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Abstract—In this paper, we present a probabilistic path
planning algorithm for tracking a moving ground target in
urban environments using UAVs in cooperation with UGVs. The
algorithm takes into account vision occlusions due to obstacles in
the environments. The target state is modeled using a dynamic
occupancy grid and the probability of the target location is
updated using a Bayesian filter. Based on the probability of
the target’s current and predicted locations, the path planning
algorithm is first designed to generate paths for a single UAV
or UGV maximizing the sum of probability of detection over
a finite look-ahead. For target tracking using multiple vehicle
collaboration, a decentralized planning algorithm using an
auction scheme generates paths maximizing the sum of the joint
probability of detection over the finite look-ahead horizon. The
decentralized planning algorithm results in linear computational
growth in the number of surveillance vehicles.

Index Terms—target tracking, cooperative control, path plan-
ning, miniature air vehicles.

I. INTRODUCTION

Small unmanned air vehicles (UAVs) have recently found
applications in the task of tracking moving targets on the
ground. Many approaches to this topic have been presented
in the last few years [1]–[4]. The main advantages of target
tracking using UAVs are that they have a wide field of view
and can cover large areas quickly. However, sensors mounted
on UAVs are unable to localize the target on the ground
accurately due to the limitations on altitude and airspeed.
On the other hand, unmanned ground vehicles (UGVs) are
slower with limited field of view, but they are capable of
getting closer to targets and resolving their relative locations
with greater accuracy [5]. In addition, in a pursuit-evasion
scenario, a ground vehicle has the ability to ”capture“ a
target, whereas an aerial vehicle can only observe and inform.
Accordingly, the complimentary strength of air and ground
based sensors motivates the cooperative use of both UAVs
and UGVs for target tracking.

Some approaches to the target tracking problem using
both UAVs and UGVs have been proposed. Reference [6]
describes an information based approach to UAV/UGV coop-
erative tracking. This approach works well when the targets
are static, and when the environment is relatively free of
occlusions, allowing the efficient use of log-likelihood filters,
but it is ill-suited to tracking evasive targets in complicated
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urban environments. Air and ground vehicle cooperation in
a probabilistic pursuit-evasion framework is considered in
reference [7]. But this approach does not consider sensor
data fusion, complex terrain, or planning for occluded vision.
Reference [8] presents a control scheme that guides a team of
UGVs into a formation to effectively “corral” targets into a
specific region, while a team of UAVs fly over the formation
to detect targets. The approach assumes large teams of air and
ground robots, and does not consider the effect of occlusions,
non-navigable terrain, and data fusion.

This paper presents a probabilistic path planning algorithm
for tracking a moving target in urban environments using
both UAVs and UGVs. Urban terrain complicates the tracking
problems because the large number of buildings and other
obstacles occlude the line of sight between the sensors and
the target. The main contribution of the proposed planning
algorithm is to take into account the occlusions due to obsta-
cles. We model the target state using a dynamic occupancy
grid and use a second-order Markov chain model to represent
the target motion. The probability distribution on the target
location is updated using a Bayesian filter. For designing the
planning algorithm, we define the probability of detection
given the locations of the sensor and the target using a
Gaussian function of the distance between the sensor and
the target. To include the effect of occlusions, the probability
of detection for the configurations where occlusions exist is
assigned as zero. Based on the probability of detection of the
target’s current and predicted future locations, we design the
path planning algorithm for independent target tracking by
a single vehicle (UAV or UGV). The algorithm generates
optimal paths maximizing the sum of the probability of
detection over a finite look-ahead horizon.

For cooperative target tracking using multiple UAVs and
UGVs, we define the joint probability of detection and
design a decentralized suboptimal approach relying on an
auction scheme to generate optimal paths maximizing the
sum of joint probability of detection over the finite look-
ahead horizon. The advantage of this approach is that it
results in linear computational growth as the number of
vehicles increases.

This paper is organized as follows. Section II describes
the target state modeling and estimation using a dynamic
occupancy grid. In Section III, the path planning algorithm
for target tracking using a single UAV or UGV is introduced.
Section IV introduces the decentralized path planning algo-
rithm for cooperative target tracking using multiple UAVs
and UGVs. Numerical results are described in Section V.



Fig. 1. The dynamic target occupancy grid.
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Fig. 2. The target motion model. The target moves forward from time step
t−1 to t. Accordingly, the target will be assumed to move forward with a
high probability Pc at time step t +1. The probability 1−Pc will be equally
divided between the neighboring cells.

