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Abstract

This paper describes the swing-up and stabilization of a cart–pendulum system with a restricted cart track length and
restricted control force using generalized energy control methods. Starting from a pendant position, the pendulum is swung
up to the upright unstable equilibrium con5guration using energy control principles. An “energy well” is built within the
cart track to prevent the cart from going outside the limited length. When su9cient energy is acquired by the pendulum,
it goes into a “cruise” mode when the acquired energy is maintained. Finally, when the pendulum is close to the upright
con5guration, a stabilizing controller is activated around a linear zone about the upright con5guration. The proposed scheme
has worked well both in simulation and a practical setup and the conditions for stability have been derived using the multiple
Lyapunov functions approach.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The swing-up and stabilization of a cart–pendulum
system is a ubiquitous experiment in most control
laboratories around the world. This control problem
involves swinging up a pendulum from its normal
pendant con5guration by the application of a con-
trol force to the cart; when the pendulum approaches
the upright con5guration, the control is switched to
a stabilizing controller (usually linear) which main-
tains it about the unstable equilibrium con5guration.
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(D. Chatterjee), amit.patra@ieee.org (A. Patra),
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The inverted pendulum on a cart is an under-actuated
mechanical system with two degrees of freedom
and one control input. Many methods for achiev-
ing swing-up and stabilization of this system have
been proposed in literature. In [11], a non-linear
control law has been applied to a pendulum with re-
stricted travel by decomposing the control law into
a sequence of steps. In [9], a conservative law is
derived from Lyapunov functions having a certain
zone of non-convergence. Fuzzy [8] and neural [1]
controllers have also been applied to this problem.
However, it is di9cult to ensure the stability of
the control systems based on these approaches. Re-
cently, the method of controlled Lagrangian [4,5] has
been proposed. A hybrid control strategy has been
proposed in [12], which is essentially of bang–bang
nature, with local stabilization eGected once the
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pendulum reaches close to the upright. A variable
structure system version of the energy-speed-gradient
method has been proposed in [10], which guarantees
convergence of all solutions to the upright equilib-
rium condition for a cart-less pendulum. However,
the technique has not been tried out on a practical
cart-pendulum system.

A fundamental method of swing-up using energy
methods for a cart-less pendulum has been proposed
by JAstrKom and Furuta [2,3]. The method has its
advantage of a hierarchical nature, 5rst controlling
the pendulum angle, then the hinge position. This
scheme works when the available cart track length is
unlimited. However, in practical setups, there is an
inherent restriction on the cart track length and the
magnitude of control force that can be applied. An ex-
tension of this algorithm which takes care of restricted
cart track length with switched force was developed
in [6], but the method was not very general. This
gives the motivation to 5nd out energy-based meth-
ods for controlling the cart position with restricted
cart track length and restricted force applicable to the
cart.

In this paper, a control strategy in such a spirit
is developed. We introduce “potential wells” for the
cart position, for eGective control within the cart track
length restrictions, so that the cart never goes out of
bounds. Within that well, energy is injected into the
system in such a way as to drive the potential and ro-
tational kinetic energy towards a value that is equal
to the potential energy of the upright con5guration.
In the process, the oscillations of the cart can be kept
under control by introducing penalties on the cart ve-
locity, since some practical setups have a limitation of
the cart velocity. The energy required to keep the pen-
dulum at the upright position needs to be maintained
after it is acquired since we do not have direct control
on the con5guration at the instant when this energy
is reached. The system is controlled now by the en-
ergy maintenance mode, christened the “cruise” mode.
Thereafter, once the system reaches the vicinity of the
upright con5guration, it is “caught” by the stabilizing
controller which maintains it at and near the upright.

This scheme allows total control over the restricted
dynamics of the cart, and any level of desired perfor-
mance can be achieved (e.g., the number of swings of
the cart can be adjusted) subject to the capacity of the
system components.

In contrast to the existing approaches to the control
of a cart-pendulum system, this work has the following
distinguishing features:

• The rate of energy injection during the swing-up
mode can be explicitly controlled. This rate can
be maintained approximately linear for the entire
swing-up period, leading to a faster transient re-
sponse compared to the usual approaches where the
rate of rise is exponential and tapers oG in the end.

• The control laws have a clear intuitive interpre-
tation. The su9cient conditions for stability de-
rived in the paper are also quite logical. It has
been observed that violations of these conditions
usually lead to instability, indicating that these are
not very conservative. Most of the stability-based
approaches lead to highly conservative designs as
evidenced by sluggish responses [9].

