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Abstract

In this paper we present an observability-based local path planning and col-

lision avoidance technique. Bearing-only measurements are utilized to esti-

mate the time-to-collision (TTC) and bearing to obstacles using an extended

Kalman Filter (EKF). To ensure the error covariance matrix computed by

an EKF is bounded, the system should be observable. We perform a non-

linear observability analysis to obtain the necessary conditions for complete

observability. We use these conditions to design a path planning algorithm

that enhances observability while avoiding collisions with obstacles. We an-

alyze the behavior of the path planning algorithm and specially define the

environments where the path planning algorithm will guarantee collision-free

paths that lead to a goal configuration. Numerical results show that the plan-

ning algorithm successfully solves the single and multiple obstacle avoidance
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problems while improving the estimation accuracy.

Keywords: Path planning, Collision avoidance, Observability, Miniature

Air Vehicle

1. Introduction

Small and Miniature Air Vehicles (MAVs) have the potential to perform

tasks that are too difficult or dangerous for human pilots. For example, they

can monitor critical infrastructure and real-time disasters, perform search

and rescue, and measure weather in-storms [1]. For many of these applica-

tions, MAVs are required to navigate in urban or unknown terrain where

obstacles of various types and sizes may hinder the success of the mission.

MAVs must have the capability to autonomously plan paths that do not col-

lide with buildings, trees or other obstacles. Therefore, the path planning

and obstacle avoidance problems for MAVs have received significant atten-

tion [1, 2, 3, 4, 5].

The path planning problem can be grouped into global path planning

and local path planning. Global path planning requires complete knowledge

about the environment and a static terrain. In that setting a collision-free

path from the start to the destination configuration is generated before the

vehicle starts its motion [6]. The global path planning problem has been

addressed by many researchers with common solutions being potential fields

methods, roadmap methods and cell decomposition methods [7]. On the

other hand, local path planning is executed in real-time during flight. The

basic idea is to first sense the obstacles in the environment and then determine

a collision-free path [1].
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Local path planning algorithms require sensors to detect obstacles. Among

the suite of possible sensors, a video camera is cheap and lightweight and fits

the physical requirements for small UAVs [1]. However, because of projective

geometry, a monocular camera really only measures the bearing to the object.

TTC can be estimated by considering the change in the size of the object in

the image plane, but this estimate relies on accurately segmenting the image,

which can be a noisy process. Therefore, it is a reasonable engineering choice

to consider a monocular camera as a bearing-only measurement device and

use the camera to estimate both TTC and bearing. We use an extended

Kalman Filter (EKF) to extract TTC from bearing measurements.

The key idea presented in this paper is to maneuver the MAV to minimize

the state estimation uncertainty while simultaneously avoiding obstacles. We

will show that these two tasks are complementary. We use the local mapping

technique in our previous work [8, 9, 10], which builds a polar map in the

local-level frame of the MAV using the camera measurements directly without

transforming to the inertial frame. However, instead of using both TTC and

bearing measurements as in [8, 9, 10], in this work we only use bearing

measurements to estimate both the TTC and bearing to obstacles. For this

purpose we will use the nonlinear observability theory developed by Hermann

and Krener [11].

Observability is a measure of information available for state estimation.

Song et al. [12] show that the EKF is a quasi-local asymptotic observer for

discrete-time nonlinear systems, and that the convergence and boundedness

of the filter are achieved when the system satisfies the nonlinear observability

rank condition and when the states stay within a convex compact domain.
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Observability analysis has been studied extensively for the purpose of estima-

tion [13, 14, 15]. While Bryson and Sukkarieh [16] perform the observability

analysis of SLAM and develop an active control algorithm, the observability

analysis is not used to develop active control. The contribution of this paper

is that we use the observability analysis to explicitly design the path planning

algorithm. The initial results of the planning algorithm are presented in [17].

This paper extends the initial results by conducting analysis of the collision

avoidance and goal reaching behaviors of the planning algorithm. The main

contributions of this paper are as follows:

• We build polar maps using the TTC, which are independent of the

ground or air speed of the MAV.

• We perform an observability analysis of the state estimation process

from bearing-only measurements and find the necessary conditions for

observability of the system.

• We design a path planning algorithm based only on the local map

around the MAV in the local-level frame.

• The algorithm minimizes the uncertainties in the TTC and bearing

estimates while simultaneously avoiding obstacles.