II. TARGET STATE MODELING AND ESTIMATION

In order to plan paths for a UAV/UGV to track the target,
we must estimate the target state at each time step. In this
section, we describe the method for target state estimation
using a dynamic occupancy grid. A discrete probabilistic
model of the target motion is constructed to predict the target
location using a second-order Markov chain, and is then
combined with Bayes-filtered sensor measurements to update
the target location.

Using a dynamic occupancy grid is a classical approach
for addressing the problem of generating consistent maps
from noisy and uncertain measurement data [9]. The basic
idea is to represent the map as a spatial grid, where each
occupancy cell has a random variable s associated with it.
The random variable s has two states, occupied and empty,
which correspond to the occupancy of that cell. We use a
dynamic occupancy grid to represent changing belief about
the target location. Figure 1 shows the dynamic occupancy
grid of the target location. To calculate the probability that
the target will be in a given cell at time t + 1 we use data
from the current and previous time steps, which is a second-
order Markov model, and assume that the target will most
likely proceed along its direction, as shown in Fig. 2. In
the figure, the target moves forward from time step t−1 to t.
Accordingly, the target will be assumed to move forward with
a high probability Pc at time t+1. The probability 1−Pc will
be equally divided between the neighboring cells, as shown
in Fig. 2 (c). One of the advantages of using a probabilistic
model of the target motion is that several potential target
paths can be captured simultaneously.

Let xT (t) represent the target state at time t and let
P(xT (t)) represent the posterior probability that the target is

at xT (t), which is used as the prior probability of the target
location at time t+1. The dynamic occupancy grid utilizes a
Bayesian filter to implement approximate posterior estimation
for each grid cell. The Bayesian filter consists of two phases:
prediction and update. The prediction phase uses the target
motion model given by P(xT (t + 1)|xT (t),xT (t− 1)), which
represents the probability that the target is at xT (t + 1) at
time t +1 given its location xT (t) at time t and its location
xT (t − 1) at time t − 1. As mentioned above, we represent
the target motion model using a second-order Markov chain.
The predicted target probability at time t +1 before the new
measurements are taken into account are then given by

P̄(xT (t +1)) =∫ ∫
P(xT (t +1)|xT (t),xT (t−1)) · (1)

P(xT (t−1)) ·P(xT (t))dxT (t−1)dxT (t).

When the position of the target is observed by a member of
the UAV/UGV team, the occupancy grid is updated to reflect
the new information. This update is the measurement phase in
the Bayesian filter. Let N represent the number of vehicles on
the UAV/UGV team. The measurement model is represented
by P(zi|xT ) which is the probability of receiving the mea-
surement zi from the ith observation platform (UAV/UGV)
given that the target is located at xT . We assume that all N
vehicles can communicate with each other and share their
measurements with each other as global information. Under
the assumption that the measurements made by each vehicle
are independent, the posterior probability that the target is at
xT (T +1) at time step t +1 is given by

P(xT (t +1)) = η
N

∑
i=1

P(zi|xT )P̄(xT (t +1)), (2)

where η is a normalization factor. Equations (1) and (2)
constitute the Bayesian filter for updating the posterior
probability of the target location. We should note that if a
measurement is not received at every time step, then the
probability of the target location is updated using Eq. (1).
At the beginning of an observation mission, when the target
has not been observed by any platforms, the probability of
the target location can be initialized as a uniform distribution.
However, if priori information is known, then the probability
map can be initialized using this information.

III. PATH PLANNING FOR A SINGLE VEHICLE BASED ON
PREDICTED TARGET BEHAVIOR

Given the probability of the target’s current and probable
future locations computed using the procedure described in
the previous section, we design a path planning algorithm for
tracking the target by a single vehicle (UAV or UGV). The
objective of the algorithm is to generate a parameterized path
over a finite look-ahead TL. Future paths can be parameterized
in a number of different ways including a set of roll angles
or a set of waypoints. To be general, let Θi represent the
path parameterization over the time horizon [t, t+TL]. We use



Fig. 3. The probability of detection when buildings occlude the line of
sight vector. The location of the target is at (0,0) and the location of the
sensor is varied.

the notation xi(t,σ ,Θi) to represent the predicted location of
the ith sensor platform (UAV/UGV) at time t +σ , given its
current location at time t, and the path parameterization Θi,
where σ ∈ [0,TL].

