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Abstract This paper presents a vision-based collision
avoidance technique for small and Miniature Air Vehicles
(MAVs) using local-level frame mapping and path planning.
Using computer vision algorithms, a depth map that repre-
sents the range and bearing to obstacles is obtained. Based
on the depth map, we estimate the range, azimuth to, and
height of obstacles using an extended Kalman Filter (EKF)
that takes into account the correlations between obstacles.
We then construct maps in the local-level frame using cylin-
drical coordinates for three dimensional path planning and
plan Dubins paths using the Rapidly-Exploring Random
Tree (RRT) algorithm. The behavior of our approach is an-
alyzed and the characteristics of the environments where
the local path planning technique guarantees collision-free
paths and maneuvers the MAV to a specific goal region are
described. Numerical results show the proposed technique
is successful in solving path planning and multiple obstacle
avoidance problems for fixed wing MAVs.

Keywords Path planning · Collision avoidance · Micro Air
Vehicle · Computer vision

1 Introduction

Small and Miniature Air Vehicles (MAVs) have the poten-
tial to perform tasks that are too difficult or dangerous for
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human pilots. For example, they can monitor critical infras-
tructure and real-time disasters, perform search and rescue,
and perform in-storm weather measurements [1]. For many
of these applications, MAVs are required to navigate in ur-
ban or unknown terrains where obstacles of various types
and sizes may hinder the success of the mission. MAVs must
have the capability to autonomously plan paths that do not
collide with buildings, trees, or other obstacles. Therefore,
the path planning problem for MAVs has received signifi-
cant attention [1–5].

The path planning problem can be grouped into global
path planning and local path planning [6]. Global path plan-
ning requires complete knowledge about the environment
and a static terrain. In that setting a feasible path from the
start to the destination configuration is generated before
the vehicle starts its motion [6]. The global path planning
problem has been addressed by many researchers with the
three most common solutions being potential fields meth-
ods, probabilistic roadmap methods, and cell decomposition
methods [7]. For environments where complete knowledge
is not available, obstacles may pop up as the MAV flies along
pre-defined trajectories generated by the global path plan-
ning algorithm and collisions may occur.

Consequently, in this paper a local path planning algo-
rithm is designed to address the path planning problem for
unknown or partially known environments. It is executed in
real-time where the basic idea is to first sense the obsta-
cles in the environment and then determine a collision-free
path [1]. Local path planning algorithms require sensors to
detect the obstacles. Among the suite of possible sensors, a
video camera is cheap and lightweight and fits the physical
requirements of small UAVs [1]. Since the camera measure-
ments are obtained in the body frame of the MAV, it is most
natural to directly build maps and to plan paths in the local-
level frame using the camera measurements without trans-
forming to the inertial frame. In addition, building maps and
planning paths in the local-level frame does not require ac-
cess to GPS data. Reference [8] designs a local path plan-
ning algorithm using the sensor data directly to construct
a sector-like multi-resolution decomposition of the agent’s
immediate environment using wavelets. The cell decompo-
sition is constructed in polar coordinates that are compatible
with the on-board sensor data and a path is planned locally
based on the cell decomposition. This algorithm assumes
that the knowledge of the environment at the finest level of
resolution is available. Based on that knowledge, the wavelet
transform can be applied to decompose the environment at
different levels of resolution. However, for an agent oper-
ating in unknown environments, it only has the knowledge
obtained by its sensors and does not likely have knowledge
of the environment at the desired levels of resolution. Our
previous work in [9–12] develops a vision-based local-level
frame mapping and path planning technique for MAVs oper-
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ating in unknown environments. Based on the numerical and
experimental results, the technique is successful in solving
the two and a half dimensional path planning problem for
MAVs. However, correlations between the locations of ob-
stacles have not been considered for building maps, and the
kinematic constraints of the MAV have not been considered
for planning paths. In addition, the behavior of the local path
planning algorithm was not analyzed in [9–12].

This paper explores a vision-based collision avoidance
technique for MAVs using local-level frame mapping and
planning. Using computer vision based time-to-collision es-
timation, we obtain a depth map at each time step. Based
on the depth map, we use an extended Kalman Filter (EKF)
to estimate the range, azimuth to, and height of obstacles.
This information is used to construct a map of the environ-
ment that is suitable for path planning. A unique aspect of
our work is that the map is referenced to the (time-varying)
local-level frame. The map is built in cylindrical coordi-
nates to facilitate solving the three dimensional path plan-
ning problem. Given the planning map, we use the Rapidly-
Exploring Random Tree (RRT) algorithm to plan kinemat-
ically feasible collision-free Dubins paths in the local-level
frame. The salient features of this paper are as follows.

– We build cylindrical maps in the local-level frame of the
MAV for solving the three dimensional path planning
problem.

– We design an EKF to jointly estimate the range, azimuth,
and height for all the existing obstacles in the map, ex-
plicitly accounting for the correlations between obsta-
cles.

– The RRT algorithm is used to plan collision-free Dubins
paths in the local-level frame that satisfy the kinematic
constraints of the MAV.

– We analyze the behavior of the local path planning al-
gorithm and describe the characteristics of the environ-
ments in which the local path planning algorithm is guar-
anteed to generate collision-free paths and to maneuver
the MAV to the goal region.

The paper is organized as follows. Section 2 formulates
the path planning problem for MAVs. Section 3 describes
the vision-based mapping process in the local-level frame.
In Section 4, the RRT algorithm is applied to the maps for
finding collision-free Dubins paths. The behavior of the pro-
posed local planning algorithm is analyzed in Section 5.
Section 6 presents numerical results for the algorithm.

2 Problem formulation

The kinematic guidance model of the MAV can be repre-
sented by ẋa = fa(xa,u), where xa ∈ Xa is the state, where
Xa is the state space, and u is the control input, taking val-
ues from the set U . Based on [3], the state space Xa can be

decomposed into the product C ×Y , where C is the con-
figuration space and Y encodes the vehicle’s velocity and
higher order derivatives of the state variables. Similar to [3],
we design a planning algorithm that generates collision-free
paths in the configuration space. The algorithm does not
specify the actual control input, but rather relies on an in-
ner loop controller to track the collision-free paths.

Let Cobst represent the set of configurations where the
MAV is either in collision or cannot avoid a collision be-
cause of kinematic constraints, and let C f ree = C \Cobst . A
path between two configurations is said to be feasible if
all configurations along the path satisfy the kinematic con-
straints and are contained in C f ree. The path planning prob-
lem for the MAV can be formulated as finding a feasible
path from an initial configuration to a goal configuration. A
path planning algorithm is complete if it returns a feasible
solution when one exists and returns failure otherwise.

