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Abstract

This paper presents a vision-based navigation frame mggpid path planning
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and bearing. Using this information, a map, constructedoiarmpcoordinates, is
created in the navigation frame of the MAV. The Rapidly-Expig Random Tree
algorithm is employed to find a collision-free path in the igation frame. The
proposed algorithm was successfully implemented in bottukition and flight

tests.
Key words: Computer vision, Mapping and path planning, Miniature Air

Vehicle, Collision avoidance

*Corresponding author. Tel.:+18014223230
Email addresseshui | i yu. yhl @mai | . com(Huili Yu), bear d@yu. edu (Randy
Beard),j byr ne@sci . com(Jeffrey Byrne)

Preprint submitted to Elsevier February 20, 2010



1. Introduction

Miniature Air Vehicles (MAVs) have the potential to perfortasks that are
too difficult or dangerous for human pilots. For exampleytban monitor criti-
cal infrastructure and real-time disasters, perform $eand rescue, and perform
in-storm weather measurements [1]. For many of these aiits, MAVsS are
required to navigate in urban or unknown terrains whereambess of various types
and sizes may hinder the success of the mission. MAVs must th@vcapability
to autonomously plan paths that do not collide with buildingees, or other ob-
stacles. Therefore, the path planning problem for MAVs leagived significant
attention [1][2][3] [4][5]-

The general framework for the path planning problem can Berid®ed as fol-
lows: given a description of the environment, find a feasible patwben two
configurations in the environment that does not result in liston with any ob-
stacles Three common solutions to the path planning and obstad&ance
problems are probability roadmap, potential fields, andl @etomposition [6].
The probability roadmap planner produces fast paths to ¢lad \gith computa-
tion measured in seconds [7][8] [9][10]. It consists of twwapes: preprocessing
and guery processing. The preprocessing phase construndsliaap by taking
random samples from a configuration space and connectisg ttenfigurations
to other nearby configurations. The query phase connecttdhieand goal con-
figurations to the roadmap. While the original probabilitpdmap planners were
designed for holonomic vehicles, Reference [11] extendptbleability roadmap

to nonholonomic vehicles. The potential field planner wagioally described in
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[6][12][13] and its basic idea is to construct an attracfivece at the goal and a
repulsive force on the obstacles, which are functions o€threent state. Potential
fields cannot guarantee collision-free paths since thengitoduce local minima.
Cell decomposition methods partition a configuration spateadells, which are
connected to generate a graph. Search algorithms like A%jesta’s algorithm
are applied to the graph for finding a path from the initial talgconfigurations
[14][15].

All path planning methods require some computation timeeioegate a new
trajectory after detecting obstacles on the current ttargc adding time con-
straints to the path planning problem. It is possible thatNtAV will be required
to avoid new obstacles while the path planning algorithm thé middle of execu-
tion. This observation motivates the use of a multi-leveéhgdanning algorithm.
Reference [16] presents a hierarchical path planning schesing wavelets for
agents operating in partially known environments so thatabmputational cost
can be managed. Wavelets are used to obtain an approxinshtiomenvironment
at different level of fidelity, causing a cell decompositimirthe environment with
variable resolution. Based on the cell decomposition, Bigks algorithm is used
to plan paths at each time globally. Reference [17] desigosal teplanning al-
gorithm that extends the results of Ref. [16] using the laeaion property of the
wavelet transform so that the path is planned globally omeckisireplanned lo-
cally at each time step. Reference [18] improves the perfocaaf the local path
planning strategy in Ref. [17] using the sensor data dirgotlyonstruct a sector-

like multi-resolution decomposition of the agent’s imnagdi environment. The



cell decomposition is constructed in polar coordinatesgatible to the on-board
sensor data and a path is planned locally based on the celimpesition.

The contribution of this paper is that we design a visionelddscal path plan-
ner within a multi-tiered path planning system. The patmpiag system consists
of three tiers: global, local and reactive path plannerse @lobal path planner
generates an inertial path from the current configuratiaghégoal. The local path
planner (the focus of this paper) modifies portions of thdglgath to maneuver
around obstacles that were not in the original global maptHat have been de-
tected by the vision sensor. The reactive planner resporusa-up threats where
collisions are imminent. Each tier acts at a different tircals and has a de-
creasing computation time. The global path planner reaatbstacles where the
predicted time-to-collision is greater thdp.1 seconds and requires the longest
computation time. The local path planner reacts to obstagleere the predicted
time-to-collision isTic2-Titcz Seconds and requires less computation time. The
reactive path planner reacts to obstacles where the peediche-to-collision is
0-Titc2 Seconds and requires very little computational resources.