• We analyze the behavior of the path planning algorithm and determine

the class of environments where the algorithm guarantees collision-free

paths that maneuver the MAV to a goal configuration.

The paper is organized as follows. Section 2 describes the model of the

vehicle in the local-level frame and details a nonlinear observability analysis.
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In Section 3 we describe the observability-based path planning algorithm.

Section 4 analyzes the behavior of the path planning algorithm. Numerical

results are provided in Section 5, and our conclusions are in Section 6.

2. Observability analysis of state estimation

In this section we will build a local map using the TTC to obstacles in the

local-level frame of the MAV. The map is constructed in polar coordinates by

estimating the TTC and bearing to obstacles. We perform a nonlinear ob-

servability analysis of the state estimation problem using bearing-only mea-

surements, find necessary conditions for complete observability of the system,

and establish a link between estimation accuracy and collision avoidance.

We assume the MAV is flying at a constant height above ground level and

assume obstacles in the environment are static. Since the obstacle map is in

the local-level frame of the MAV, the equations of motion of each obstacle

relative to the MAV need to be derived. The origin of the local-level frame

is the MAV’s center of mass. The x-axis points out the nose of the airframe

when the airframe is not pitching, the y-axis points out the right wing when

the airframe is not rolling, and the z-axis points into the Earth. Throughout

the paper, we will assume the zero wind conditions. Let V represent the

ground speed of the MAV, which is assumed to be available, and let ϕ and

ψ represent the roll and heading angles, respectively. Figure 1 shows the

motion of the ith obstacle relative to the MAV in the local-level frame, where

τ i is the TTC, ηi is the bearing whose positive direction is defined as the

right-handed rotation about the z-axis of the local-level frame, and Oi is the

ith obstacle. Based on Fig. 1, the equations of motion of the obstacle relative

5



North

East

Figure 1: This figure shows the motion of the ith obstacle relative to the MAV. The TTC
and bearing to the obstacle are represented by τ i and ηi. The ground speed is represented
by V . The heading angle is represented by ψ. The ith obstacle is represented by Oi.

to the MAV in terms of TTC and bearing are given by

τ̇ i = − cos ηi, (1)

η̇i =
sin ηi

τ i
− ψ̇, (2)

where, assuming coordinated turn conditions, ψ̇ = g
V
tanϕ and where ϕ is

the roll angle of the MAV, which we assume to be a control signal. Since

we use the camera to measure the bearing only (which only requires data

association), the measurement at time t is given by

zit = ηit + vit, (3)

where vit is the measurement noise that is assumed to be a zero-mean Gaus-

sian random variable. Based on the state transition model expressed by

Eqs. (1) and (2) and the observation model expressed by Eq. (3), we use the

EKF to estimate the TTC and bearing and we build a TTC map in the local-

level frame using polar coordinates, as shown in Fig. 2. The origin of the
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map is the current location of the MAV. The circles represent the obstacles

and the ellipses around them represent the TTC and bearing uncertainties.

Figure 2: This figure shows the TTC map in the local-level frame of the MAV using polar
coordinates. The origin of the map is the current location of the MAV. The circles represent
the obstacles and the ellipses around them represent the TTC and bearing uncertainties.
The radial direction is TTC in units of seconds.

To decrease the uncertainties in the TTC and bearing estimates, we

analyze the observability of the system given by Eqs. (1), (2), and (3).

Let xi = [τ i, ηi]⊤ represent the state vector associated with the ith obsta-

cle and let u = ϕ represent the control input. Let ẋi = f(xi, u) represent

the state transition model given by Eqs. (1) and (2) and let zit = h(xit)

represent the observation model given by Eq (3). The observability matrix

is computed using Lie derivatives described by Hermann and Kerner [11].

The 0th order Lie derivative is L0
f (h) = ηi and the 1st order Lie derivative

is L1
f (h) =

∂L0
f (h)

∂xi f = −ψ̇ + sin ηi

τ i
. We define the vector of Lie derivatives
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Ω = [L0
f (h), L

1
f (h)]

⊤. The observability matrix is computed as

Oi =
∂Ω

∂xi
=

 0 1

− sin ηi

(τ i)2
cos ηi

τ i

 . (4)

The observability matrix has rank two if and only if τ i ̸= ∞, ηi ̸= 2πp where

p ∈ Z. The EKF is a quasi-local asymptotic observer for nonlinear systems

and its convergence and boundedness are achieved when the system is fully

observable [12]. Bounds on the EKF error covariance Pi are related to the

observability of the system given by Lemma 1 proved in [12].