3 Vision-based local-level frame mapping

In this section, we describe the range and bearing measure-
ments to obstacles, and we describe the measurement un-
certainties produced by an on-board camera. Based on the
camera measurements, we use an EKF to estimate the range,
azimuth to, and height of obstacles. We use a joint compat-
ibility branch and bound approach to address the data asso-
ciation problem. We then build a planning map using cylin-
drical coordinates in the local-level frame that is suitable for
solving the three dimensional path planning problem in a
computationally efficient manner.

3.1 Range and bearing measurements

There are numerous computer vision algorithms that esti-
mate the time-to-collision to obstacles in the camera field
of view. Reference [13] provides an overview of algorithms.
By multiplying time-to-collision by the ground speed of the
MAV, a depth map that represents the range and bearing to
obstacles can be obtained. In this paper, we assume that the
depth map is available. Figure 1 shows an image of a simu-
lated environment that we call Megacity, and an associated
640× 480 (in units of pixels) depth map, where each pixel
provides the range information. The darker pixels represent
the areas that are close to the MAV and the lighter pixels
represent the areas that are far away from the MAV. The cor-
responding position of each pixel also provides the bearing
information in the body frame. In this paper, we construct
a map of the world in the (time-varying) local-level frame,
where the local-level frame is the body frame with roll and
pitch angles set to zero. The origin of the local-level frame
is the MAV’s center of mass. The x-axis points out the nose
of the airframe when the airframe is not pitching, the y-axis
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points out the right wing when the airframe is not rolling,
and the z-axis points into the Earth. Let ϕ and θ represent
the MAV roll and pitch angles. Figure 2 shows how the az-
imuth and elevation information expressed in the local-level
frame for the pixel at the jth row and the ith column of the
depth map can be obtained. Consider the center of the depth
map as its origin and consider its width and height direc-
tions as its x and y axes. Let rx and ry represent the number
of pixels in width and height of the depth map respectively.
The coordinates of the pixel at the jth row and the ith column
of the depth map are [i− rx+1

2 , j− ry+1
2 ]⊤. The pixel coordi-

nates after the pixel is rotated about the origin of the depth
map by −ϕ are given by[

i′

j′

]
=

[
cosϕ sinϕ
−sinϕ cosϕ

][
i− rx+1

2
j− ry+1

2

]
. (1)

The azimuth and elevation angles to the pixel with the roll
angle removed are given by

η ′ = tan−1
(

i′

f

)
, (2)

ξ ′ = tan−1

(
j′√

f 2 +(i′)2

)
, (3)

where f is the focal length (in units of pixels) of the camera.
The azimuth and elevation angles to the pixel with both the
roll and pitch angles removed are given by

η = η ′, (4)

ξ = ξ ′+ tan−1(tanθ cosη ′). (5)

(a) Megacity

Depth map (dark=close,light=far)

(b) Depth map

Fig. 1 This figure shows the Megacity simulation environment and its
640×480 (in units of pixels) depth map. Each pixel in the depth map
gives the range to obstacles and its position gives the bearing to obsta-
cles.

Using the K-mean clustering method [14], the range,
azimuth, and elevation data provided by all pixels in the
depth map can be classified into a group of measurements
{z1, · · · ,zm}, where z j = [r j,η j,ξ j]

⊤, ∀ j = 1, · · · ,m. Sup-
pose that there exist n obstacles in the local-level frame map.
Let ri, ηi, and hi represent the range, azimuth to, and height
of the ith obstacle and let xi = [ri,ηi,hi]

⊤ represent the state
vector associated with the obstacle. Assuming that the mea-
surement noise is normally distributed, the jth measurement

(a) (b)

Fig. 2 This figure shows how the range and bearing expressed in the
local-level frame for the pixel at the jth row and the ith column of the
depth map can be obtained. The roll and pitch angles are represented
by ϕ and θ . The origin of the depth map is O.

associated with the ith obstacle in the local-level frame map
at time step k is given by

z j[k] = h j(xi[k])+v j[k] =

 ri[k]
ηi[k]

tan−1
(

hi[k]
ri[k]

)
+v j[k], (6)

where the measurement noise v j[k] is a Gaussian random
vector with zero mean. We assume that the covariance ma-
trix R j[k] of v j[k] has a diagonal structure

R j[k] =

σ2
r j
[k] 0 0

0 σ2
η j
[k] 0

0 0 σ2
ξ j
[k]

 . (7)

Since the measurement uncertainties produced by the cam-
era increase as the distance from the MAV increases, we use
the sweet spot measurement uncertainty model [15] to rep-
resent the diagonal terms of R j[k] as

σ2
r j
[k]

△
= a1(r j[k]−a2)

2 +a0, (8)

σ2
η j
[k]

△
= a3σ2

r j
[k], (9)

σ2
ξ j
[k]

△
= a4σ2

r j
[k], (10)

where a0, a1, a2, a3, and a4 are model parameters. In this
model, the range measurement noise variance σ2

r j
[k] is a

function of the range r j[k] to the obstacle from the cam-
era. The azimuth and elevation measurement noise vari-
ances are also related to the range. This measurement un-
certainty model assumes there exists a “sweet spot” location
r j[k] = a2 at which the noise is at its minimum value [15].
As the difference between the range r j[k] and the sweet spot
a2 increases, the noise increases.

3.2 Range, azimuth, and height estimation using the EKF

Based on the measurements, we use an EKF to estimate the
range, azimuth, and height. Since the obstacle map is in the
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local-level frame of the MAV, which is located at the origin,
we need to derive the equation of motion of each obstacle
relative to the MAV. In the paper, we assume zero wind con-
ditions. Let V represent the ground speed of the MAV, which
is assumed to be available. Let ψ represent the yaw angle
and let γ represent the flight path angle. Figure 3 depicts the
motion of the ith obstacle relative to the MAV in the local-
level frame, where p(t) is the location of the MAV, Oi repre-
sents the obstacle, ri is the range to the obstacle considered
in the x-y plane of the local-level frame, ηi is the azimuth to
the obstacle whose positive direction is defined as the right-
handed rotation about the z-axis of the local-level frame, and
hi is the height of the obstacle in the local-level frame.

Fig. 3 This figure shows the motion of the ith obstacle relative to the
MAV. The current location of the MAV is p(t). The obstacle is repre-
sented by Oi. The ground speed is represented by V . The flight path
angle is represented by γ . The range and azimuth to the obstacle are
represented by ri and ηi. The height of the obstacle in the local-level
frame is represented by hi.

Based on Fig. 3, the equation of motion of the obstacle
relative to the MAV in terms of range, azimuth, and height
is given by

ẋi = fi(xi)+wi =

−V cosγ cosηi
V cosγ sinηi

ri
− ψ̇

−V sinγ

+wi, (11)

where we assume the coordinated turn conditions ψ̇ =
g
V tanϕ , where g is the gravity constant, and the process
noise wi is a Gaussian random vector with zero mean and
covariance matrix Qi.