Let Di represent the event that the target is detected by the
ith vehicle, and let P(Di|xi,xT ) represent the probability that
the target is detected by the ith vehicle when it is at xi and
the target is at xT . We represent P(Di|xi,xT ) as a Gaussian
function of the distance between the target and the sensor:

P(Di|xi,xT ) = η exp(−1
2
(xi− xT )

⊤Σ−1(xi− xT )), (3)

where Σ is the covariance and η is a normalization factor.
Please note that other non-Gaussian distribution functions
can be used to represent P(Di|xi,xT ) as well. The plan-
ning algorithm does not require the Gaussian distribution
assumption and we use the Gaussian distribution only as an
example. In this paper, we pay particular attention to the
problem of tracking a moving target in urban and cluttered
environments where occlusions due to buildings and other
terrain are prevalent. We assume that an elevation map of the
environment is available to the vehicles before the mission
begins. To include the effect of occlusions, we also include
the map as a dependence in the probability of detection where
P(Di|xi,xT ,m) is the probability that the target is detected by
the ith vehicle given that the ith vehicle is at xi, the target is
at xT , and the map is given by m. We then compute

P(Di|xi,xT ,m) = η
{

P(Di|xi,xT ) LOS is not occluded,
0 otherwise,

(4)

where again, η is a normalization factor. Figure 3 shows an
example probability of detection in an urban environment. In
this example, the target location xT is held constant at (0,0),
while the vehicle location xi is varied in one meter increments
on both axes. As shown, when a building occludes the line
of sight, the probability of detection is zero. Occlusions are
detected by testing each line of sight vector for intersections
with each building polygon in the map. Since we assume
that the map is known, P(Di|xi,xT ,m) can be precomputed
for each pair of xi and xT and stored in memory.

Using the law of total probability, the probability that the
target is detected when the ith vehicle is at xi is

P(Di|xi) =
∫

P(Di|xi,xT )P(xT )dxT . (5)

We are interested in maximizing the probability of detection
over the future time horizon [t, t+TL]. Using the path param-
eterization discussed above, we have that the probability of
detection at future time σ ∈ [0,TL] is given by

P(Di|xi(t,σ ,Θi)) = (6)∫
P(Di|xi(t,σ ,Θi),xT (t +σ))P(xT (t +σ))dxT (t +σ).

For optimizing the path parameterization Θi, we propose a
return function, which measures the sum of probability of
detection over the look-ahead window and is given by

Ji(Θi) =
∫ TL

0
P(Di|xi(t,σ ,Θi))dσ . (7)

The myopic planning problem for a single vehicle is then to
find Θi to maximize Ji(Θi). The optimum path parameters
are then passed to the low level autopilot and followed for a
time less than or equal to TL.

For independent target tracking using a UAV, we param-
eterize the paths by roll angles since different roll angles
generate different paths. Let Φi = [−ϕmax,ϕmax] represent
the set of roll angles, where ±ϕmax is the positive/negative
maximal roll angle. An optimization method can be used to
find the optimal roll angle over the set Φi that maximizes
Ji(Θi).

To solve the optimization problem, in this paper we
discretize Φi as a finite set of roll angles represented by
Φid = {ϕ1,ϕ2, · · · ,ϕm}, where ϕ1 = −ϕmax and ϕm = ϕmax
and we also discretize the look-ahead window [0,TL] as
Td = {0,∆σ , · · · ,n∆σ}, ∆σ = TL/n, which is the n-step look-
ahead horizon. Let Θa

i ∈ Φid × ·· · ×Φid represent the path
parameterization over the n-step look-ahead horizon. For the
n-step look-ahead planning horizon, the cost function given
by Eq. (7) becomes

Ji(Θa
i ) =

n

∑
j=0

P(Di|xi(t, j∆σ ,Θa
i )). (8)

To maximize the return function given by Eq. (8), we
recursively search a tree representing a set of potential paths
over the n-step look-ahead horizon. Each node in the tree
represents the UAV configuration at a certain stage and it
has multiple children, each of which represents the resulting
configuration at the next stage corresponding to a certain roll
angle.