Lemma 1 ( [12]). Suppose that there exist positive real scalars α1, α2, β1, β2

such that β1I ≤ Oi⊤Oi ≤ β2I and α1I ≥ CiCi⊤ ≥ α2I then,

(
1

β2 +
1
α2

)
I ≤ Pi ≤

(
α1 +

1

β1

)
I, (5)

where I is the identity matrix and Ci is the controllability matrix.

From Lemma 1, we can see that both the maximum and minimum sin-

gular values β1 and β2 of the observability matrix should be maximized in

order to minimize both the upper and lower bounds of the error covariance

matrix. For the problem in this paper the order of the system is two, and

therefore minimizing the inverse of the determinant of Oi⊤Oi will maximize

the two eigenvalues of Oi⊤Oi. The determinant of Oi⊤Oi related to the ith
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obstacle is given by

det(Oi⊤Oi) =
sin2 ηi

(τ i)4
. (6)

From Eq. (6), the inverse of determinant is given by (τ i)4

sin2 ηi
. It can be

seen that for large τ i, the inverse is high, which means observability is less,

because the change in the bearing measurement is very small with the large

TTC (low parallax). It can also be seen that the inverse is minimum at

ηi = π/2 and is maximum at ηi = 0, which means that the vehicle is moving

directly toward the obstacle. Minimizing the inverse will ensure that ηi ̸= 2pπ

and will regulate ηi → π/2. This implies that the minimization of the inverse

of the determinant will minimize the lower and upper bounds of the error

covariance matrix as well as steer the MAV away from the obstacle. Therefore

the minimization of uncertainty and obstacle avoidance are complementary.

3. Observability-based path planning

Based on the observability analysis in the previous section, we design

the observability-based path planning algorithm denoted by πo such that (a)

the uncertainties in the TTC and bearing estimates are minimized and (b)

the MAV is maneuvered to the goal configuration. For the objective of goal

reaching, the MAV requires knowledge of its own inertial position and the

inertial position of the goal. Accordingly, the path planning algorithm πo

requires the use of GPS.

Let τ gt and ηgt represent the TTC and bearing to the goal configuration at

time t, and let xgt = [τ gt , η
g
t ]

⊤. Let τ it and η
i
t represent the estimated TTC and
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bearing to the ith obstacle and let xit = [τ it , η
i
t]
⊤. Let xt = [x1

t
⊤
, · · · ,xnt ⊤]⊤.

The determinant of the matrixOi⊤Oi associated with the ith obstacle is given

by det(Oi
t
⊤
Oi
t) =

sin2 ηit
(τ it )

4 . Let νt = [xgt
⊤,xt

⊤]⊤. Let It represent the index set

of all n obstacles and let τ l represent the maximum TTC to obstacles that

the planning algorithm πo reacts to. Let Bt = {i ∈ It : τ it ≤ τ l, |ηit| ≤ π
2
}

represent the index set of obstacles with the TTC no greater than τ l and with

the azimuth no greater than π
2
. Define the utility function S : R2n+2 → R as

S(νt) = a1(τ
g
t )

2 + a2(η
g
t )

2 +
n∑
i=1

biIBt(i)
(τ it )

4

sin2 ηit
, (7)

where a1, a2, bi, i = 1, · · · , n are non-negative weights, and IBt(i) is the

indicator function of the index i, which zeros out the contribution of obstacles

that are far away or that are passed by the MAV.

By minimizing the first two terms of Eq. (7), the algorithm drives the

MAV towards the goal configuration. The third term penalizes the weighted

sum of the inverse of the determinant of Oi⊤Oi for all obstacles. By minimiz-

ing this term, the algorithm achieves two objectives simultaneously. First,

it minimizes the uncertainties in the TTC and bearing estimates. Second,

the MAV is steered around the obstacles. It is important to note that these

two objectives are complementary to each other. We use a look-ahead policy

over the horizon T to design the path planner πo. The cost function to be

minimized is given by

J =

∫ t+T

t

S(νρ)dρ, (8)
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subject to the constraints

ẋgρ = f(xgρ, uρ),

ẋiρ = f(xiρ, uρ), i = 1, · · · , n, (9)

|uρ| ≤ ϕmax.