This paper explores a vision-based navigation frame mapgmal path plan-
ning technique for designing the local path planner. Thibéque is motivated
by the observations that only local information is impottéor the local path
planning problem and it is much easier to create maps andpaltins directly in
the navigation frame of the MAV using the camera data witharisforming to
the inertial frame. A single strap-down camera is employgeah¢asure the range

and bearing to obstacles since it is cheap and lightweigsindJcomputer vision



based time-to-collision estimation, we obtain a depth ni@aeh time step. Based
on the depth map, we use the extended Kalman Filter (EKF}itmate range and
bearing and the nearest neighbor (NN) approach to addresgatih association
problem in the navigation frame. We create a map in the ndvigdrame us-
ing polar coordinates. We then apply the Rapidly-Exploringdtan Tree (RRT)
algorithm to plan collision-free paths in the navigatioarfre.

The proposed algorithm can solve the path planning and phelltbstacles
avoidance problems for a MAV operating in an unknown enviment and has the

following unique features:

e The world map is constructed using polar coordinates in té@gation
frame of the MAV without transforming the camera data to thertial

frame.

e The EKF is used to estimate the range and bearing to obsiadles nav-
igation frame and to address measurement uncertaintiesiped by the

camera.

e The nearest neighbor approach is used for addressing taeagsdciation

problem in the navigation frame.

e The RRT algorithm is applied to the navigation frame map f@anping

collision-free paths.

The proposed path planning algorithm is separated inte tbeiegories: com-

puter vision, mapping and guidance. Figure 1 shows thenmdtion flow of the



the path planning algorithm. The video stream sent by theecais processed by
time-to-collision estimation to generate range and begameasurements to ob-
stacles. Using these measurements and IMU measurememigifeoMAV, the
localizer employs the EKF to estimate the range and beafaged on the lo-
cations of the obstacles, the map builder creates a map inavigation frame
using polar coordinates. The path planner then applies tAedRforithm to plan
a collision-free path. The path is smoothed by the path shes@nd sent to the

autopilot.

Computer vision

—* Time to collision estimation
T

Mapping

Map builder
T

Guidance

Path planner

Path smoother

MAV and Autopilot

Telemetry

Video stream

Figure 1: The information flow of the proposed path plannifgpathm. The video stream is
processed by time-to-collision estimation to generatephdmap that provides noisy range and
bearing measurements to obstacles. The localizer filtersntasurements to estimate the range
and bearing to obstacles. The map builder creates a map badéé locations of the obstacles
in the navigation frame. A collision-free path is plannedivy path planner and smoothed by the
path smoother. The autopilot maneuvers the MAV to followsh®eothed path.

This paper is organized as follows. Time-to-collisionmstiion used to obtain
the depth map is described in Section 2. Section 3 descriteesision-based
mapping in the navigation frame using polar coordinatesSdation 4, the RRT

algorithm is applied to the map for finding a collision-fregtlp. Sections 5 and 6
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present simulation and flight test results for the proposgalighm.

2. Time-to-collision estimation

Time-to-collision estimatiois an approach to visual collision detection where
an image sequence from a forward looking camera is procassegasure the
seconds to collision for surfaces in the scene. In thissectie review the dom-
inant approaches in the literature for monocular visudisioh detection and es-
timation. These methods can be summarized in four categosteucture from
motion, ground plane methods, flow divergence and insepirg methods.

Structure from motion (SFM) is the problem of recovering thetion of the
camera and the structure of the scene from images genematdnoving cam-
era. SFM techniques [19] provide a sparse or dense 3D reactish of the
scene up to an unknown scale and rigid transformation, wtéchbe used for
obstacle detection when combined with an independent sxtilmate for met-
ric reconstruction, such as from inertial navigation toyixie camera motion or
from a known scene scale. Modern structure from motion teckas generate
impressive results for both online sequential and offlinielbéarge scale outdoor
reconstruction. Recent applications include online spegsenstruction during
MAV flight for downward looking cameras [20], and visual lang of helicopters
[21][22]. However, SFM techniques consider motion along ¢hmera’s optical
axis, as found in a collision scenario, to be degeneratealtigetsmall baseline,
which results in significant triangulation uncertainty néee focus of expansion

which must be modelled appropriately for usable measuré&nen



Ground plane methods [23][24], also known as horopter gistereo homog-
raphy, ground plane stereo or inverse perspective mapgagn homography
induced by a known ground plane, such that any deviation tleground plane
assumption in an image sequence is detected as an obstaddeowk ground
plane forms a constant disparity surfacehoropterin an image sequence after
compensating for perspective effects. Using an estimatbeotamera motion
from odometry, sparse feature tracking or dense optical #olnomography can
be computed resulting in a registration of the ground plareniimage sequence.
The registered images from the homography induced by thengrplane are
then differenced, and any non-zero residual is defined tolwdstacle not on the
ground plane. This approach has been widely used in enveotsithat exhibit a
dominant ground plane, such as in the highway or indoor gtometicle commu-
nity, however the ground plane assumption is not relevardéoal vehicles.