The motion of the MAV in the inertial frame determines
the motion of obstacles relative to the MAV in the local-
level frame. Accordingly, the locations of obstacles in the
local-level frame are correlated to each other through the
MAV’s location. We design the EKF to take into account the
correlations. Let

Pi j =

 σ2
rir j

σ2
riη j

σ2
rih j

σ2
ηir j

σ2
ηiη j

σ2
ηih j

σ2
hir j

σ2
hiη j

σ2
hih j


represent the state error covariance matrix between the ith

and the jth obstacles. Let x =
[
x⊤1 ,x

⊤
2 , · · · ,x⊤n

]⊤ represent
the augmented state vector of the n obstacles, where xi =

[ri,ηi,hi]
⊤, and let

P =

P11 · · · P1n
...

. . .
...

Pn1 · · · Pnn


represent the augmented state error covariance matrix. Let
z[k] =

[
z1[k]⊤,z2[k]⊤, · · · ,zm[k]⊤

]⊤ represent m measure-
ments at time step k. The state transition and observation
models for the augmented system are given by

ẋ = f(x)+w, (12)

z[k] = h(x[k])+v[k], (13)

where f =
[
f⊤1 , f

⊤
2 , · · · , f⊤n

]⊤ and fi is given by

Eq. (11), h =
[
h⊤

1 ,h
⊤
2 , · · · ,h⊤

m
]⊤ and h j is given

by Eq. (6), w =
[
w⊤

1 ,w
⊤
2 , · · · ,w⊤

n
]⊤ and its co-

variance matrix Q = diag(Q1,Q2, · · · ,Qn), v[k] =[
v1[k]⊤,v2[k]⊤, · · · ,vm[k]⊤

]⊤ and its covariance matrix
R[k] = diag(R1[k],R2[k], · · · ,Rm[k]). The proposed scheme
for estimating x is a standard continuous-discrete time EKF
algorithm [16].

Let C represent the configuration space and let q(t) =
[qn(t),qe(t),qd(t),qψ(t)]⊤ represent the MAV configuration
at time t, where qn(t), qe(t), and qd(t) are North, East, and
Down coordinates, and qψ(t) is the heading angle. In this
paper, for two configurations q1 and q2, we define the dis-
tance between q1 and q2 as

∥q1 −q2∥, (14)√
(q1n −q2n)2 +(q1e −q2e)2 +(q1d −q2d)2,

and define the distance between q1 and q2 projected on x-y
plane of the local level frame as

∥q1 −q2∥2D ,
√
(q1n −q2n)2 +(q1e −q2e)2. (15)

Let M(q(t)) = {q′ ∈ C : ∥q′ − q(t)∥2D ≤ Rl and |q′d −
qd(t)| ≤ H

2 } represent the cylindrical region with radius Rl

and with height H centered at the origin of the local-level
frame map. When an obstacle disappears from M(q(t)) for
a time t, it is removed from the map. We remove the states
corresponding to the obstacle from the state vector and re-
move the associated row and column from the error covari-
ance matrix.

3.3 Data association

The camera measurements must be associated with the exist-
ing obstacles in the map correctly. In addition, the MAV may
revisit obstacles that already exist in the map after an ex-
tended period of time. The challenge is to associate the new
camera measurements with those obstacles. These two prob-
lems motivate data association algorithms that relate sensor
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measurements with the features included in the map. A data
association algorithm is composed of two elements: a test to
determine the compatibility between a sensor measurement
and a map feature, and a selection criterion to choose the
best match among the set of possible matches [17].

The nearest neighbor approach, which is a classic track-
ing technique, can be used to address the data association
problem, where the normalized innovation square test is em-
ployed to determine compatibility, and the smallest Maha-
lanobis distance is used to select the best matchings [18].
However, the nearest neighbor approach does not take into
account the correlations among obstacles and it causes the
EKF to diverge especially for cluttered environments like
urban terrains.

As an alternative, we use the joint compatibility branch
and bound (JCBB) method [17]. This data association algo-
rithm generates tentative sets of associations and searches
the largest set that satisfies the joint compatibility test [17,
19]. For a given set of association pairs, the joint compat-
ibility test is determined by computing a joint normalized
innovation squared gate. The advantage of the test is that it
preserves the correlations among the set of the observations
and predicted observations [19].

3.4 Local-level frame mapping

Based on the range, azimuth to, and height of obstacles, we
build a map directly in the local-level frame instead of the
inertial frame. Accordingly, we save the computational re-
sources of transforming the camera data from the local-level
frame to the inertial frame, at the expense of updating the
map from body motion. In addition, collision avoidance is
inherently a local phenomenon and vision data is obtained
in the body frame of the MAV. Therefore, transforming to
the inertial frame is unneeded and introduces error. We con-
struct maps in cylindrical coordinates for the three dimen-
sional path planning problem that are more compatible with
vision data than Cartesian coordinates and that allow the
data to be processed more efficiently. We encode obstacles
with general shape in the environment as the smallest cylin-
ders that enclose obstacles. By doing so, all the obstacles
in the local-level frame map are assumed to be cylinders.
Figure 4 shows the local-level frame map in cylindrical co-
ordinates, where the origin of the map is the current location
of the MAV and the cylinders represent the obstacles.

4 Path planning in the local-level frame

Given the local-level frame map, a standard planning
method, like potential field methods, sample based planning
methods, or cell decomposition methods, can be used as the
local planning algorithm that generates collision-free paths
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Fig. 4 This figure shows the local-level frame map in cylindrical coor-
dinates. The origin of the map is the current location of the MAV. The
cylinders represent the obstacles.

that drive the MAV to a region of the goal configuration
while avoiding the obstacles.

As a specific example, in this paper we propose to use
the Rapidly-Exploring Random Tree (RRT) algorithm that
generates collision-free Dubins paths, which are flyable for
the MAV. The RRT algorithm was initially developed in [20]
and has been widely used in robot path planning. The RRT
algorithm can quickly search the space of possible solutions
by extending a tree in random directions in the configura-
tion space. When the RRT algorithm is employed to plan a
path for the MAV, the nodes of the tree are potential MAV
configurations (position and heading) and the branches are
paths to the configurations. The tree initially consists of the
MAV location as a single node. A random configuration is
generated and the tree is extended toward that configuration,
creating a new branch and node. When a path is found or a
maximum number of iterations is reached, the RRT algo-
rithm terminates.

The RRT algorithm can easily handle kinematic con-
straints since these constraints are considered when adding
nodes to the tree. In the paper, we plan Dubins paths using
the RRT algorithm to ensure that the paths are kinematically
feasible. A Dubins path is defined as the path with the short-
est path length [21, 22]. When the RRT algorithm is used
to plan Dubins paths, branches between tree nodes are the
Dubins paths and collision check relies on the Dubins paths
instead of the straight lines.

