure (i) represents the waypointE in the navigation frame.
Subfigures on the right show the inertial paths followed by the MAV.
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Figure 8: The final path followed by the MAV between the waypointsS andE.

fourth column show the inertial path followed by the MAV.

6. Flight tests

6.1. Experimental testbed

Figure 12 shows the main components of the experimental testbed. Figure 12(a)

shows the Kestrel autopilot designed by Brigham Young University (BYU) and

commercialized by Procerus Technologies [50]. It is equipped with 3400 29-

MHz microprocessor, rate gyroscopes, accelerometers, andabsolute and differen-

tial pressure sensors. The autopilot measures 2.0×1.37×0.47 inches and weighs

16.65 grams, making it ideal for miniature air vehicles. Figure 12(b) shows the

airframe used in the flight test. This airframe is a 48 inches wingspan XS EPP

foam flying wing selected for its durability, ease of component installation, and

flying characteristics. Embedded in the airframe are the Kestrel autopilot, bat-

25



0 1 2 3 4 5
−20

−15

−10

−5

0

5

10

15

20

Seconds

M
et

er
s

 

 
Tracking error
Square roots of error covariance

(a) The range tracking error

0 1 2 3 4 5
−10

−8

−6

−4

−2

0

2

4

6

8

10

Seconds

D
eg

re
es

 

 
Tracking error
Square roots of error covariance

(b) The bearing tracking error

Figure 9: The tracking error for the range and bearing to the obstacle at (150,250,-40) using the
EKF. The solid lines represent the tracking error and the dashed lines represent the positive and
negative square roots of the error covariance.
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(a) (b)

Figure 10: The megacity terrain for the second simulation scenario. The square and cross signs in
subfigure (a) represent waypointsS andE respectively. Subfigure (b) shows the megacity terrain.

teries, a 1000 mW 900 MHz radio modern, a GPS receiver, a videotransmitter,

and a small analog camera. Figure 12(c) shows the ground station components.

A laptop runs the Virtual Cockpit ground-control software and interfaces with the

MAV through a communication box. Video is transmitted to ground via a 2.4 GHz

analog transmitter and captured on the laptop using an Imperx VCE-PRO PCM-

CIA frame grabber, which provides 640× 480 images at 30 frames per second.

An RC transmitter is used as a stand-by fail-safe mechanism tofacilitate safe op-

eration. Figure 13 shows the flowchart describing the interaction of the hardware

and software components used in the flight test.

6.2. Flight test results

We conducted flight tests to verify the feasibility of the proposed vision based

collision avoidance algorithm, which was used to avoid two large red targets, as

shown in Figure 14. Information about the locations and dimensions of the targets

was not provided to the MAV, rather color segmentation was used as a tempo-
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(c) t=32s
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Figure 11: The update of the map and the evolution of the path in the second simulation scenario.
Subfigures in the first and second columns show the camera views and the depth maps at different
time steps. Subfigures in the third column show the update of the map and the evolution of the
path in the navigation frame. Subfigures in the fourth columnshow the inertial path followed by
the MAV.
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(a) (b) (c)

Figure 12: The hardware testbed. Subfigure (a) shows the Kestrel autopilot, subfigure (b) shows
the airframe, and subfigure (c) shows the ground-station components.

Figure 13: The flowchart describing the layout of the basic hardware and software components
used in the flight test.

rary surrogate for time-to-collision estimation to test the mapping and avoidance

algorithms. The groundspeed wasv = 11m/s. During the flight, the guidance

strategy generated roll commands on the ground station and transmitted them to

the autopilot. Telemetry information was recorded on the ground station.

Figure 15 shows the telemetry plot of the MAV avoiding the twotargets, where

the rectangles represent the targets, the dotted line represents the flight path and

the solid line represents the originally commanded but conflicted waypoint path.

As the MAV approached the targets, the proposed path planning algorithm gen-

erated a path around the targets and the MAV began to track thegenerated path.

As the MAV passed the targets, it once again began to track theoriginal waypoint
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Figure 14: The two large red targets used to verify the visionbased collision avoidance algorithm
described in this paper.

path. As shown in Figure 15, the MAV successfully avoided thetargets without

human intervention. Figure 16 shows the images of the targets as captured by

the MAV as it executes the avoidance maneuver. The range and azimuth tracking

errors using the EKF during the time that the targets are in the field of view of the

camera are shown in Figure 17. These tracking errors converge to small steady

errors as the MAV approaches the targets.

Figure 15: The telemetry plot of the MAV avoiding two targets. The rectangles represent the
targets. The dotted line represents the flight path and the solid line represents the commanded but
conflicted waypoint path.

30



(a) (b)

(c) (d)

Figure 16: The images of the targets from the MAV as it executes the avoidance maneuver.
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Figure 17: The range and azimuth tracking errors using the EKF during the time that the targets
are in the field of view of the camera.

7. Conclusions and future work

In this paper we present a vision-based navigation frame mapping and path

planning technique for MAVs operating in unknown environments. We create

a map in the navigation frame using polar coordinates without transforming the

camera data to the inertial frame. The EKF is used to estimatethe range and

bearing to obstacles and to address the measurement uncertainties. The data as-

sociation problem is solved in the navigation frame using the nearest neighbor

approach and the path is planned in the navigation frame using the RRT algo-

rithm. The simulation and flight test results show that the proposed technique is

successful in solving path planning and multiple obstaclesavoidance problems for

MAVs operating in unknown environments.

In this work, polar coordinates are used to create the map foraddressing the

two dimensional path planning problem. In the future, we will use spherical coor-

dinates to create maps that address the three dimensional path planning problem.

In addition, we will validate the expansion segmentation methods for vision based
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time-to-collision estimation with the mapping and planning algorithms.
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