Flow divergence methods rely on the observation that abjecta collision
course with a monocular image sensor exhibit expansidoeaning such that
an obstacle projection grows larger on the sensor as thisioalldistance closes
[25][26]. This expansion is reflected in differential progpes of the optical flow
field, and is centered at the focus of expansion (FOE). The BQEstationary
point in the image such that expansion rate from the FOositive divergences
proportional to the time-to-collision. Flow divergenceiestion can be noisy due
to local flow correspondence errors and the amplifying efsédifferentiation, so
techniques rely on various assumptions to improve estimaccuracy. These

include assuming a linear flow field due to narrow field of viewidg terminal



approach [25][27][26][28], assuming known camera motiad @ositioning the

FOE at the image center [29][30][31][32], or known obstdmbeindaries for mea-
surement integration [28][29][33]. These strong assuomgtiimit the operational

envelope, which have lead some researchers to consideu#tiatjve properties

of the motion field rather than metric properties from full 8onstruction as
sufficient for collision detection [34][26]. However, thil®es not provide a mea-
surement of time-to-collision and does not localize cmhisobstacles in the field
of view.

Insect vision research on the locust, fly, and honeybee shatitese insects
use differential patterns in the optical flow field to naveyat the world. Specifi-
cally, research has shown that locusts use expansion obthdiélld or “looming
cue” to detect collisions and trigger a jumping responsé. [3his research has
focused on biophysical models of the Lobula Giant Movemestebtor (LGMD),
a wide-field visual neuron that responds preferentialijhtlooming visual stim-
uli that is present in impending collisions. Models of the MB neuron have
been proposed [36] which rely on a “critical race” in an arcdyphotoreceptors
between excitation due to changing illumination on phatepors, lateral inhibi-
tion and feedforward inhibition, to generate a responseeaming with photore-
ceptor edge velocity. Analysis of the mathematical modéleulying this neural
network shows that the computation being performed is Vigeld integration of
divergence for collision detection, which is tightly coag@lwith motor neurons to
trigger a flight response. This shows that insects perforfisimm detection, not

reconstruction. This model has been implemented on grooinots for experi-



mental validation [37][38][39], however the biophysicabEMD neural network
model has been criticized for lack of experimental valiolatj40], and robotic
experiments have shown results that do not currently liveoupe robustness of
insect vision, requiring significant parameter optimiaatand additional flow ag-
gregation schemes for false alarm reduction [41][42]. Wihisect inspired vision
is promising [43], experimental validation in ground rabethas shown that there
are missing pieces. Specifically, Graham argues “[this Mdgigores integration
over the the visual field...how do inputs (to LGMD) becomated to angular size
and velocity [40]?” Thisaggregatioror grouping of flow consistent with collision

has shown to be a critical requirement to a successful model.

D (@ B

Structure from Motion

Flow Divergence

Main idea: Estimate the divergence of a given optical flow field, Main Idea: Estimate camera pose and 3D scene structure up
where regions of positive divergence are necessary but not to an unknown scale from corresponding features

sufficient for collision detection in the motion field Examples: Huge literature for various features, motion
Examples: Contour integrals using Green’s theorem, directional constraints, structure constraints, error functions

divergence, image gradient evolution, first order differential
invariant estimation, moments of oriented edge histograms,
area moments

Pros: Demonstrated on planar textured scenes

Pros: Multi-view geometry is well understood and well
explored in the literature, impressive batch reconstruction
results for large scenes

Cons: Motion along optical axis is degenerate resulting in large

Cons: Linear flow or narrow FOV assumption, image center is triangulation uncertainty near focus of expansion, time to
focus of expansion assumption, How to aggregate regions of collision requires sequential methods, assumed
\positive divergence in general?, sensitive to noisy flow / \correspondence /
Ground Plane Insect Inspired

Main idea: Any flow inconsistent with a known ground plane is

T A AT e Main Idea: LGMD biological models in the locust for visual field

integration of divergence, flow steering, classification not

Examples: Horopter stereo, inverse perspective mapping reconstruction
Pros: Successfully demonstrated and widely deployed in the Examples: Rind lab, Harrison lab, Gray lab, Prioria, Centeye
ground vehicle community Pros: ASIC designs available, hardware based Reichardt
Cons: Requires a dominant ground plane in the scene, not correlation for high speed flow estimation
relevant for UAVs Cons: Aggregation is the key, experiments show high false
alarm rate
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Figure 2: Time-to-collision estimation survey.

Figure 2 shows a summary of the different approaches to tirellision.