To solve the constrained optimization problem, we discretize the time horizon

T as the m-step look-ahead horizon {t, t + ∆t, · · · , t + m∆t}, where ∆t =

T/m. Equation (8) then becomes

J =
m∑
j=1

S(νt+j∆t). (10)

The optimal path over the m-step look-ahead horizon is found using the

nonlinear optimization function fmincon in MATLAB [18] and is replanned

once the MAV has followed the first portion of the m-step look-ahead path.

4. Analysis

The utility function given by Eq. (7) can be decomposed as the sum of

S1(x
g
t ) = a1(τ

g
t )

2 + a2(η
g
t )

2, (11)

and

S2(xt) =
n∑
i=1

biIBt(i)
(τ it )

4

sin2 ηit
. (12)
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Accordingly, the observability-based path planner πo that minimizes Eq. (8)

can be decomposed into the goal reaching planner denoted by πg that ma-

neuvers the MAV to the goal by minimizing the cost function

J1 =

∫ t+T

t

S1(x
g
ρ)dρ, (13)

and the collision avoidance planner denoted by πc that maximizes the ob-

servability of the system by minimizing the cost function

J2 =

∫ t+T

t

S2(xρ)dρ. (14)

Remark 1. We decompose the observability-based path planner πo into the

collision avoidance planner πc and the goal reaching planner πg to simplify

the analysis of collision avoidance and goal reaching behaviors.

Accordingly, we analyze the obstacle avoidance behavior of the collision

avoidance planner πc that maximizes the observability of the system and de-

scribe under what environment πc guarantees collision-free paths. We also

describe under what environment the collision avoidance planner πc is guar-

anteed to drive the MAV to the goal when it is combined with the goal

reaching planner πg.

4.1. Collision avoidance

We analyze the behavior of the collision avoidance planner πc for avoiding

circular obstacles. The collision avoidance planner πc minimizes the cost
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function given by (14) subject to constraints

ẋiρ = f(xiρ, uρ), i = 1, · · · , n, (15)

V τ iρ ≥ ri, i = 1, · · · , n, (16)

where ri is the radius of the ith obstacle. To guarantee to avoid a single

circular obstacle, it is necessary to establish a minimum turn away distance

dmin from the obstacle. Let ϕmax represent the maximum roll angle of the

MAV and let g represent the gravity constant. The minimum turning radius

is then given by [19]

rmt =
V 2

g tan(ϕmax)
. (17)

Theorem 1 shows the minimum turn away distance required to avoid a cir-

cular obstacle with the radius r using the collision avoidance planner πc.

Theorem 1. Using the collision avoidance planner πc that minimizes the

cost function (14) subject to the constraints (15) and (16), collision avoidance

with a circular obstacle with the radius r is guaranteed if the initial condition

satisfies

V τ0 > dmin =
√
(r + rmt)2 − r2mt − r, (18)

where τ0 represents the initial TTC to the circular obstacle. In addition, the

MAV converges to a circle around the obstacle with the radius max{r, rmt}.

Proof. Consider the worst case scenario where the MAV is flying directly

toward a circular obstacle Oi in the local-level frame map, as shown in Fig. 3.
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The minimum turn away distance dmin from the obstacle can be determined

when the maximum roll angle ϕmax is applied and the generated circle with

the minimum turning radius rmt is tangent to the surface of the obstacle.

Based on the geometry, the planner πc is guaranteed to avoid the obstacle if

the initial condition satisfies V τ0 > dmin =
√

(r + rmt)2 − r2mt − r.

To show that the trajectory converges to an orbit around the obstacle, if

V τ0 > dmin, the collision avoidance planner πc will cause the MAV to move

in such a way that the TTC to the obstacle decreases and the bearing to the

obstacle increases. The MAV will first reach a configuration at time t where

the bearing to the obstacle ηt =
π
2
and the range to the obstacle V τt > r.

Then the planner πc will further cause the MAV to reach a configuration at

time t′ such that ηt′ =
π
2
and V τt > V τt′ > r. This process is repeated such

that the TTC decreases progressively. Because of the constraints (16) on

the TTC and the minimum turning radius constraint, the MAV converges to

max{r, rmt}.

Figure 3: This figure shows the worst case scenario that the MAV is flying directly toward
a circular obstacle.

To this point we have found the conditions under which a single circu-
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lar obstacle can be successfully avoided using πc. We extend the analysis

to investigate the multiple obstacle avoidance problem. Our approach char-

acterizes the environment with minimum separation between obstacles such

that collisions are avoided with all the obstacles.