The path planning algorithm for target tracking using
a single UAV can be described as follows. When the
UAV is at the configuration xi(t,0,Θa

i ) at time t, the al-
gorithm has already determined an optimal path τi(t) =
{xi(t,0,Θa

i ),xi(t,∆σ ,Θa
i ), · · · ,xi(t,n∆σ ,Θa

i )}. The UAV is
maneuvered towards xi(t,∆σ ,Θa

i ). During that period, the
algorithm first takes xi(t,∆σ ,Θa

i ) as the tree root and the tree
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Fig. 4. A two-step look-ahead path planning tree for the UAV, where
Td = {0,∆σ ,2∆σ} and Φid = {ϕ1,ϕ2,ϕ3}.

is pruned by only maintaining the branches with the root at
xi(t,∆σ ,Θa

i ). The tree is then extended by one stage and the
new tree is searched to find a new path τi(t +∆σ). Once the
UAV reaches xi(t,∆σ ,Θa

i ), the new path τi(t +∆σ) has been
generated. We repeat this process recursively so that the UAV
is always maneuvered to configurations where the probability
of detection is high.

Figure 4 shows a two-step look-ahead planning horizon
tree, where Td = {0,∆σ ,2∆σ} and Φid = {ϕ1,ϕ2,ϕ3}. When
the UAV is at the configuration xi(t,0,Θa

i ) at time t and
the path τi(t) = {xi(t,0,Θa

i ),xi(t,∆σ ,Θa
i ),xi(t,2∆σ ,Θa

i )} has
been found, as shown in Fig. 4(a). In Fig. 4(b), the UAV is
maneuvered to xi(t,∆σ ,Θa

i ) and the branches whose root is
not at xi(t,∆σ ,Θa

i ) are removed. The tree is then extended by
one step horizon and the new tree is searched to find a new
path τi(t+∆σ) = {xi(t+∆σ ,0,Θa

i ),xi(t+∆σ ,∆σ ,Θa
i ),xi(t+

∆σ ,2∆σ ,Θa
i )}. Once the UAV reaches xi(t,∆σ ,Θa

i ), the new
path τi(t + ∆σ) has been found. Given a tree, searching
the tree and finding a path can be solved efficiently using
dynamic programming [10].

For independent target tracking using a single UGV, we
decompose the roads into cells and construct a graph using
those cells since the UGV can only move along the roads.
Similarly, we discretize the look-ahead window [0,TL] as
the n-step look-ahead horizon Td = {0,∆σ , · · · ,n∆σ}, where
∆σ = TL/n. For each stage, the paths to the next stage are
parameterized by the waypoints, denoted by Θg

i , which are
the centers of the neighboring cells. The cost function to be
maximized for target tracking using a single UGV is given
by

Ji(Θg
i ) =

n

∑
j=0

P(Di|xi(t, j∆σ ,Θg
i )). (9)

Similarly, the n-step look-ahead planning horizon tree is
constructed. The connectivity of the graph determines the
extension of the tree. Figure 5 shows a two-step look-ahead
planning horizon tree, where the circles represent the nodes
and the tree is extended based on the connectivity of the
graph. At time t, the UGV is at the configuration xi(t,0,Θg

i )
and the path τi(t) = {xi(t,0,Θg

i ),xi(t,∆σ ,Θg
i ),xi(t,2∆σ ,Θg

i )}
has been found as shown in Fig. 5(a). The UGV is ma-
neuvered to xi(t,∆σ ,Θg

i ) and the branches whose root is
not at xi(t,∆σ ,Θg

i ) are removed, as shown in Fig. 5(b).
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Fig. 5. A two-step look-ahead path planning tree for the UGV.

The tree is then extended by one stage and the new tree
is searched to find a new path τi(t + ∆σ) using dynamic
programming. Once the UGV reaches xi(t,∆σ ,Θg

i ), the new
path τi(t+∆σ) = {xi(t+∆σ ,0,Θg

i ),xi(t+∆σ ,∆σ ,Θg
i ),xi(t+

∆σ ,2∆σ ,Θg
i )} has been found.

IV. PATH PLANNING FOR MULTIPLE VEHICLE
COLLABORATION

The approach described in the previous section can easily
be extended to multiple vehicles. Let I be an index set of
vehicles and let xI be the combined state of all vehicles
whose index is in I. Let DI represent the event that at least
one vehicle in I can detect the target. The probability that at
least one of vehicles detects the target given xI and the target
location xT is denoted by P(DI |xI ,xT ). It can be shown using
standard probabilistic reasoning, that if the measurements
made by each vehicle are independent, then

P(DI |xI ,xT ) = 1−∏
i∈I

(1−P(Di|xi,xT )) . (10)