This review shows that time to collision estimation meth@mtssmall UAVS re-
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quire aggregation to determine obstacle boundaries anéndlé false alarms
from correspondence errors, while modelling the uncegamtime to collision
measurements from the degenerate motion along the optisal a

One such approach to time-to-collision estimation whictiradses these ob-
servations igxpansion segmentatiga4]. Expansion segmentation provides (i)
a detection of significant “collision danger regions” ofrsifgcant positive diver-
gence in inertial aided video, and (ii) an estimate of maxmiikelihood time-to-
collision within the danger regions. Using the inertialo@ty of the vehicle and
the camera frame rate, the time to collision estimate carsbd to recover range.
Formally, expansion segmentation is the labeling of dolisand non-collision
nodes in a conditional Markov random field. The minimum epdngary label-
ing is determined in an expectation-maximization framewtor iteratively esti-
mate labeling using the mincut of an appropriately constaiaffinity graph, and
the parameterization of the joint probability distributifor time to collision and
appearance. This joint probability provides a global manfethe collision re-
gion, which can be used to estimate maximum likelihood tioreellision over
optical flow likelihoods, which is used to aid with local nari correspondence

ambiguity [44].

3. Vision-based mapping for MAVsin the navigation frame

A depth map can be obtained from time-to-collision estioratand inertial
measurements. In this section, we first use the depth magamdhbe range and

bearing measurements in the navigation frame. Based on theasurements,
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we estimate the range and bearing using the EKF and addesiath associa-
tion problem in the navigation frame using the nearest rmglapproach. We
then create a map in the navigation frame using polar coatelnbecause this

representation is ideally matched to camera information.

3.1. Range and bearing measurements

Time-to-collision estimation approach gives the range sueaments to ob-
stacles by multiplying time-to-collision by the groundsgdeof the MAV, which
is given byv =V +v,, whereV is the airspeedy is the groundspeed, am is
the wind velocity relative to the inertial frame. Accordinga depth map, which
represents the range and bearing to obstacles in the navigegme, can be ob-
tained. Figure 3 shows a 2020 (in units of pixels) depth map of a simulated
obstacle. In the depth map, the red pixels provide range uneaents and their
corresponding positions provide bearing measurementsngi@ance, the pixel at

the jth row and thath column provides the bearing to the obstacle given by

i Ikl
n = tanl(' 2 ) &

wheren and@ are the azimuth and elevation of pixelj), rx andry represent the
number of pixels along the horizontal and vertical direc$ian the image plane,
andf is the focal length in units of pixels. Note that Eq. (1) corgsu) andf in

the body frame. In order to use them in this paper, they nebd tocansformed to
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the navigation frame which is the body frame with MAV roll apitich removed.

Horizontal direction
g9 6 - =2 0 2 3 6 8 D

Vertical direction

Figure 3: A 20x 20 (in units of pixels) depth map. The red pixels give the eatggthe obstacle
and their positions give the bearing to the obstacle in thly iame.

Since the measurement uncertainties produced by the canceease as the
distance from the MAV increases, we use $iieet spomeasurement model with
Gaussian distribution [45] to represent the time-to-s@h uncertainties [44].
The observation made by the camera at time &tepgiven by the linear mea-

surement model

Z = Xk + Vi, (2)

wherexy = [rx, ] is the state and the measurement nejsis a Gaussian ran-
dom vector with zero mean. We assume that the covariancexnkatof vy has a

diagonal structure

O'rzk 0
Rk = - (3)
0 aﬁk
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The variance of the range measuremefp(tis a functionf, (r¢) of the rangery
from the obstacle to the camera. The variance of the beariafq:;nr)rlremendr,%k is

also a functionf,, (r¢) of the range. Accordingly, we use teaeet spomodel

o2 = fi(r) =au(r—ap)®+ao, (4)

or = f(r) =af(r,

whereay, a1, ap anda are model parameters. In this paper, wealet 0, which

implies that the noise is at its minimum value at the origithef navigation frame.

3.2. Range and bearing estimation using the EKF

Based on the measurements, we employ the EKF to estimatertbe eand
bearing. Since the obstacle map is in the navigation franteeoMAV, which is
located at the origin, we need to derive the equations ofanaif each obstacle
relative to the MAV. Figure 4 shows the motion of an obstaelative to the MAV
in the navigation frame, whemeandn are the range and bearing to the obstacle

andB is the location of the obstacle in the navigation frame. Bawmedrig. 4,

B

VoS
vsing

Figure 4: The motion of an obstacle relative to the MAV. Theg@aand bearing to the obstacle are
represented by andn. The location of the obstacle is representedby

the equation of motion of the obstacle relative to the MAVemts of range and
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bearing is given by

= —vcosn, (5)

: vV . .
n = Fsm"l—‘l’,

Letx = [r,n]" be the state and lé¢x) represent the right hand side of Eq. (5)
andh(xx) = xx. We rewrite Eq. (5) and Eq. (2) as the standard form of the stat

transition and observation models for the EKF

x = f(x)+w,

zx = h(x)+vi, (6)

wherew is the process noise that is assumed to be a Gaussian zerowhigan
noise with the covariance matri andvy is the measurement noise that is as-
sumed to be a Gaussian zero mean white noise with the covarmaatrix Ry.
Based on Eq. (6), the range and bearing are estimated usistigard continuous-
discrete time EKF algorithm [46]. When measurements for aiip@bstacle are

not available, we only use the prediction model.