Let C represent the configuration space. For two configurations q1 =

[q1n, q1e, q1ψ]
⊤ ∈ C and q2 = [q2n, q2e, q2ψ]

⊤ ∈ C, where qin and qie, i = 1, 2,

represent North and East coordinates, and qiψ, i = 1, 2, represent the heading

angle, define the distance between q1 and q2 as

∥q1 − q2∥ ,
√
(q1n − q2n)2 + (q1e − q2e)2. (19)

For a configuration q and the ith obstacle Oi, we define the distance between

q and the boundary of Oi as

diq , min
q′∈∂Oi

∥q − q′∥. (20)

Let dimin and djmin represent the minimum turn away distance for the ith

obstacle Oi and the jth obstacles Oj given by Eq. (18). Let

dij , min
pi∈∂Oi,pj∈∂Oj

∥pi − pj∥ (21)

represent the shortest distance between the points along the boundaries of

Oi and Oj. Let q0 represent the initial MAV configuration. Theorem 2 de-

scribes the characteristics of the environment in which the collision avoidance

planner πc guarantees collision-free paths.

Theorem 2. If the environment satisfies dij > max{dimin, d
j
min}, ∀i, j and
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the initial MAV configuration q0 satisfies diq0 > dimin, ∀i, where dij is the

distance between the ith and the jth obstacles given by Eq. (21), dimin and djmin

represent the minimum turn away distance for the ith and the jth obstacles

given by Eq. (18), and diq0 is the distance between q0 and the ith obstacle

given by Eq. (20), then the collision avoidance planner πc, which minimizes

the cost function (14) subject to constraints (15) and (16), guarantees that

the MAV will avoid all obstacles in the future.

Proof. Consider that the MAV is initially located at q0 with diq0 > dimin, ∀i,

and that it will collide with an obstacle Oi if it flies along its initial heading,

as shown in Fig. 4. Since diq0 > dimin and dij > max{dimin, d
j
min}, in the worse

case scenario the planner πc leads to a collision-free path from q0 to qA on the

boundary of Oi with direction tangent to the boundary, where djqA > djmin.

This means that the MAV certainly has the capability to avoid the obstacle

Oj when it reaches qA. In addition, since djk > max{djmin, d
k
min}, in the worse

case scenario the planner πc leads to a collision-free path from qA to qB on the

boundary of Oj with direction tangent to the boundary, where dkqB > dkmin.

This process can be repeated so that the MAV does not collide with any

obstacle using πc for all time t.

4.2. Goal reaching

Besides the collision avoidance behavior of the planner πc, we are also

interested in its goal reaching behavior when it is combined with the planner

πg. In this section, we combine the two path planners using a switching

algorithm that executes them alternately.
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Figure 4: This figure shows the collision avoidance planner πc maneuvers the MAV to
avoid multiple obstacles.

Remark 2. We analyze the goal reaching behavior of the switching algorithm

to simplify the determination of analytical conditions under which the colli-

sion avoidance planner πc is guaranteed to drive the MAV to the goal when

it is combined with the goal reaching planner πg. However, in simulation

we use the observability-based planning algorithm πo that takes into account

collision avoidance and goal reaching simultaneously.

The switching algorithm is described as follows. The algorithm first ex-

ecutes the goal reaching planner πg to maneuver the MAV toward the goal

from an initial configuration. If there exist obstacles with the TTC no greater

than τ l that collide with the MAV, the algorithm executes the collision avoid-

ance planner πc to react to nearby obstacles. The collision avoidance plan-

ner πc is executed until the MAV reaches a configuration such that the goal

reaching planner πg can generate a path from that configuration to the goal,
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which does not collide with any obstacle with TTC less than τ l. The algo-

rithm then executes the goal reaching planner πg. This process is repeated

until the MAV reaches the goal.

The switching algorithm needs conditions on the environment to ensure

that it drives the MAV to the goal. The following theorem describes the con-

ditions under which the MAV can reach the goal from an initial configuration

with the heading pointing to the goal using the switching algorithm.

Theorem 3. If the environment satisfies dij > 2V τ l, ∀i, j and the initial

MAV configuration q0 with the heading pointing to the goal satisfies diq0 >

dimin, ∀i, then the MAV is guaranteed to be maneuvered to the goal using the

switching algorithm.