• Certain approaches assuring global stability require
that the initial state does not lie in some “forbidden
regions” [9]. The present work does not have this
limitation.

• The control system can be viewed as a hybrid au-
tomaton with clear separation among the various
“modes”, leading to a modular design. It is expected
that this feature would be helpful in the generaliza-
tion of the control law to multiple inverted pendu-
lums.

• The method has been validated by applying it to
a practical cart-pendulum system. In [10], a modi-
5ed form of the energy-speed-gradient method has
been shown to be globally attractive, but a practical
implementation has not been reported.

The paper is organized in the following fashion.
Section 2 brieLy describes the mathematical model
of the cart–pendulum system derived using the La-
grangian principles. Then we discuss pure energy
control in Section 3.1 and its limitations in Section
3.2. We improve upon it using the concept of the “cart
potential well” in Section 4.1 and the “cart velocity
well” in Section 4.2. We dwell upon the necessity of
three distinct locations or modes where the system is
allowed to evolve in time and what these modes should
be. The 5rst one is the swing-up or energy injection
mode, followed by the “cruise” or energy mainte-
nance stage incorporating the above energy wells.
Lastly, we take up the issue of stabilization in
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Section 4.3. We thus have three distinct modes—
which essentially makes the system hybrid in nature.
Results of MATLAB-based simulation and experi-
mental implementation are presented in Section 5. In
Section 6 the stability analysis is carried out based
on multiple Lyapunov functions approach. Finally,
Section 7 concludes with the discussion of some open
issues.

2. Lagrangian modeling

As shown in Fig. 1, we consider a cart of massM on
which a pendulum of length 2l and mass m is hinged.
Let the position of the cart be denoted by x and the
angle of the pendulum with respect to the vertical axis
be denoted by �.

The kinetic energy (K) of the system is

K=
1
2
m
(

d
dt

(x + l sin �)
)2

+
1
2
m
(

d
dt

(l cos �)
)2

+
1
2
Mẋ2 +

1
2
J �̇ 2: (1)

The Potential energy (V) of the system with the up-
right con5guration of the pendulum at zero is

V = mgl cos �: (2)

Fig. 1. The setup.

The Lagrangian of the system is constructed and
the diGerential equations are obtained as

L = K−V;

d
dt

(
9L
9ẋ

)
− 9L
9x = F;

d
dt

(
9L
9�̇

)
− 9L
9� = 0;

whence with [x1; x2; x3; x4]T = [x; �; ẋ; �̇]T, we obtain
the state-space model as


ẋ1

ẋ2

ẋ3

ẋ4




=




x3

x4

F

M + m
− 3mg sin x2 cos x2

4(M + m)
+
mlx24 sin x2
M + m

1 − 3m cos2 x2
4(M + m)

3g sin x2
4l

− 3F cos x2
4l(M + m)

− 3mx24 sin x2 cos x2
4(M + m)

1 − 3m cos2 x2
4(M + m)




:

(3)

It may be observed from the state-space model
obtained in this section that the subsystem [�; �̇]T is
independent of the [x; ẋ]T subsystem. In this sense,
there is only one-way coupling between the subsys-
tems. This helps us in obtaining a simple formulation
of the Lyapunov functions of the pendulum and the
cart subsystems for stability analysis.

3. Derivation of energy control law

Our objective is to take the pendulum to the up-
right position and maintain it there despite small
disturbances, with the cart being the only means of
providing actuation to the pendulum. The objective
can be realized by injecting energy into the system so
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that the sum of rotational kinetic energy and poten-
tial energy of the pendulum reaches a desired level.
This in turn means that the rotational energy of the
pendulum must initially increase, whatever be its
translational kinetic energy. The translational kinetic
energy of the pendulum does not play any impor-
tant role, since the pendulum translation and rotation
equations are decoupled.

3.1. The pure energy control law

We denote the sum of the rotational kinetic energy
of the pendulum and its potential energy by Erp. This
is expressed as

Erp = 1
2 JH�̇

2 + mgl cos �; (4)

where JH is the moment of inertia of the pendulum
about the hinge. This energy must increase, i.e.,
dErp

dt
= −m Kxl�̇ cos �¿ 0; (5)

after substituting for K� from the state-space model (Eq.
(3)). This necessarily means that the acceleration Kx
and �̇ cos � must be of opposite sign. A simple law for
the acceleration can be formulated as [3]

Kx = ksu(Erp − Eup) sgn(�̇ cos �); (6)

where Eup is the potential energy of the pendulum in
the upright con5guration.