3.3. Data association

The camera observations must be associated with the exadtistacles in the
map during the flight in order for the EKF to converge. In aiddif the MAV may
revisit obstacles that already exist in the map after annelete@ period of time.

The challenge is to associate the new camera measuremémthose obstacles.
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These two problems motivate data association algorithmasrédate sensor ob-
servations with the features included in the map. A datacson algorithm is
composed of two elements: a test to determine the compgtibdtween a sensor
observation and a map feature, and a selection criteriohdose the best match
among the set of possible matches [47]. Since the neareggtbwei algorithm
has minimal computational complexity, we use it to solve dia¢a association
problem directly in the navigation frame, which saves thmpotational cost of
transforming the data to the inertial frame.

The nearest neighbor algorithm is a classical techniqueatcking problems
[48]. The normalized squared innovation test is employedetermine compat-
ibility, and the smallest Mahalanobis distance is used tecs¢he best match-
ings. Suppose that a setwbbstacleqO;,---,0p} exist in the map at time step
k. Let Xy = [rki, Ni]" and &g = [fxi, Aki] T, i = 1,---,n represent the actual and
the estimated states of the obstacles respectively amy;letpresent the covari-
ance of the estimation error for th#h obstacle. Similarly, IeZ,’(j = h(xy;) and
zj = h(xxj) +Vkj, j = 1,--- ,mrepresent the theoretical and actual observations
of a set ofmmeasurementiMy, - - - , M} and letRy; be the covariance matrix of
Vkj. LetO;; represent theh existing obstacle that corresponds to jtiemeasure-
ment. Thejth measuremeri¥l; and its corresponding obstacly, at time stegk

are then related by the implicit measurement function [47]

9(%i;» Zj) = Zj — h(Xwi;) = Z; —X«i; = O. (7)
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Note that the second equality of Eq. (7) results from the tlagth(Xyi, ) = Xui;
Equation (7) states that the relative location betweenhberetical observation
of the measurement and the corresponding obstacle mustde ze

The nearest neighbor algorithm simply pairs each measuntewith the ob-
stacle considered most compatible according to Eq. (7).eete the right hand
side of Eq. (7) as

O(Xki» 2j) = Zj —Rki; + (2 — Zj) — (%ki; — Rki;) (8)
Akijj + (2 — 2kj) — (Xki; — X )

A - . . -
where)\kijj = g(xkij,zkj) = Zj — Xi; represents the innovation of the pairing be-
tween thejth measuremeni¥j and its corresponding obstacly, at time stegk

and the covariance ;j can be obtained as

Sajj = COMZj —Zj) + COMXkij — Ry 9)

= Rj+Pxj-

The compatibility betweeM; andO;; is determined using the innovation test that

measures the Mahalanobis distance as
DZ,; = A 1St < X3 (10)
kijj = kij >k ki) < Xp

Wherexé is the chi-square distribution witB degrees of freedom angl is the

desired confidence level. This test determines a subseedaxisting obstacles
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that are compatible with the measuremd&fit The nearest neighbor selection

criterion chooses the obstacle with the smallest Mahalisrdhstance.

3.4. Mapping in the navigation frame using polar coordirgate

For the local path planning problem, only the informatioatithe local ar-
eas around the MAV is important. This observation motivétesuse of on-board
camera data to build a map directly in the navigation fransteiad of the in-
ertial frame. Accordingly, we save the computational reses of transforming
the camera data from the navigation frame to the inertiah&aat the expense
of updating the map from body motion. Since the informatibowt the envi-
ronment is obtained by on-board cameras, Cartesian cotediage not the most
efficient method of representing the information. We crélagemap using polar
coordinates, which are more compatible with the range aadirog information
obtained by the camera and allow the data to be processedefficiently. Fig-
ure 5 shows the map in the navigation frame using polar coates. The origin
of the map is the current location of the MAV. The circles exant the obstacles
and the ellipses around them represent the range and bes@egtainties. The
map only stores obstacles at the range from the MAV less ka1, wherev
is the groundspeed. Obstacles at the range greatevthps will be removed

from the map and will be considered as new obstacles if theplaserved again.