Let q f represent a goal configuration and define the goal
region G(q f ) , {q ∈ C f ree : ∥q − q f ∥2D ≤ Rl and |qd −
q f d | ≤ H

2 }. Let ∂M(q(t)) = {q′ ∈ C : ∥q′ − q(t)∥2D =
Rl and |q′d −qd(t)| ≤ H

2 } represent the boundary of M(q(t)).
The idea of the local path planning algorithm is to plan
a collision-free path to a configuration on ∂M(q(t)) such
that the distance between the MAV and goal configura-
tions decreases and that the MAV will eventually be ma-
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neuvered to the goal region G(q f ). Figure 5 shows the ge-
ometry of the relative positions of the local-level frame
map centered at the current MAV configuration q(t) =
[qn(t),qe(t),qd(t),qψ(t)]⊤ and the goal configuration q f =
[q f n,q f e,q f d ,q f ψ ]

⊤. The cylinder C(q(t)) is centered at
[q f n,q f e,(q f d + qd(t))/2]⊤, and its radius and height are
∥q(t)−q f ∥2D and |qd(t)−q f d |. The cylinders M(q(t)) and
C(q(t)) intersect at line qIq′′I and line q′Iq

′′′
I .

Let S(q(t)) represent the set of configurations that are
on ∂M(q(t)) and that are contained in C(q(t)), as shown by
the red area in Fig. 5. If the MAV configuration q(t) satis-
fies ∥q(t)− q f ∥2D > Rl and satisfies |qd(t)− q f d | > H

2 , i.e.
the MAV is outside of the goal region, for a configuration
q′ ∈ S(q(t)), it must be that ∥q′ − q f ∥2D ≤ ∥q(t)− q f ∥2D
and |q′d −q f d | ≤ |qd(t)−q f d |. Let εr < Rl and εd <

H
2 repre-

sent two positive numbers. Define U(q(t)), {q′ ∈ S(q(t)) :
∥q(t)−q f ∥2D −∥q′−q f ∥2D ≥ εr and |qd(t)−q f d |− |q′d −
q f d | ≥ εd} as the set of configurations in S(q(t)) such that
the distance between each configuration in U(q(t)) and the
goal is closer than the distance between q(t) and the goal by
a finite amount.

Fig. 5 This figure shows the geometry of relative positions of the local-
level frame map centered at the MAV configuration q(t) and the goal
q f . The cylinder M(q(t)) is the local-level frame map with the radius Rl

and height H. The cylinder C(q(t)) is centered at [q f n,q f e,
q f d+qd (t)

2 ]⊤

and its radius and height are ∥q(t)−q f ∥2D and |qd(t)−q f d |. The cylin-
ders M(q(t)) and C(q(t)) intersect at line qIq′′I and line q′Iq

′′′
I .

The local path planner uses the RRT algorithm to gen-
erate a collision-free Dubins path to a configuration in
U(q(t)) from the current MAV configuration q(t), as shown
in Algorithm 1, so that the distance between the MAV and
goal configurations decreases. In line 1 a tree T l is initial-
ized to contain one node − the current MAV configuration
q(t). The while loop in Lines 2-10 adds nodes to the tree
T l until a configuration in U(q(t)) is included to the tree
or the maximum number of iterations is reached. In Line
3 a random configuration qrand is uniformly drawn from
M(q(t))\U(q(t)) with probability P and from U(q(t)) with

probability 1−P. Line 4 finds the node qnear in the tree T l

that is closest to qrand and Line 5 finds the Dubins path be-
tween qnear and qrand . If the Dubins path is feasible and sat-
isfies the maximum flight path angle constraints as checked
in Line 6, qrand is added to the tree T l as a tree node in Line
7 and the Dubins path is added to T l as a tree edge in Line
8. Once the iteration loop has been executed, the algorithm
checks whether a configuration in U(q(t)) is connected to
the tree T l in Line 11. If such a configuration is connected
to T l , the path from q(t) to that configuration is extracted
in Line 12. Otherwise, a tree node is randomly picked and a
path from q(t) to that tree node is extracted in Line 15.

Algorithm 1: plan RRT Dubins

1 Initialize the tree T l so that it only contains q(t);
2 while No configuration in U(q(t)) is connected to the

tree and the maximum number of iteration is not
reached do

3 Uniformly draw a random configuration qrand
from M(q(t))\U(q(t)) with probability P and
from U(q(t)) with probability 1−P;

4 Find the node qnear in the tree T l that is closest to
qrand ;

5 Find the Dubins path between qnear and qrand ;
6 if the Dubins path is feasible and satisfies the

maximum flight path angle constraints then
7 Add qrand as a tree node to T l ;
8 Add the Dubins path as a tree edge to T l ;
9 end

10 end
11 if A configuration in U(q(t)) is connected to the tree

T l then
12 Extract the path from q(t) to that configuration;
13 end
14 else
15 Randomly pick a tree node and extract the path

from q(t) to that tree node;
16 end

Note that for some environments there may not always
exist a configuration in U(q(t)) that leads to a collision-free
path from q(t). In Section 5 we will determine the character-
istics of the environments in which there exist configurations
in U(q(t)) that result in collision-free paths from q(t) for all
time t given a suitable initial MAV configuration.

The path generated by the RRT algorithm may include
numerous extraneous configurations that may cause unnec-
essary maneuvering, and should therefore be smoothed. We
design a fast and effective configuration elimination algo-
rithm to smooth the path. This algorithm walks through the
path from the beginning to the end nodes, eliminating un-
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necessary nodes along the way. It initially looks at the first
node and tries to find the last node in the path to which the
first node can be directly connected without collision. It is
guaranteed to at least connect to one node in the graph. If the
only node that can be connected is the next node in the path,
the algorithm moves forward one step and tries to connect
the second node to the last possible node. If the first node
can be connected to any other node, all intermediate nodes
are eliminated and the algorithm moves forward to the con-
necting node and repeats the process until a connection to
the end node is found. Using this algorithm, all intermediate
nodes that can be skipped without causing any collision are
eliminated from the path.

5 Analysis

In this section, we analyze the behavior of the local planning
algorithm. We first describe the characteristics of the envi-
ronments in which the algorithm is guaranteed to generate
collision-free paths for the MAV and we then illustrate un-
der what environments the MAV is guaranteed to be maneu-
vered to the goal region using the local planning algorithm.
We focus our analysis on the environments with cylindrical
obstacles. The analysis is based on the following assump-
tion.

Assumption 1 The local path planning algorithm is com-
plete and is guaranteed to find a collision-free path in finite
time when one exists in the local map.