Proof. Let q0 represent the initial MAV configuration with the heading point-

ing to the goal at time t0 as shown in Fig. 5 and let dt0 = ∥q0− qf∥ represent

the distance between q0 and qf . Consider a scenario that there exists an

obstacle Oi in the MAV’s initial course towards the the goal qf and that

the TTC to the obstacle is no greater than τ l. For this scenario, since

dij > 2V τ l, ∀i, j, there are no other obstacles with TTC no greater than

τ l when the MAV is located at q0. The switching algorithm executes the col-

lision avoidance planner πc to react to the obstacle Oi. Based on Theorem 1,

the planner πc will cause the distance between the MAV and the obstacle Oi

to decrease until the MAV converges to a circle with the radius max{r, rmt}.

This implies that the MAV will stay within the circle Ci centered at Oi with

the radius V τ l, where the planner πc only reacts to the obstacle Oi until

the MAV converges to the circle with the radius max{r, rmt}. Accordingly,

the switching algorithm executes the collision avoidance planner πc until the
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MAV reaches a configuration q1 at time t1 such that the goal reaching planner

πg can generate a path from q1 to qf that does not collide with the obstacles

Oi. While the MAV flies from q0 to q1 using π
c, the bearing to the obstacle Oi

is no greater than π
2
. Since the MAV inertial angle to the goal during its flight

from q0 to q1 is less than the bearing to the obstacle, the inertial angle to the

goal must be less than π
2
. Therefore, it must be that dt1 = ∥q1 − qf∥ < dt0 .

Once the MAV reaches q1, the algorithm executes the goal reaching plan-

ner πg until the MAV reaches a configuration q2 outside of the circle Ci,

where another obstacle Oj with TTC no greater than τ l exists in the MAV’s

course towards the goal. It is apparent that dt2 = ∥q2 − qf∥ < dt1 . Once

the MAV reaches q2, the switching algorithm executes the collision avoidance

planner πc to react to the obstacle Oj. As the process is repeated, the dis-

tance between the MAV and the goal decreases progressively and the MAV

will be eventually maneuvered to the goal using the switching algorithm.

The conditions given by Theorem 3 require that each two obstacles in

the environment are separated far enough so that the MAV reacts to and

avoids obstacles one by one until it reaches the goal. We assume the envi-

ronment satisfies these conditions in order to provide a theoretical guarantee

for the goal reaching behavior of the collision avoidance planner πc when it

is combined with the goal reaching planner πg. The conditions may not be

necessary for the observability-based planning algorithm πo to achieve goal

reaching performance. This implies that there may exist environments that

do not satisfy the conditions but where the MAV can still be maneuvered to

the goal without causing collisions using πo.
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Figure 5: This figure shows the MAV can be maneuvered to qf using the switching algo-
rithm.

5. Numerical results

In this section, we tested the observability-based planning algorithm πo

that minimizes the cost function (8) and takes into account collision avoid-

ance and goal reaching simultaneously using a simulation environment devel-

oped in MATLAB/SIMULINK. The simulator uses a six degree of freedom

model of the aircraft. The coordinate system is represented by NED (North-

East-Down) system. The covariance matrices of the process and measure-

ment noises were Qi =

 0.001 0

0 0.0076

 and Ri = 0.0012. The weighting

scalars a1 and a2 were 10 and 1. All the weighting scalars bi = 2, i = 1, · · · , n.

A look-ahead policy over a horizon 3.6 seconds was used. The ground speed

was V = 13 m/s. The maximum roll angle for the MAV was 30◦. We tested

the algorithm for both single and multiple obstacle avoidance scenarios. We
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also conducted Monte Carlo simulations to test the collision avoidance and

goal reaching performance of the observability-based planning algorithm πo

with varying measurement uncertainties in the environments with varying

minimum distance between obstacles.

5.1. Single obstacle avoidance

In this scenario, the MAV was commanded to maneuver around an ob-

stacle located at (150,250) between waypoint S (0,100,-40) and waypoint E

(600,700,-40) represented by the box and plus signs shown in Fig. 6(a).

Figure 6 shows the path followed by the MAV for avoiding the obstacle

using the planning algorithm πo, the determinant of Oi⊤Oi for that obstacle,

the TTC and bearing, and the TTC and bearing estimation error. It can

be seen that when the determinant is maximum, then the bearing is η = π
2

and the TTC reaches its minimum value τmin ≈ 4 s. At the same time, the

bound on the error covariance for the TTC is minimum, which shows that

the uncertainties in state estimates can be minimized while simultaneously

avoiding collisions.

5.2. Multiple obstacle avoidance

In the multiple obstacle avoidance scenario, the MAV was commanded to

maneuver through twenty-five obstacles between waypoint S (0,100,-40) and

waypoint E (600,700,-40), as shown in the subfigures on the right of Fig. 7.