4. Path planningin the navigation frame

Given the map, a path can be planned for the MAV to maneuvés goial lo-

cation while avoiding the obstacles. In this section, wethseRapidly-Exploring
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Figure 5: The map in the navigation frame of the MAV using palaordinates. The origin of the
map is the current location of the MAV. The circles represkatobstacles and the ellipses around
them represent the range and bearing uncertainties.

Random Tree (RRT) algorithm to plan a collision-free path.

The RRT algorithm was initially developed in [49] and has beétely used in
robot path planning. The RRT algorithm can quickly searclsfiece of possible
solutions by extending a tree in random directions in thefigaration space as
described in Algorithm 1. When the RRT algorithm is employeglem a path
for the MAV, the nodes of the tree are potential MAV waypoiatsl the branches
are paths to the waypoints. The tree initially consists efMfAV'’s location as a
single node. A random configuration is generated and thesmedended toward
this configuration, creating a new branch and node as odtimelgorithm 1.
When a path is found or a maximum number of iterations is refcthe RRT
algorithm terminates.

The path generated by the RRT algorithm may include numenduareous
configurations that may cause unnecessary maneuveringhauott therefore be

smoothed. We design a fast and effective configuration etion algorithm to

19



Algorithm 1. Rapidly-Exploring Random Tree algorithm

1 Initialize a tree containing one node - the current confijaneof the MAV;
while A path has not been found and the maximum number of iteragons
not reachedlo
rand «— A random MAV configuration;
near«< The configuration in the tree that is closestadad;
if the tree can be connected frarearto randwithout collisionthen
\ Extend the tree fromearto rand;
end

N

o N o 0o b~ W

end

smooth the path. This algorithm walks through the path fromkeginning to
end nodes, eliminating unnecessary nodes along the wayitidtly looks at the
first node and tries to find the last node in the path to whicHiteenode can be
directly connected without collision. It is guaranteed tdeast connect to one
node in the graph. If the only node that can be connected iméle node in
the path, the algorithm moves forward one step and tries noext the second
node to the last possible node. If the first node can be coeddotany other
node, all intermediate nodes are eliminated and the algormoves forward to
the connecting node and repeats the process until a coonégatthe end node is
found. Using this algorithm, all intermediate nodes that ba skipped without
causing any collision are eliminated from the path.

The RRT algorithm requires computation time to generatespailine MAV
may still collide with new obstacles while the RRT algorithsnin the middle of
execution. We use the following scheme to address this noblSuppose that

the objective of the proposed algorithm is to find a collisfoee path fromx;,i; to
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Xgoal: Wherexinit andxgoq represent the initial and goal configurations. Define the
functionW = WaypointRR'I(xt,xgoah Mt) to represent the RRT algorithm, where
X IS the initial configuration for the RRT algorithm at time step/; is the nav-
igation frame map, antt = | W ;, W, ---, Wy | is the waypoint path
planned by the RRT algorithm, wherg is the number of the waypoints. Let
the length of each path segment for the RRT algorith; .1 —W |2 =1,(i =
1,---,n—1), wherel is chosen suchthav2T > | > v« T, wherevis the ground-
speed of the MAV and is the computation time of the RRT algorithm. At time
stept =0, choose a configuratiog such that collisions do not exist froxg;; to Xg
and||Xinit — Xol|2 =1. The functionwaypointRRT(xo,xgoa|, Mo) is then executed
based on the maply and the MAV is maneuvered t& simultaneously. Since

| > v«T, the execution of the functioway pointRRT(Xo, Xg0al, Mo) Will finish
and a waypoint patip will be generated before the MAV reaches When the
MAV reachesxp at time stef =ty, letx;, =Wp 2. The MAV is maneuvered tg, .
The functionNaypointRRT(xtl, Xgoal, Mtl) is simultaneously executed to generate
a waypoint pattw, based on the mald,, if collisions exist. Otherwise, |&M, =

Woo2, Wbz, -+, Won, } Repeat this process until the MAV reaches the

goal. FinaIIy,acollision-freewaypointpaﬁhqnit? X0, Xy, X 0, Xgoal

from Xinit 10 Xg0al iS generated.

5. Simulation

The feasibility of the mapping and collision avoidance aitpons was tested

using a simulation environment developed in MATLAB/SIMULKNThis sim-
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ulator uses a six degree-of-freedom model for the aircvelfiere a North-East-
Down (NED) coordinate system is used. The algorithm is testetwo scenarios

as described below.

5.1. Scenario |

In the first scenario, the MAV was commanded to maneuver girdwenty-
five 20mx 20mx 100m obstacles between waypo&{0,100,-40) and waypoirt
(600,700,-40). Figure 6 shows the terrain for the first saienahere the square
sign represents waypoi® and the plus sign represents waypdit A 20x 20
pixel depth map was used. The parameters for the sweet spsuneenent model

were set abg = 0.1528,a; = 0.004,a, = 0 anda = 0.00002. The covariance

10 0
matrix of the process noise w&s= and the groundspeed was

0 0.0076

v=10m/s.