This formula is significant, because it shows that the joint
probability of detection can be computed by combining the
probability of detection for each vehicle. The probability that
at least one of vehicles detects the target given xI is denoted
by

P(DI |xI) =
∫

P(DI |xI ,xT )P(xT )dxT . (11)

Let ΘI be the combined path parameters for all vehicles
in the index set I. We can define the optimization criteria
similar to Eq. (7) that are over the index set I, where

J(ΘI) =
∫ TL

0
P(DI |xI(t,σ ,ΘI))dσ . (12)

The joint team optimization problem is to let I include all
UAVs and UGVs on the team, and to maximize the return
function J(ΘI) at each planning instant. Unfortunately, this
problem is NP-complete and so the computational time will
grow exponentially in the number of UAVs and UGVs. In
addition, solving the full joint optimization problem requires
a centralized implementation. To mitigate these problems, we
propose using a decentralized suboptimal approach that relies
on an auction scheme. To best describe our approach, we need
some additional notation. Let I and K represent two index
sets where I

∩
K = /0, and let J(ΘI |ΘK) represent the return

function defined by Eq. (12) but where the path parameters



for the vehicles in I are free variables and the path parameters
for the vehicles in K are fixed.

Consider that there are N vehicles in the groups. The
decentralized algorithm that we use consists of N steps. Let
Θ j

i represent the path parameterization for the ith vehicle at
the jth step of the algorithm. The first step of the algorithm
is for each vehicle to maximize J(Θ1

i ), i = 1, · · · ,N, and to
send the optimal myopic return to the other vehicles in the
network. If k1 is the index of the vehicle such that k1 =
argmax

i
(J(Θ1

i )), then the path of the (k1)
th vehicle over the

look-ahead window [0,TL] is parameterized by Θ1
k1

, and each
vehicle assigns K = k1. At the second step, the remaining
vehicles maximize J(Θ2

i |ΘK), i = 1, · · · ,k1−1,k1 +1, · · · ,N
and send the resulting optimal value to the group. If k2 is
the index of the vehicle such that k2 = argmax

i
(J(Θ2

i |ΘK)),

then the path of the (k2)
th vehicle is parameterized by Θ2

k2
.

The (k2)
th vehicle is added to K such that K = {k1,k2}.

The process repeats until all vehicles {k1,k2, · · · ,kN} have
been assigned path parameters {Θ1

k1
,Θ2

k2
, · · · ,ΘN

kN
}. For the

N vehicles, N−1 auctions will be required. Let |Θi| represent
the cardinality of the set Θi. The advantage of this approach is
that rather than optimizing over |Θi|N parameters, the process
requires N optimizations over |Θi| parameters, resulting in
linear computational growth. Algorithm 1 shows the decen-
tralized path planning algorithm.

Algorithm 1: The decentralized path planning algorithm

1 Initialize I = {1,2, · · · ,N}, K =∅;
2 for j← 1 to N do
3 Each UAV optimizes its own myopic return

J(Θ j
i |ΘK), ∀i ∈ I;

4 Find the vehicle with the maximum myopic return;
5 Parameterize the path for that vehicle using the path

parameters causing the maximum myopic return;
6 Remove the vehicle index from I and add the

vehicle index to K.
7 end

We compare the suboptimal solution obtained by the
decentralized algorithm and the optimal solution obtained by
maximizing the joint return function (12) over all vehicles.
We first present two properties of the return function (12), as
shown in Lemmas 1 and 2.

Lemma 1: The cost function (12) satisfies J(ΘI∪L) −
J(ΘL)≥ J(ΘI∪K)− J(ΘK), ∀L⊆ K.

Proof: Based on Eq. (10), we can see that, ∀L⊆ K

P(DI∪L|xI∪L,xT )−P(DL|xL,xT )

−P(DI∪K |xI∪K ,xT )+P(DK |xK ,xT ) =

− ∏
i∈I∪L

(1−P(Di|xi,xT ))+∏
i∈L

(1−P(Di|xi,xT ))

+ ∏
i∈I∪K

(1−P(Di|xi,xT ))−∏
i∈K

(1−P(Di|xi,xT )) =(
1−∏

i∈I
(1−P(Di|xi,xT ))

)
·(

∏
i∈L

(1−P(Di|xi,xT ))−∏
i∈K

(1−P(Di|xi,xT ))

)
≥ 0.