Figure 7 shows the evolution of the local map in the local-level frame

and the update of the path in the inertial frame at different time. The

dashed circles in the subfigures on the left represent the TTC at 3 s, 6 s,

and 9 s for the inner, middle, and outer circles respectively. The plus sign in
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Figure 6: This figure shows the simulation results for single obstacle avoidance problem.

Subfigure (a) shows the inertial path. Subfigure (b) shows the determinant of Oi⊤Oi.
Subfigures (c) and (d) show the TTC and bearing to the obstacle. Subfigure (e) and
(f) show the estimation error and ±3σ bounds of the error covariance for the TTC and
bearing.
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Figure 7: This figure shows the evolution of the local map and the update of the path at
different times. Subfigures on the left show the evolution of the local map. The dashed
circles represent the TTC at 3 s, 6 s, and 9 s for inner, middle, and outer circles respectively.
Subfigures on the right show the path in the inertial frame. The black lines represent the
three-step look-ahead paths and red lines represent the actual path followed by the MAV.
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subfigure (d) on the left represents the waypoint E in the local-level frame.

Red lines in the subfigures on the right represent the paths followed by the

MAV and black lines represent the optimal look-ahead paths. Figure 8 shows

the TTC and bearing to the obstacle located at (150,250), the TTC and

bearing estimation error, and the determinant of Oi⊤Oi for that obstacle.

We can see that minimizing the cost function for multiple obstacle avoidance

gives the same behavior for the obstacle avoidance, observability and further

estimation uncertainties.

Figure 9 shows how the value of the cost function changes as time pro-

gresses. Based on the figure, the cost function decreases initially when there

are no obstacles in the local map. The cost function only consists of the first

term. Once a new obstacle pops up, the cost function increases because the

obstacle term is added to the cost function. The planning algorithm πo then

minimizes the second term, causing the cost function to decrease. Once the

collision is avoided and the obstacle is passed, it does not add any cost to

the cost function. The cost function then decreases based on the first term.

Similar behavior occurs when multiple obstacles are observed.

5.3. Monte Carlo simulation

To simplify the analysis of collision avoidance and goal reaching perfor-

mance and determine analytical conditions, in previous section we decompose

the observability-based planning algorithm πo into the collision avoidance

planner πc and the goal reaching planner πg. We then analyze of obsta-

cle avoidance behavior of the planner πc and the goal reaching behavior of

the switching algorithm that executes the two planners alternately. Accord-

ingly, the conditions for collision avoidance and goal reaching described in
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(d) Bearing error
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Figure 8: This figure shows the TTC and bearing to the obstacle located at (150,250), the

TTC and bearing tracking error and the determinant of Oi⊤Oi. Subfigures (a) and (b)
show the TTC and bearing. Subfigure (c) and (d) show the error and ±3σ bounds of the

error covariance. Subfigure (e) shows the determinant of Oi⊤Oi.
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Figure 9: This picture shows the change of the value of the cost function as time progresses.

Theorem 2 and 3 may not be identical for the observability-based planner

πo to achieve collision avoidance and goal reaching performance. Accord-

ingly, we conducted Monte Carlo simulations to demonstrate the statistical

performance of the observability-based planning algorithm πo.

For each environment with a fixed minimum distance between obstacles,

we executed 100 simulation runs. In each simulation run, the MAV was ma-

neuvered from the initial position (120,120,-40) to the end position (580,580,-

40) through an environment using πo. The environment was constructed so

that each obstacle was added to the environment based on a uniform distri-

bution over the square area with the South-West corner (100,100) and the

North-East corner (600,600) until no more obstacles could be added. The

height and radius for all obstacles were 100 meters and 20 meters, and the

MAV was flying at a height of 40 meters. The observability-based planner

πo reacts to obstacles with TTC no greater than τ l =4 s. We evaluate two

criteria: the number of collisions and the percentage of runs where MAV

reached the goal. We say that the MAV reaches the goal if it is maneuvered
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to the goal in t < 100 seconds without any collisions.