By this assumption, our analysis applies to any planning
algorithm that is guaranteed to generate a collision-free path
in finite time when there exists one in the environment. As
shown in [23], the RRT algorithm is probabilistically com-
plete, which means the probability that the RRT algorithm
is guaranteed to find a collision-free path when one exists
goes to one as the number of the RRT nodes goes to infin-
ity. References [23, 24] show the probability converges to
one exponentially fast with the number of random samples
used to construct the tree. Reference [3] develops a random-
ized planning algorithm that is a variant of the RRT algo-
rithm, and shows the bound of convergence rate in terms of
geometric complexity of the environment, which cannot be
measured easily for nontrivial environments. Characterizing
the convergence rate of the RRT algorithm in terms of sim-
ple parameters that can be checked remains an open prob-
lem. However, our experience is that the local planner using
the RRT algorithm consistently finds collision-free paths for
multiple obstacle avoidance scenarios in finite time.

5.1 Collision Avoidance

For collision avoidance, we design the local planning algo-
rithm that searches a collision-free path in the local-level

frame map until one is found. We analyze collision avoid-
ance behavior of the local planning algorithm that satis-
fies Assumption 1. To guarantee collision avoidance with
a cylindrical obstacle, it is necessary to establish a region
around the obstacle outside which the MAV is guaranteed to
avoid the obstacle using the local planning algorithm with
feasible inputs. Let qOi represent the center of an obstacle
Oi and let HOi represent the height of the obstacle. Define

F(qOi ,R
i
c,HOi), (16)

{q′ ∈ C : ∥q′−qOi∥2D ≤ Ri
c and q′d ≥−HOi}

as a cylinder region centered at qOi with the radius Ri
c and

with the height HOi . Let ϕmax and γmax represent the maxi-
mum roll and flight path angles of the MAV. The minimum
turning radius of the MAV is given by [21]

rmt =
V 2 cosγmax

g tanϕmax
. (17)

Since the distance between the MAV and an obstacle in-
creases if the absolute value of the bearing to the obstacle is
greater than π

2 , we say that the MAV successfully avoids the
obstacle if the MAV flies to a configuration with the bear-
ing equal to π

2 or −π
2 from an initial configuration without

causing collision with the obstacle.

Lemma 1 Given Assumption 1, if the initial MAV con-
figuration q0 is not contained in the cylinder region
F(qOi ,R

i
cmin,HOi) given by Eq. (16) with the radius

Ri
cmin =

√
(Ri + rmt)2 − r2

mt (18)

around a cylindrical obstacle Oi with the radius Ri and with
the height HOi , where rmt is the minimum turning radius of
the MAV given by Eq. (17), then the local planning algo-
rithm guarantees a collision free path from q0 to a config-
uration with the bearing angle equal to π

2 or −π
2 that is

arbitrarily close to the boundary of the obstacle.

Proof Consider the scenario where a MAV is flying at a
cylindrical obstacle Oi with a negative bearing angle η0,
as shown in Fig. 6. The minimum distance to the obsta-
cle by which the MAV has capability to avoid the obsta-
cle can be determined when the maximum roll angle and
the maximum flight path angle are applied and the gen-
erated circle with the minimum turning radius rmt is tan-
gent to the boundary of the cylindrical obstacle at q′. Based
on the geometry, the minimum distance is given by d =

−rmt sin |η0|+
√

r2
mt sin2 η0 +R2

i +2Rirmt −Ri. We can see
that when the MAV with an initial configuration q0 out-
side the cylinder region F(qOi ,Ri + d,HOi) flies at the ob-
stacle with the negative bearing angle η0, there must ex-
ist a configuration with the bearing angle equal to −π

2 ,
which leads to a collision-free path from q0 and which
is arbitrarily close to the boundary of the obstacle. Sim-
ilarly, for η0 > 0, there must exist such a configuration
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with the bearing angle equal to π
2 . When η0 = 0, d reaches

its maximum value dmax =
√
(Ri + rmt)2 − r2

mt − Ri. Let
Ri

cmin = dmax + Ri =
√
(Ri + rmt)2 − r2

mt . Therefore, if the
initial MAV configuration q0 is not contained in the cylinder
region F(qOi ,R

i
cmin,HOi), there must exist a collision-free

path from q0 to a configuration with the bearing angle equal
to π

2 or −π
2 that is arbitrarily close to the boundary of the

obstacle. In addition, since the local planning algorithm sat-
isfies Assumption 1, it is guaranteed to find the collision-free
path. ⊓⊔

Fig. 6 This figure shows the geometry of the scenario projected onto
x-y plane of the inertial frame where the MAV is flying at a cylindri-
cal obstacle with the bearing angle η0 and avoiding the obstacle by
banking in right direction.

For environments with multiple cylindrical obstacles, we
specify the conditions under which the local planning algo-
rithm guarantees collision-free paths for the MAV. We refer
the cylinder region F(qOi ,R

i
cmin,HOi) of the ith obstacle to

the unsafe region for that obstacle and define the shortest
distance between the points on the boundaries of the ith and
the jth obstacles as

di j , min
pi∈∂Oi,p j∈∂O j

√
(pin − p jn)2 +(pie − p je)2, (19)

where pi = [pin, pie, pid ]
⊤ and p j = [p jn, p je, p jd ]

⊤. Let I
represent the index set of all obstacles. We introduce the no-
tion of a passable environment.

Definition 1 An environment is said to be passable if di j >

max{Ri
cmin −Ri,R

j
cmin −R j} for every i and j in I , where

di j is the distance between the ith and jth obstacles given
by Eq. (19), Ri and R j are the radii of the ith and the jth

obstacles, and Ri
cmin and R j

cmin are the radii of the unsafe
region for the ith and the jth obstacles given by Eq. (18).

In other words, an environment is passable if every pair
of obstacles is separated by a distance that is greater than
the maximum of the differences between the radii of their
unsafe region and their radii. This means that no points on
the boundary of an obstacle are contained in the unsafe re-
gion of any other obstacle in the environment. Theorem 1

describes the collision avoidance behavior of the planning
algorithm.

Theorem 1 Given Assumption 1, if the environment is pass-
able and if the initial MAV configuration q0 is not contained
in the unsafe region F(qOi ,R

i
cmin,HOi), ∀i ∈ I , then the

MAV will remain in C f ree for all time t using the local plan-
ning algorithm.