N oA @
S o 9o
S & o

Altitude (m)

Figure 6: The terrain for the first simulation scenario. Th&Ws maneuvered through twenty-
five obstacles between waypoit(0,100,-40) and waypoir (600,700,-40), which are repre-
sented by the square and plus signs respectively.

22



Figure 7 shows the update of the map and the evolution of tiregmonding
path as obstacles are observed. Subfigures on the left skeawattigation frame
maps and paths based on the available information aboub#tades at different
time. The ellipses represent the estimated locations a&$ sif the obstacles.
The plus sign in subfigure (i) represents the waypé&im the navigation frame.
Subfigures on the right show the inertial paths. The final paitbwed by the
MAV between the two waypoints is shown in Figure 8. Figure &vehithe track-
ing error for the range and bearing to the obstacle at (190,28) using the EKF,
where the solid lines represent the tracking error and tisbethlines represent

the positive and negative square roots of the error covegian

5.2. Scenario Il

In the second scenario, the MAV was commanded to maneuvarghra sim-
ulated city called "Megacity” for which ground truth rangeasvavailable. This
path followed waypoin& (-250,-400,-60) to waypoirt (250,150,-60) as shown
in Figure 10. A 64480 pixel depth map was used. The parameters for the sweet

spot measurement model were sebd@t= 0.1528,a; = 0.001,a, = 0 anda =

10 0
0.00002. The covariance matrix of the process noise @as

0 00076
and the groundspeed was= 10m/s. Figure 11 shows the maps and the corre-

sponding collision-free paths as the MAV maneuvered thincihg megacity ter-
rain. Subfigures in the first and second columns show the eawmews and the
depth maps at different time steps. Subfigures in the thilchao show the update

of the map and the evolution of the path in the navigation &a8ubfigures in the

23



£ ¢
§ e 5
g ¢ @
5
2 £ % PR R
s ol E e 9 9 9 ¥ °
g 700 9 v A4 o 100
5 o0 ¢ 9@
H =
g P ¢ ® -

: 3 ¢ 0

00 w
- w 0 s

“ " Right wing direction (m)

(@)t=9s (b)Y t =9s

¢
¢ v
, PR R
)
® 7 % R R R o
HE R R R R ] o
™ R R B -
a0 6. .9 -
P v -
“w ¢
(] » ¢
200 w00
w s
T v S w Bam o
Right wing direction (m)
£ 0 ¢
g “ ¢ v
2 R
E ol et el vl —o,
5 §oE 0 9 ¢ V@ o
2 - o 00 RN -
5 ™ 6. 9.9 -
i wu etet
o ¢
w - w
[] 0 o
™ ™ @0
N S S Bam om0

Right wing direction (m)

(e)t=25s (M t =255

£ ¢

5 ? v v v

g . : w

g @ Eso

g, 50 x v e8¢ —D
3 P 2ol 0o 9 TV e o
g -2 700 v v v o 100
E ~sof 800 v v v 0

g - o e -

2 “ ¢

0 e -

Right wing direction (m)

(g) t =38s (h) t = 38s

£ ¢
5 ¢ v
£ - . R R
g . AR IR OO Mol
5 ol e v @ N
E 0 LR 0
T @ ¢ v @
g -
£ P R R

af ® N 0

20 0
) 00 0 o

™ Rightwing direction (m)

(i) t =625 () t =625

Figure 7: The update of the map and the evolution of the patherfirst simulation scenario.
Subfigures on the left show the navigation frame maps and patted on the available information
about the obstacles at different time. The ellipses reptebe estimated locations and sizes of
the obstacles and the plus sign in subfigure (i) represeataalypointE in the navigation frame.
Subfigures on the right show the inertial paths followed &yNAV.
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100 600 North (m)
East (m) 0 700

Figure 8: The final path followed by the MAV between the waypeb andE.

fourth column show the inertial path followed by the MAV.