3.2. Di2culties of pure energy control

Eq. (6) provides for continuous energy injection
into the pendulum. However, there is no restriction
explicitly imposed on the cart track. It works well for
unlimited cart track length, or for systems like the
whirling pendulum where rotation simulates an in5nite
cart track.

Another fact noticeable in Eq. (6) is the lethargic
nature of energy injection into the system. The rate
of injection is dependent on the diGerence of Erp and
Eup, and as this diGerence decreases the rate of energy
injection also decreases. In fact, the desired energy
level Eup will be theoretically reached in in5nite time.
Ideally, the control law must be able to take the pen-
dulum to the upright con5guration in 5nite time, with
the rate of energy injection as a parameter. Further, it
must provide a guided path to the 5nal destination of

the pendulum despite continuous energy injection and
cart track length restrictions.

4. The proposed control scheme

4.1. The cart potential well

To introduce the cart track length restriction, we in-
troduce the concept of the cart potential well. The well
is constructed in such a way that the cart experiences a
repulsive force as it approaches the boundaries in the
neighborhood of the limitations. We de5ne a potential
function �(x) for the cart position x, such that the de-
sired restrictions can be imposed during evolution of
the system, which restricts the dynamics without in-
terfering with the mechanical energies of the system.
We can derive

Kx = −∇�; (7)

where Kx is the normalized 5eld, in this case, the ac-
celeration of the hinge. Further, it is better if the cart
swings with a larger amplitude within the bounds of
the cart track length. It is therefore necessary that the
penalty on acceleration should be small close to the
center of the cart and higher as the cart track limits
are reached. Such an acceleration function can be re-
alized by the logarithmic component in the following
equation:

ucart well = kcw sgn(x) log
(

1 − |x|
L

)
; (8)

where the center of the cart track is at 0, with L length
of track available on both sides.

It may be mentioned that in Eq. (6), no term
which changes sign during evolution of the system
can be inserted as a multiplier of the right-hand
side. The equation demands that always a negative
quantity should be a multiplier of sgn(�̇ cos �),
like (Erp − Eup). Hence an acceleration term like
Eq. (8) cannot be multiplied with the right-hand side
of Eq. (6). Thus we introduce this term as an additive
component.

One drawback of the pure energy control equation
(6) as discussed in Section 3.2 is the lethargic rise of
energy towards the desired potential energy level. If
the term (Erp−Eup) is removed from Eq. (6), it would
ensure a rate of injection of energy solely speci5ed
by the constant ksu. With this modi5cation, the 5nal
equation after introduction of the “cart potential well”
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Fig. 2. Energy plots: (a) energy plot for three swings corresponding to Eq. (9) and (b) energy plot for three swings corresponding to Eq. (6).

stands as

Kx=− ksu sgn(�̇ cos �)

+ kcw sgn(x) log
(

1 − |x|
L

)
; (9)

where ksu ; kcw¿ 0. Fig. 2 shows a comparison of the
energy pro5les (in a typical case) during swing-up
corresponding to Eqs. (6) and (9). The proposed con-
troller leads to a much faster energy rise, as expected.

4.2. Cruise mode

The purpose of swing-up is to inject enough Erp

to the pendulum so that it is able to swing-up to the
desired upright (unstable) equilibrium position. But it
cannot be guaranteed that the energy injection reaches
the desired value of Erp = Eup when the pendulum is
close to the upright con5guration so that the stabili-
zing controller acts directly. It may even be the case,
depending on the values of ksu and kcw, that the energy
injection has to stop close to the pendant con5guration
of the pendulum.

In order to avoid the loss of Erp due to further evo-
lution of the system in time from frictional losses, it
is desirable to maintain the value of Erp till the instant
when the system is caught by the stabilizing strat-
egy. Additionally, it is desired that when the control
is switched to the stabilizing strategy (which is most
eGective close to the linear region, at the origin of

the state space considered), the cart position and the
cart velocity should also be found close to their zero
values.

This is not di9cult to achieve for the cart posi-
tion; just a suitable increase in the constant kcw in
Eq. (8) would provide a more constrained cart poten-
tial well. Choice of a suitable function for the acceler-
ation (ucart well), which is diGerentiable at all points in
the interval ]−L; L[ and whose 5rst diGerential is con-
tinuous (not necessarily smooth), is not unique. Thus,
the function has to be chosen based on trial and error
to achieve the desired level of performance.