Proof Suppose that the MAV is initially located at q0, which
is not contained in the unsafe region F(qOi ,R

i
cmin,HOi),

∀i ∈ I , and suppose that the MAV will collide with the
obstacle Oi if it flies along its initial heading, as shown
in Fig. 7. Since q0 is not contained in the unsafe region
F(qOi ,R

i
cmin,HOi), ∀i ∈ I , based on Lemma 1, there ex-

ists a collision-free path from q0 to a configuration qA with
the bearing angle equal to π

2 or −π
2 , where qA is arbitrar-

ily close to Oi. In addition, since the environment is pass-
able, which implies di j > max{Ri

cmin −Ri,R
j
cmin −R j} for

every i and j in I , the configuration qA must be outside
the unsafe region F(qO j ,R

j
cmin,HO j), ∀ j ∈I \{i}. Accord-

ingly, there exists a collision-free path from qA to a config-
uration qB with the bearing angle equal to π

2 or −π
2 , where

qB is arbitrarily close to O j and where qB is also outside
F(qOk ,R

k
cmin,HOk), ∀k ∈ I \ { j}. This process can be re-

peated so that there always exist collision-free paths. Since
the local planning algorithm satisfies Assumption 1, it is
guaranteed to find the collision-free paths. Therefore, the
MAV will remain in C f ree for all time t using the local plan-
ning algorithm. ⊓⊔

Fig. 7 This figure shows the local path planning algorithm generates a
collision-free path for the MAV operating in the environment where the
distance between each two obstacles is greater than the maximum of
the differences between the radii of their unsafe region and their radii.
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5.2 Goal Reaching

In the previous section, we derived the conditions under
which the local planning algorithm guarantees collision-free
paths for the MAV. Now suppose that the objective is not just
to avoid obstacles, but to move to a region of a goal configu-
ration, where the MAV knows its own configuration and the
goal configuration in the inertial frame.

The proposed local planning algorithm is designed in the
local-level frame to maneuver the MAV from an initial con-
figuration q0 ∈ C f ree to a configuration in the goal region
G(q f ) = {q ∈ C f ree : ∥q−q f ∥2D ≤ Rl and |qd −q f d | ≤ H

2 }
as defined in Section 4. We introduce the notion of global
convergence to describe the performance of the local plan-
ning algorithm for goal reaching.

Definition 2 Given Assumption 1, for an initial configura-
tion q0 ∈C f ree and a goal configuration q f ∈C f ree, the local
planning algorithm is globally convergent if it finds a feasi-
ble path from q0 to the goal region G(q f ) without collisions.

Our objective is to specify the conditions under which
the local planning algorithm satisfying Assumption 1
achieves global convergence. Using a camera, we assume
that the camera measurements are accurate enough so that
the collision-free local path generated is safe until the MAV
has finished following the local path.

To guarantee goal reaching performance, we require the
local planning algorithm generates a path to a configuration
in U(q(t)) from the MAV configuration q(t) at all time t. To
achieve this goal, we require (a) the separation between ob-
stacles is large enough so that the local planning algorithm is
guaranteed to find collision-free paths from q(t) to collision-
free configurations on the boundary of the local-level frame
map; (b) the planning horizon, which is the radius of the
local map, is large enough so that there exist such collision-
free configurations in U(q(t)).

For achieving (a), if the MAV can avoid each obsta-
cle by banking in either direction, it will fly between each
two obstacles without collisions and will eventually reach
the boundary of the local map. Accordingly, we establish a
cylinder region around an obstacle outside which the MAV
is guaranteed to avoid the obstacle by banking in either di-
rection using the local planning algorithm.

Lemma 2 Given Assumption 1, if the initial MAV configu-
ration q0 is not contained in the cylinder region F(qOi ,Ri +
2rmt ,HOi) around a cylindrical obstacle Oi with the radius
Ri and with the height HOi , where rmt is the minimum turning
radius of the MAV given by Eq. (17), then the local planning
algorithm guarantees a collision-free path from q0 to a con-
figuration with the bearing angle equal to π

2 and a collision-
free path from q0 to a configuration with the bearing angle
equal to −π

2 , where the two configurations are arbitrarily
close to the boundary of the obstacle.

Proof Consider the scenario where the MAV is flying
at a cylindrical obstacle Oi with a negative bearing an-
gle η0, as shown in Fig. 8. The minimum distance to
the obstacle when the MAV has capability to avoid the
obstacle by banking in left direction can be determined
when the maximum roll and flight path angles are ap-
plied and the generated circle with the minimum turn-
ing radius rmt is tangent to the obstacle boundary at q′′.
Based on the geometry, the minimum distance is given

by d′ = rmt sin |η0|+
√

r2
mt sin2 η0 +R2

i +2Rirmt −Ri, which
is greater than the minimum distance d = −rmt sin |η0|+√

r2
mt sin2 η0 +R2

i +2Rirmt −Ri by which the MAV has ca-
pability to avoid the obstacle by banking in right direction.
Accordingly, if the MAV with an initial configuration q0 out-
side the cylinder region F(qOi ,Ri + d′,HOi) flies at the ob-
stacle with the negative bearing angle η0, there must exist a
configuration with the bearing angle equal to π

2 , which leads
to a collision-free path from q0 and which is arbitrarily close
to the boundary of the obstacle. In addition, there must exist
a configuration with the bearing angle equal to −π

2 , which
leads to a collision-free path from q0 and which is arbitrar-
ily close to the boundary of the obstacle. When η0 = π

2 ,
d′ reaches its maximum value 2rmt . Therefore, if the initial
MAV configuration q0 is not contained in the cylinder region
F(qOi ,Ri +2rmt ,HOi), there must exist a collision-free path
from q0 to a configuration with the bearing angle equal to π

2
and a collision-free path from q0 to a configuration with the
bearing angle equal to −π

2 , where the two configurations are
arbitrarily close to the boundary of the obstacle. Since the
local planning algorithm satisfies Assumption 1, it is guar-
anteed to find the collision-free paths. ⊓⊔

Fig. 8 This figure shows the geometry of the scenario projected onto
x-y plane of the inertial frame where the MAV is flying at a cylindri-
cal obstacle with the bearing angle η0, and avoiding the obstacle by
banking in left direction.

We say that a collision-free path goes through two ob-
stacles if there exist a configuration with bearing angle to
one obstacle equal to π

2 (- π
2 ) and a configuration with bear-

ing angle to the other obstacle equal to −π
2 ( π

2 ) along the
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path, as shown in Fig. 9. Lemma 3 shows the environment

(a) (b)

Fig. 9 This figure shows the examples of the collision-free paths that
go through two obstacles.

where the local planning algorithm guarantees collision-free
paths that go through each two obstacles and that reach the
boundary of the local map.

Lemma 3 Given Assumption 1, if di j > 2rmt , ∀i, j, and if
the initial MAV configuration q0 is not contained in the
cylinder region F(qOi ,Ri + 2rmt ,HOi), ∀i ∈ I , where rmt
is the minimum turning radius given by Eq. (17), di j is the
distance between the ith and jth obstacles given by Eq. (19),
then the local planning algorithm guarantees collision-free
paths that go through each two obstacles and that reach the
boundary of the local-level frame map for all time t.