Substituting the above inequality into Eqs. (11) and (12) leads
to J(ΘI∪L)− J(ΘL)− J(ΘI∪K)+ J(ΘK) ≥ 0, ∀L ⊆ K, which
completes the proof.

Lemma 2: The cost function (12) satisfies J(ΘI)≤ J(ΘK),
∀I ⊆ K.

Proof: Based on Eq. (10), we can see that, ∀I ⊆ K,

P(DI |xI ,xT )−P(DK |xK ,xT ) =

−∏
i∈I

(1−P(Di|xi,xT ))+∏
i∈K

(1−P(Di|xi,xT )) =

∏
i∈I

(1−P(Di|xi,xT ))

(
∏

i∈K\I
(1−P(Di|xi,xT ))−1

)
≤ 0.

Substituting the above inequality into Eqs. (11) and (12) leads
to J(ΘI)− J(ΘK) ≤ 0, ∀I ⊆ K, which completes the proof.

Lemmas 1 and 2 show that the return function (12)
satisfies the submodular and nondecreasing properties pre-
sented by [11]. The submodular property of an objective
function states that the more measurements are added to the
objective function, the less valuable an individual measure-
ment becomes. The nondecreasing property of an objective
function indicates that the addition of a measurements to the
objective function increases the value of the function [11].
Let {Θ̄1, · · · ,Θ̄N} and {Θ̂1, · · · ,Θ̂N} represent the optimal
path and the suboptimal path generated by Algorithm 1,
respectively, for a team of N vehicles. Theorem 1 shows the
comparison of the optimal and suboptimal solutions.

Theorem 1: For a team of N vehicles, the decen-
tralized path planning algorithm given by Algorithm 1
generates a suboptimal path {Θ̂1, · · · ,Θ̂N}, such that
1
2 J({Θ̄1, · · · ,Θ̄N}) ≤ J({Θ̂1, · · · ,Θ̂N}) ≤ J({Θ̄1, · · · ,Θ̄N}),
where {Θ̄1, · · · ,Θ̄N} is the optimal path and J(·) is the return
function given by Eq. (12).

Proof: Since {Θ̄1, · · · ,Θ̄N} is the optimal solution to the
return function (12), it is apparent that J({Θ̂1, · · · ,Θ̂N}) ≤
J({Θ̄1, · · · ,Θ̄N}). We only need to show 1

2 J({Θ̄1, · · · ,Θ̄N})≤
J({Θ̂1, · · · ,Θ̂N}).



Based on Lemma 2, we have that

J({Θ̄1, · · · ,Θ̄N})≤ J({Θ̂1, · · · ,Θ̂N ,Θ̄1, · · · ,Θ̄N}) =
J({Θ̂1, · · · ,Θ̂N ,Θ̄1, · · · ,Θ̄N})−
J({Θ̂1, · · · ,Θ̂N ,Θ̄1, · · · ,Θ̄N−1})+
J({Θ̂1, · · · ,Θ̂N ,Θ̄1, · · · ,Θ̄N−1})−
J({Θ̂1, · · · ,Θ̂N ,Θ̄1, · · · ,Θ̄N−2})+ · · ·+
J({Θ̂1, · · · ,Θ̂N ,Θ̄1,Θ̄2})− J({Θ̂1, · · · ,Θ̂N ,Θ̄1})+
J({Θ̂1, · · · ,Θ̂N ,Θ̄1})− J({Θ̂1, · · · ,Θ̂N})+
J({Θ̂1, · · · ,Θ̂N})− J({Θ̂1, · · · ,Θ̂N−1})+ · · ·+
J({Θ̂1,Θ̂2})− J(Θ̂1)+ J(Θ̂1).

Based on Lemma 1, we further have that

J({Θ̂1, · · · ,Θ̂N ,Θ̄1, · · · ,Θ̄N})≤
J({Θ̂1, · · · ,Θ̂N−1,Θ̄N})− J({Θ̂1, · · · ,Θ̂N−1})+
J({Θ̂1, · · · ,Θ̂N−2,Θ̄N−1})− J({Θ̂1, · · · ,Θ̂N−2})+
· · ·+ J({Θ̂1,Θ̂2,Θ̄3})− J({Θ̂1,Θ̂2})+
J({Θ̂1,Θ̄2})− J(Θ̂1)+ J(Θ̄1)+

J({Θ̂1, · · · ,Θ̂N})− J({Θ̂1, · · · ,Θ̂N−1})+
· · ·+ J({Θ̂1,Θ̂2,Θ̂3})− J({Θ̂1,Θ̂2})+
J({Θ̂1,Θ̂2})− J(Θ̂1)+ J(Θ̂1) =

J({Θ̂1, · · · ,Θ̂N−1,Θ̄N})+ J({Θ̂1, · · · ,Θ̂N})
J({Θ̂1, · · · ,Θ̂N−2,Θ̄N−1})− J({Θ̂1, · · · ,Θ̂N−1})
· · ·+ J({Θ̂1,Θ̄2})− J({Θ̂1,Θ̂2})− J(Θ̂1)+ J(Θ̄1).