Figure 10 (a) plots the average number of collisions over 100 simulation

runs versus the minimum distance between obstacles for the case where the

standard deviation of the bearing measurement noise is 2◦, as shown by the

solid line, and for the case where the locations of obstacles are perfectly

known, as shown by the dashed line. The figure shows the average num-

ber of collisions decreases dramatically as the minimum distance between

obstacles increases from 5 to 20 meters for both cases. After the minimum

distance is greater than 20 meters, the average number of collisions decreases

slowly for the case with measurement uncertainties and the average number

of collisions is zero for the case where the locations of obstacles are perfectly

known. The results match the obstacle avoidance behavior of the collision

avoidance planner πc. Given V = 13 m/s, ϕmax = 30◦, and Ri = 20 m, ∀i,

the minimum distance satisfying the obstacle avoidance conditions of The-

orem 2 for the planner πc is 19.9345 meters. When the minimum distance

is less than 19.9345 meters, the number of collisions decreases quickly as

the minimum distance increases. When the minimum distance is greater

than 19.9345 meters, the conditions of Theorem 2 are satisfied. The collision

avoidance planner πc guarantees collision-free paths if the obstacle locations

are perfectly known. For the case with the measurement uncertainties, the

MAV still encounters a small number of collisions when the minimum dis-

tance is greater than 20 meters. In addition, when the minimum distance is

10 and 15 meters for the case with perfectly known obstacle locations, the

average number of collisions is less than one, which implies that there exist

environments that do not satisfy the conditions of Theorem 2 but where the
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observability-based planner πo still generates collision-free paths.

Figure 10 (b) plots the percentage of runs where the MAV reached the

goal versus the minimum distance for the two cases. The percentage increases

as the minimum distance between obstacles increases. When the minimum

distance is greater than 80 meters for the case with measurement uncertain-

ties or when the minimum distance is greater than 70 meters for the case

with perfectly known obstacle locations, the MAV is always maneuvered to

the goal using the observability-based planner. In addition, the percentage

for all the environments with the minimum distance from 10 to 100 meters

for both cases is nonzero. Accordingly, the minimum distance 2V τ l = 104 m,

which satisfies the goal reaching conditions of Theorem 3 for the switching

algorithm, is not necessary for the observability-based planner πo to achieve

goal reaching performance.
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Figure 10: This figure shows the statistical performance of the observability-based plan-
ning algorithm implemented in the environments with varying minimum distance between
obstacles for the cases with the standard deviation of the bearing measurement noise 2◦

and with perfectly known obstacle locations. Subfigure (a) plots the average number of
collisions over 100 simulation runs versus the minimum distance between obstacles. Subfig-
ure (b) plots the percentage of runs where the MAV reached the goal versus the minimum
distance.

28



0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Standard deviation (degree)

N
um

be
r 

of
 c

ol
lis

io
ns

(a)

0 5 10 15 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard deviation (degree)

P
er

ce
nt

ag
e 

of
 g

oa
l r

ea
ch

in
g

(b)

Figure 11: This figure shows the statistical performance of the observability-based planning
algorithm with varying measurement uncertainties in the environment with the minimum
distance 30 meters. Subfigure (a) plots the average number of collisions over 100 simulation
runs versus the standard deviation of the bearing measurement noise. Subfigure (b) shows
the percentage of runs where the MAV reached the goal versus the standard deviation.

To take into account the effect of measurement uncertainties, Monte Carlo

simulations were also conducted to test the performance of the algorithm πo

with varying measurement uncertainties. Similarly, we evaluate the number

of collisions and the percentage of runs for the MAV to reach the goal. Fig-

ure 11 plots the average number of collisions over 100 simulation runs and

the percentage of runs where the MAV reached the goal versus the standard

deviation of the bearing measurement noise for the environment with the

minimum distance 30 meters. Based on the figure, as the standard deviation

of the measurement noise increases, the number of collisions increases and

the percentage of runs where the MAV reached the goal decreases.

6. Conclusions

This paper presents an observability-based planning algorithm using bearing-

only measurements. We perform a nonlinear observability analysis for state
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estimation and argue that collision avoidance and uncertainty minimization

problems are complementary. Based on this analysis, we design a cost func-

tion that minimizes the estimation uncertainties while simultaneously avoid-

ing obstacles. By minimizing the cost function, the path planning algorithm

is developed directly in the local-level frame. We use a look-ahead pol-

icy to plan optimal paths over a finite time horizon. The performance of

the planning algorithm is analyzed and the characteristics of the environ-

ments in which the planning algorithm guarantees collision-free paths that

lead to a goal configuration are described. Numerical results show that the

observability-based planning algorithm is successful in solving the single and

multiple obstacle avoidance problems while improving the estimation accu-

racy.
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