Proof Since the initial MAV configuration q0 is not con-
tained in the cylinder region F(qOi ,Ri +2rmt ,HOi), ∀i ∈ I ,
based on Lemma 2, there exists a collision-free path from q0
to a configuration qA with the bearing angle to an obstacle Oi
equal to π

2 , where qA is arbitrarily close to the boundary of
the obstacle Oi. In addition, since di j > 2rmt , ∀i, j, qA must
be outside the cylinder region F(qO j ,R j + 2rmt ,HO j), ∀ j ∈
I \{i}. Accordingly, there exists a collision-free path from
qA to a configuration qB with the bearing angle to another
obstacle O j equal to −π

2 , where qB is arbitrarily close to
the boundary of O j. This means there exists a collision-free
path that goes through the obstacle Oi and the obstacle O j.
This process can be repeated so that there exists a collision-
free path that goes through each two obstacles for all time
t. Therefore, the local planning algorithm that satisfies As-
sumption 1 is guaranteed to find those collision-free paths
and the algorithm will drive the MAV to the boundary of the
local-level frame map for all time t. ⊓⊔

Besides the separation between obstacles, we also re-
quire the planning horizon (the radius of the local map)
is large enough so that U(q(t)) contains configurations to
which the local planning algorithm is guaranteed to drive
the MAV. We define the notion of local sparseness of an en-
vironment as follows.

Definition 3 An environment is said locally sparse if it sat-
isfies both: (a) di j > 2rmt , ∀i, j; (b) max

i
Ri +2rmt + εl < Rl ,

where rmt is the minimum turning radius given by Eq. (17),
di j is the distance between the ith and jth obstacles given by
Eq. (19), Ri is the radius of the ith obstacle, Rl is the size of
the planning horizon, and εl is a positive number.

In Definition 3, condition (a) places a restriction on sep-
aration between obstacles and requires that the distance be-
tween each two obstacles is greater than 2rmt , and condition
(b) places a restriction on the size of planning horizon.

Theorem 2 Given Assumption 1, if an environment is lo-
cally sparse and if an initial MAV configuration q0 that is not
contained in the cylinder region F(qOi ,Ri +2rmt ,HOi), ∀i ∈
I , then the local planning algorithm is globally convergent
for the initial MAV configuration q0 and a goal configura-
tion q f ∈ C f ree.

Proof The local sparseness of the environment implies di j >
2rmt , ∀i, j. Based on Lemma 3 the local planning algo-
rithm guarantees a collision-free path to a configuration q(t),
which is arbitrarily close to the boundary of an obstacle
Oi and which is outside the cylinder region F(qO j ,R j +
2rmt ,HO j), ∀ j ∈ I \ {i}, at time t from an initial MAV
configuration q0 outside F(qOi ,Ri+2rmt ,HOi), ∀i ∈I . Ac-
cordingly, the proof begins with the case where the MAV is
located at q(t).

Figure 10 shows the geometry of the relative position
of the local map centered at q(t) and the goal q f projected
onto the x-y plane of the local-level frame, where qs is the
intersection point of q(t)q f and the boundary of M(q(t)).
It is obvious that qs is the middle point on the arc from
qI to q′I . Let η f represent the inertial angle to q f . Based
on the geometry, the two dimensional distance between the
intersection points qs and qI is given by ∥qI − qs∥2D =
√

2Rl
√

1− Rl

2∥q f −q(t)∥2D
and decreases as ∥q f − q(t)∥2D de-

creases. When ∥q f − q(t)∥2D = Rl , which means the MAV
reaches the goal region, ∥qI − qs∥2D reaches its minimum
value Rl . That is, ∥qI −qs∥2D ≥ Rl .

Consider the worst case scenario that an obstacle O j
with the maximum radius is located at qs. Since di j >
2rmt , ∀i, j, based on Lemma 3 there exist collision-free paths
from q(t) that go between each two obstacles on the bound-
ary of the local map. If the distance between the obstacle and
qI , which is ∥qI − qs∥2D, is greater by a finite amount than
the total length of R j and 2rmt , there must exist a collision-
free path from q(t) to the collision-free portion on the arc
from qI to qs, which is contained in U(q(t)), by choos-
ing a suitable finite amount. Since the environment is lo-
cally sparse, which implies max

j
R j + 2rmt + εl < Rl , and

∥qI −qs∥2D ≥ Rl , there exists a collision-free path from q(t)
to U(q(t)) for all time t. For the case where the obstacle is
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located at any configuration other than qs, the longer dis-
tance between the obstacle and qI or q′I must be greater than
∥qI −qs∥2D in the worst case scenario. Therefore, the longer
distance is greater than max

j
R j + 2rmt + εl , which means

there must exist a collision-free path from q(t) to U(q(t))
for all time t. In addition, since the local planning algorithm
satisfies Assumption 1, it is guaranteed to find such a path to
U(q(t)). This process is repeated so that the distance be-
tween the MAV and the goal configurations decreases as
time progresses. The MAV will eventually reach the goal
region. ⊓⊔

HeadingHeading

Fig. 10 This figure shows the geometry of relative positions of the
local map centered at q(t) and the goal configuration q f projected onto
the x-y plane of the local-level frame.

The passability and local sparseness assumptions are
used to provide a theoretical guarantee in terms of environ-
ment properties, which can be checked prior to the flight, for
collision avoidance and goal reaching behaviors of the local
planning algorithm. However, we note that the assumptions
are only sufficient conditions for collision avoidance and
goal reaching, which implies there may exist environments
that do not satisfy the assumptions but where the planning
algorithm can still maneuver the MAV to the goal without
causing collisions.

6 Numerical results

The feasibility of the vision-based mapping and planning
algorithm was tested using a simulation environment devel-
oped in MATLAB/SIMULINK. The simulator uses a six
degree-of-freedom model for the aircraft, where a North-
East-Down (NED) coordinate system is used. We tested
the algorithm in two scenarios as described below. We also
conducted Monte Carlo simulations for testing the collision
avoidance and goal reaching behaviors of the algorithm in
environments with varying minimum distance between ob-
stacles to demonstrate that the behaviors degrade gracefully
as we relax the passability and local sparseness conditions.

In the simulations, the maximum roll angle and the maxi-
mum flight path angle for the MAV were 30◦ and 15◦.

6.1 Scenario I

In the first simulation scenario, the MAV was maneuvered
through twenty-five buildings between waypoint S (0,100,-
20) and waypoint E (600,700,-80), as shown in Fig. 11,
where the square and cross signs represent the waypoints
S and E. The heights of the buildings were randomly gen-
erated. A 20×20 pixel depth map was used. The param-
eters for the sweet spot measurement model were set at
a0 = 0.1528, a1 = 0.002, a2 = 0, a3 = 0.000076, and
a4 = 0.000076. The covariance matrix of the process noise

for each obstacle was Qi =

10 0 0
0 0.0076 0
0 0 0.0076

 and the

ground speed was V = 10 m/s.

Fig. 11 This figure shows the terrain for the first simulation scenario.
The MAV is maneuvered through 25 obstacles between waypoints S
and E, which are represented by square and cross signs.