In addition, the suboptimal path {Θ̂1,Θ̂2, · · · ,Θ̂N} is
obtained by the auction scheme. The order of all vehicles
in the team can be arranged in the way that the ith vehicle
is the vehicle to which the planning algorithm assigns the
path at the ith step. Accordingly, we have J(Θ̄1) ≤ J(Θ̂1),
J(Θ̂1,Θ̄2) = J(Θ̄2|Θ̂1) ≤ J(Θ̂2|Θ̂1) = J(Θ̂1,Θ̂2), · · · ,
J({Θ̂1, · · · ,Θ̂N−2,Θ̄N−1}) = J(Θ̄N−1|Θ̂1, · · · ,Θ̂N−2) ≤
J(Θ̂N−1|Θ̂1, · · · ,Θ̂N−2) = J({Θ̂1, · · · ,Θ̂N−1}), and
J({Θ̂1, · · · ,Θ̂N−1,Θ̄N}) = J(Θ̄N |Θ̂1, · · · ,Θ̂N−1) ≤
J(Θ̂N |Θ̂1, · · · ,Θ̂N−1) = J({Θ̂1, · · · ,Θ̂N}). Therefore, we
have that J({Θ̄1, · · · ,Θ̄N})≤ J({Θ̂1, · · · ,Θ̂N ,Θ̄1, · · · ,Θ̄N})≤
2J({Θ̂1,Θ̂2, · · · ,Θ̂N}), which completes the proof.

V. NUMERICAL RESULTS

The algorithm was tested using a simulation environment
developed in MATLAB/SIMULINK, snapshots of which are
shown in Fig. 6, where green blocks represent the buildings.
A single UAV and UGV were used to track a target coopera-
tively. A 49×49 occupancy grid, where the size of each cell
is 5m×5m, was used to model the target state. The simulator
uses six state navigation equations for the aircraft and uses
four state navigation equations for the ground vehicle. Three-
step look-ahead horizon paths were planned for the UAV
and the UGV with the sample interval σ = 2s. The set of
roll angles for the UAV was {−30◦,−15◦,0◦,15◦,30◦}. The
camera mounted on the UAV was assumed to be gimballed
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Fig. 6. The snapshots of target occupancy grid and the paths of the UAV
and the UGV for the first type of target motion.

so that it was always pointed down with a field of view
of 40◦. An omnidirectional camera was used for the UGV
and the area it can observe was a square of 30m ×30m.
The covariance of the detection probability was Σ = 20. The
parameter Pc was set at 0.9. In the simulation, the UAV flew
at an altitude of 120m. The speed for the UAV, UGV, and
the target was set to 10 m/s, 4 m/s, and 6 m/s respectively.

We evaluate the performance of the target tracking al-
gorithm for two types of target motion. For the first type
of target motion, the target is initially placed at North-East
coordinate (75m,75m) and it will move among the waypoints
(75m,75m), (75m,-75m), (-75m,-75m) and (-75m,75m) in
turn. The motion model of the target is not known by the
UAV and the UGV.

Figure 6 shows the snapshots of the target occupancy grid
and the paths of the UAV and the UGV for cooperatively
tracking the target at different time steps for a 300 second
simulation run. There exist 36 buildings in the environment,
each of which is 40m high. The algorithm assumes the
target is initially located at the origin. It then updates the
target occupancy grid using the Bayesian filter described in
Section II and plans the corresponding paths such that the
joint cost function is maximized, using Algorithm 1. By
doing so, the UAV and the UGV can eventually detect the
target at time t = 40s, as shown in Fig. 6(c).
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Fig. 7. The trajectories of the target, the UAV and the UGV for the first
type of target motion.

(a) The cost for the UAV (b) The cost for the UGV

(c) The joint cost

Fig. 8. The cost associated with the UAV, the UGV and their cooperation.