6. Flight tests

6.1. Experimental testbed

Figure 12 shows the main components of the experimentadedsFigure 12(a)
shows the Kestrel autopilot designed by Brigham Young Usitei(BYU) and
commercialized by Procerus Technologies [50]. It is eqaegmith 3400 29-
MHz microprocessor, rate gyroscopes, accelerometerslaswute and differen-
tial pressure sensors. The autopilot measur@s 2.37 x 0.47 inches and weighs
16.65 grams, making it ideal for miniature air vehicles. Ufegg12(b) shows the
airframe used in the flight test. This airframe is a 48 inchesgyapan XS EPP
foam flying wing selected for its durability, ease of compain@stallation, and

flying characteristics. Embedded in the airframe are therKkautopilot, bat-
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Figure 9: The tracking error for the range and bearing to ttetaxle at (150,250,-40) using the

EKF. The solid lines represent the tracking error and théelddines represent the positive and
negative square roots of the error covariance.
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Cex

(@) (b)

Figure 10: The megacity terrain for the second simulati@nmado. The square and cross signs in
subfigure (a) represent waypoirf@8andE respectively. Subfigure (b) shows the megacity terrain.

teries, a 1000 mW 900 MHz radio modern, a GPS receiver, a \tr@d@smitter,
and a small analog camera. Figure 12(c) shows the groundrstaimponents.
A laptop runs the Virtual Cockpit ground-control softwarelanterfaces with the
MAV through a communication box. Video is transmitted tognd via a 2.4 GHz
analog transmitter and captured on the laptop using an kip€E-PRO PCM-
CIA frame grabber, which provides 640480 images at 30 frames per second.
An RC transmitter is used as a stand-by fail-safe mechanidaciitate safe op-
eration. Figure 13 shows the flowchart describing the icteva of the hardware

and software components used in the flight test.

6.2. Flight test results

We conducted flight tests to verify the feasibility of the posed vision based
collision avoidance algorithm, which was used to avoid teu@é red targets, as
shown in Figure 14. Information about the locations and disiens of the targets

was not provided to the MAV, rather color segmentation wasduss a tempo-
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Figure 11: The update of the map and the evolution of the ettha second simulation scenario.
Subfigures in the first and second columns show the camera @ed/the depth maps at different
time steps. Subfigures in the third column show the updatbeofitap and the evolution of the
path in the navigation frame. Subfigures in the fourth colghow the inertial path followed by
the MAV.
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(b)
Figure 12: The hardware testbed. Subfigure (a) shows thedfesttopilot, subfigure (b) shows

the airframe, and subfigure (c) shows the ground-statiorpooients.

Kestrel Camera
Autopilot

Vision processing
Virtual Cockpit

TCP/IP TCPAP

TCP/IP TCP/IP
Path planner Terrain map

Guidance

Figure 13: The flowchart describing the layout of the basiacvare and software components
used in the flight test.

rary surrogate for time-to-collision estimation to test thapping and avoidance
algorithms. The groundspeed was= 11m/s. During the flight, the guidance
strategy generated roll commands on the ground stationrandnitted them to

the autopilot. Telemetry information was recorded on tleugd station.

Figure 15 shows the telemetry plot of the MAV avoiding the taxgets, where
the rectangles represent the targets, the dotted linesepisethe flight path and
the solid line represents the originally commanded but adafl waypoint path.
As the MAV approached the targets, the proposed path plgradgorithm gen-
erated a path around the targets and the MAV began to tracketherated path.

As the MAV passed the targets, it once again began to tractrtpmal waypoint
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Figure 14: The two large red targets used to verify the vikiased collision avoidance algorithm
described in this paper.

path. As shown in Figure 15, the MAV successfully avoidedttrgets without
human intervention. Figure 16 shows the images of the targetcaptured by
the MAV as it executes the avoidance maneuver. The rangezamdit tracking
errors using the EKF during the time that the targets arearfiéid of view of the
camera are shown in Figure 17. These tracking errors coavergmall steady

errors as the MAV approaches the targets.

Figure 15: The telemetry plot of the MAV avoiding two targefShe rectangles represent the
targets. The dotted line represents the flight path and tietlsee represents the commanded but
conflicted waypoint path.
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(a) (b)

(© (d)

Figure 16: The images of the targets from the MAV as it exexttie avoidance maneuver.
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Figure 17: The range and azimuth tracking errors using thE #iting the time that the targets
are in the field of view of the camera.

7. Conclusions and future work

In this paper we present a vision-based navigation framepmgpand path
planning technique for MAVs operating in unknown enviromise We create
a map in the navigation frame using polar coordinates witl@nsforming the
camera data to the inertial frame. The EKF is used to estith&tegange and
bearing to obstacles and to address the measurement umiestaThe data as-
sociation problem is solved in the navigation frame usirg rilearest neighbor
approach and the path is planned in the navigation framegubm RRT algo-
rithm. The simulation and flight test results show that theppsed technique is
successful in solving path planning and multiple obstaalesdance problems for
MAVs operating in unknown environments.

In this work, polar coordinates are used to create the mapddressing the
two dimensional path planning problem. In the future, we uske spherical coor-
dinates to create maps that address the three dimensidhgdlpaning problem.

In addition, we will validate the expansion segmentatiornirads for vision based
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time-to-collision estimation with the mapping and plargraigorithms.
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