Figure 12 shows the update of the local-level frame map
in cylindrical coordinates and the evolution of the path. Sub-
figures on the left show the local-level frame maps and Du-
bins paths based on the available information about the ob-
stacles at different time. Subfigures on the right show the
inertial paths followed by the MAV. Figure 13 shows the al-
titude of the MAV during the entire flight. Figure 14 shows
the tracking error for the range, azimuth to, and height of the
obstacle located at (150,250) using the EKF.

6.2 Scenario II

In the second simulation scenario, the MAV was com-
manded to maneuver through a simulated city called
Megacity as shown in Fig. 1. The path followed way-
point (−200,−300,−20) to waypoint (250,150,−80). A
640×480 pixel depth map was used. The parameters for the
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Fig. 12 This figure shows the update of the local-level frame map in
cylindrical coordinates and the evolution of the path for the first simu-
lation scenario. Subfigures on the left show the local-level frame maps
and paths based on the available information about the obstacles at dif-
ferent time. Subfigures on the right show the actual paths followed by
the MAV.

sweet spot measurement model were set at a0 = 0.1528,
a1 = 0.001, a2 = 0, a3 = 0.00002, and a4 = 0.00002.
The covariance matrix of the process noise was Qi =10 0 0

0 0.000076 0
0 0 0.000076

 and the ground speed was V =

10 m/s.
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Fig. 13 This figure shows the altitude of the MAV during the entire
flight.
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(b) Azimuth tracking error
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(c) Height tracking error

Fig. 14 This figure shows the tracking error for the range, azimuth to,
and height of the obstacle located at (150,250) using the EKF.

Figure 15 shows the local-level frame maps and the
corresponding collision-free paths as the MAV maneuvered
through the Megacity terrain. Subfigures in the first and sec-
ond columns show the camera views and the depth maps
at different time. Subfigures in the third column show the
update of the map and the evolution of the path in the local-
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Fig. 15 This figure shows the update of the local-level frame map in cylindrical coordinates and the evolution of the path for the second simulation
scenario. Subfigures in the first, second, and third columns show the camera view, depth maps, and the maps and paths in the local-level frame.
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level frame. Figure 16 shows the actual path followed by the
MAV for the Megacity terrain.
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Fig. 16 This figure shows the actual path followed by the MAV using
the local path planning algorithm for the second simulation scenario.

6.3 Monte Carlo simulations

The passability assumption of Theorem 1 and the local
sparseness assumption of Theorem 2 are only sufficient con-
ditions for collision avoidance and goal reaching of the lo-
cal planning algorithm. When the environment does not
satisfy the assumptions, the algorithm may still generate
collision-free paths and maneuver the MAV to the goal re-
gion. Accordingly, we conducted Monte Carlo simulations
to demonstrate this is true and to quantify the expected be-
havior of the algorithm.

For each environment with a fixed minimum distance
between obstacles, 100 simulation runs were executed. In
each simulation run, the MAV was maneuvered from the
initial position (0,100,-40) to the end position (580,580,-40)
through an environment. The environment was constructed
with each obstacle being added to the environment based
on a uniform distribution over the rectangular area with
the South-West corner (100,100) and the North-East cor-
ner (600,600) until no more obstacles could be added. The
radius and height of all obstacles were 20 meters and 100
meters respectively. We evaluated two criteria: the number
of collisions and the percentage of runs where the MAV
reached the goal. We conclude that the MAV reaches the
goal if it is maneuvered to the goal in t < 100 seconds with-
out causing collisions.

Figure 17 plots the average number of collisions over
100 simulation runs and the percentage of runs where the
MAV reached the goal versus the minimum distance be-
tween obstacles for the case where the measurement uncer-
tainties are given by the sweet spot model with the param-
eters a0 = 0.1528, a1 = 0.001, a2 = 0, a3 = 0.000076, and
a4 = 0.000076, and for the case where the measurement un-
certainties do not exist. The solid and dashed lines show the

results for the cases with and without measurement uncer-
tainties respectively. For the case with the measurement un-
certainties, the number of collisions decreases dramatically
as the minimum distance between obstacles increases from
5 to 20 meters. After the minimum distance is greater than
20 meters, the number of collision decreases slowly. Simi-
lar results happen to the percentage of runs where the MAV
reached the goal. This is because collisions become less
frequent as the environments become more sparse. Given
V = 13 m/s, ϕmax = 30◦, θmax = 15◦, and Ri = 20 meters,
the minimum distance that satisfies the passability condi-
tion is 19.42 meters. Accordingly, when the minimum dis-
tance is greater than or equal to 20 meters, the environments
are passable and the local planning algorithm guarantees
collision-free paths if the obstacle locations are perfectly
known, which corresponds to the dashed line in Fig. 17 (a).
Since the estimation uncertainties exist, the MAV still en-
counters a small number of collisions, which corresponds to
the solid line in Fig. 17 (a). When the minimum distance is
60 meters, which is greater than the distance 2rmt = 57.70
meters for the local sparseness condition, the environment
is locally sparse and the percentage of runs where the MAV
reached the goal is 100%, as shown in Fig. 17 (b).

In addition, when the minimum distance between obsta-
cles is less than 19.42 meters, the average number of col-
lisions is less than one. This implies that the local plan-
ning algorithm generates collision-free paths for the envi-
ronments that are not passable, and that the passability is
only a sufficient condition for collision avoidance of the
planning algorithm. Similarly, for the environments with the
minimum distance less than 57.70 meters, the percentage of
runs where the MAV reached the goal is nonzero. When the
minimum distance is 50 meters and 55 meters, the percent-
age is 100%. Accordingly, the local planning algorithm can
drive the MAV to the goal for the environments that are not
locally sparse and the local sparseness is only a sufficient
condition for goal reaching of the planning algorithm.

7 Conclusions

This paper presents a vision-based local-level frame map-
ping and path planning technique for collision avoidance
for MAVs operating in unknown environments. We create
the local-level frame maps in cylindrical coordinates for ad-
dressing the three dimensional path planning problem with-
out transforming the camera data to the inertial frame. An
EKF that takes into account the correlations between obsta-
cles is used to jointly estimate the range, azimuth, and height
for all obstacles. The data association problem is solved in
the local-level frame using the joint compatibility branch
and bound approach. Dubins paths are planned in the local-
level frame using the RRT algorithm. We analyze the be-
havior of the local path planning technique and describe the
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Fig. 17 This figure shows the statistical performance of the local plan-
ning algorithm implemented in the environments with varying mini-
mum distance between obstacles for the cases with and without mea-
surement uncertainties. Subfigure (a) plots the average number of colli-
sions over 100 simulation runs versus the minimum distance. Subfigure
(b) plots the percentage of runs where the MAV reached the goal versus
the minimum distance.

characteristics of the environments in which the technique
guarantees collision-free paths and drives the MAV to the
goal region. Numerical results show that the proposed tech-
nique is successful in solving path planning and multiple
obstacle avoidance problems for MAVs.
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