Figure 7 shows the trajectories of the target, the UAV, and
the UGV. Figure 8 shows the cost associated with the UAV,
the UGV, and their cooperation. Based on the figure, the cost
associated with the UAV shows more oscillations than the
cost associated with the UGV. This is due to the fact that the
UAV must always fly along its orbits and cannot stop. The
algorithm takes around 40s to detect the target, as shown in
the green area. The UAV and the UGV then start to track
the target. The straight horizontal lines in the figure show
the mean of the cost associated with the UAV, the UGV, and
their cooperation before and after the first detection.

Figure 9 shows the average time percentage that the target
was observed by at least one vehicle (in the field of view
of at least one camera and unoccluded) over 100 simulation
runs versus time, where the time percentage is evaluated per
20 seconds. Each simulation lasts 1000 seconds and different
initial positions of the UAV and the UGV were chosen based
on a uniform distribution. From Figure 9, we can see that the
average time percentage increases as time progresses.

For the second type of target motion, the target starts at a
random initial location on the road network and then moves
along the roads. When the target reaches an intersection, it
will turn left, turn right, or go straight based on a uniform
distribution. Figure 10 shows the snapshots of the target
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Fig. 9. The average time percentage that the target was observed by at least
one vehicle over 100 simulation runs for the first type of target motion.

occupancy grid and the paths for the UAV and the UGV for
cooperatively tracking the target at different time steps for a
500 second simulation run. Using the planning algorithm,
the UAV and the UGV search the target and detect it at
time t = 80s, as shown in Fig. 10 (b). Figure 11 shows
the trajectories of the UAV, the UGV, and the target. We
also evaluate the average time percentage that the target was
observed by at least one vehicle over 100 simulation runs,
as shown in Fig. 12. Each simulation last 1000 seconds and
different initial positions of the UAV, the UGV, and the target
were chosen based on a uniform distribution.

To show the performance of the algorithm in different
environments, we also implemented the algorithm in the
environments with varying building height and density. For
each environment, we executed 100 simulation runs. Each
simulation run lasted 300s and different initial positions of
the UAV and the UGV were chosen based on a uniform
distribution. The target was set to move based on the first
type of target motion model. We evaluated two criteria: (a)
the search time for the first detection denoted by Ts, and (b)
the time percentage of target loss by both the UAV and the
UGV (out of the field of view of both cameras or occluded
by buildings) denoted by ρ .

Figure 13 shows the change of average values of Ts and ρ
over 100 simulations versus the height of the buildings for
the environment where 36 buildings exist. Figure 14 shows
the change of average values of Ts and ρ versus the density
of the environment where the building height is 100m. In the
simulation, we consider the environment where at most 36
buildings exist. The density of the environment is assumed
to be the ratio of the number of existing buildings over 36.
Based on Fig. 13 and Fig. 14, as the building height and the
density of the environment increase, the planning algorithm
takes longer time to search the target and the time percentage
of target loss by both the UAV and the UGV increases. The
results of the Monte Carlo simulations shown by Fig. 13 and
Fig. 14 provide insight into the applicability of the planning
algorithm for addressing the target tracking problem in an
environment with a certain degree of occlusions, although
the tracking performance of the planning algorithm degrades
as more occlusions occur.
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Fig. 10. The snapshots of target occupancy grid and the paths of the UAV
and the UGV for the second type of target motion.
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Fig. 11. The trajectories of the target, the UAV, and the UGV for the second
type of target motion.
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Fig. 12. The average time percentage that the target was observed by at
least one vehicle over 100 simulation runs for the second type of target
motion.
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Fig. 13. The change of Ts and ρ versus the building height.
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Fig. 14. The change of Ts and ρ versus the density of the environment.

VI. CONCLUSIONS

We have presented a path planning algorithm for tracking
a moving target in urban environments using both UAVs and
UGVs. The algorithm takes into account occlusions between
the sensors and the target. We use a dynamic occupancy grid
to model the target state and use a Bayesian filter to update
the probability of the target location. For target tracking
by a single vehicle, we design a path planning algorithm
to generate paths maximizing the sum of probability of
detection over a finite look-ahead horizon. For target tracking
using multiple vehicles, we designed a decentralized path
planning algorithm relying on an auction scheme to generate
paths maximizing the sum of the joint probability of detection
over the finite horizon. The numerical results demonstrate the
feasibility of the path planning algorithm for addressing the
target tracking problem in urban environments.
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