Similar requirement for the cart velocity may be
achieved using a cart velocity well de5ned like the
“cart potential well”. However, negative feedback in
the closed loop dynamics must be ensured for all such
acceleration terms. One possible acceleration function
for constraining the cart velocity may be

uvelocity well = kvw sgn(ẋ) log
(

1 − |ẋ|
ẋmax

)
; (10)

where ẋmax depends on the maximum cart velocity
that the system is capable of withstanding, or it may
depend on the desired zone of velocity that is eas-
ier for the stabilizing controller to handle. The steep-
ness of this cart velocity well determines the region
in ẋ space where the system is allowed to execute its
dynamics.
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A control law which incorporates maintenance of
Erp close to Eup may be formulated as

uenergy-maint = kem(exp |Erp − Eup| − 1)

×sgn(Erp − Eup) sgn(�̇ cos �); (11)

since the term sgn(�̇ cos �) ensures change of Erp

according to the sign of (Erp − Eup) (by virtue of
Eq. (5)). The exponential eGectively maintains Erp

close to Eup, thus forming a kind of hysteresis band
with soft limits.

After incorporation of all the three terms ucart well,
uvelocity well and uenergy-maint, the total acceleration for
the “cruise” mode comes to

Kx = ucart well + uvelocity well + uenergy-maint (12)

from Eqs. (8), (10), and (11). But there is an inherent
drawback of this control law. The energy maintenance
component in the above equation functions only if it
is strong enough, i.e., only if the Erp is substantially
diGerent from Eup since at Erp =Eup, the component’s
contribution is zero. The energy therefore would not
remain close to Eup at any time, but will decrease to a
lower level. Functioning alone, without the cart-well
and the velocity-well components, it would however
maintain the energy constant around Eup. Therefore
Eq. (11) needs to be modi5ed to, for instance,

uenergy-maint

= kem(exp |Erp − �Eup| − 1) sgn(Erp − Eup)

× sgn(�̇ cos �); �¿ 1: (13)

The signi5cance of the parameter � will be better un-
derstood in the context of stability, discussed in Sec-
tion 6.

Eq. (13) ensures availability of the system near the
origin of the cart track and the cart velocity when
control is switched to the stabilization mode. Desired
performance can be extracted in the “cruise” mode by
tuning the constants kcw ; kvw and kem (kcw may be
same as the previous mode) for speci5c choices of the
“cart potential” and the “cart velocity well” functions.

4.3. Stabilization

Stabilization is carried out using the LQR after lin-
earizing the state-space equations about the upright
(unstable) equilibrium con5guration ([0; 0; 0; 0]T).

This yields the approximation, with u as the input
(force F in this case):

Ẋ = AX + Bu;

where

X = [x1; x2; x3; x3]T

as de5ned in Section 2,

A=




0 0 1 0

0 0 0 1

0
−m2gl2

(J + ml2)(m+M − (m2l2=J + ml2))
0 0

0
mgl(m+M)

(J + ml2)(m+M − (m2l2=J + ml2))
0 0




and

B=




0

0

1
(m+M − (m2l2=J + ml2))

−ml
(J + ml2)(m+M − (m2l2=J + ml2))



:

Addition of state feedback control u=−KX leads to

Ẋ = (A− BK)X:

K is derived from minimization of the integral

J =
∫

(XTQX + uTRu) dt

where Q and R are positive semi-de5nite and positive
de5nite matrices, respectively. With the choice

Q =




100 0 0 0

0 1 0 0

0 0 50 0

0 0 0 1



; R= 5;

we obtain

K = [ − 4:4721;−75:9573;−7:1427;−11:5948]:
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5. Simulation and implementation results

Simulation was performed using the following
model of the cart pendulum:

Mass of the cart (M): 2:4 kg.
Mass of the pendulum (m): 0:23 kg.
Length of the pendulum (2l): 0:36 m.
Length of the cart track (L): ± 0:5 m.

Fig. 3. Simulation and implementation results for three swings, ksu = 1:64; kcw = 2:25; kvw = 5; kem = 6; � = 1:05: (a) simulation for
three swings and (b) implementation for three swings.

Fig. 4. Simulation and implementation results for four swings, ksu = 1:3; kcw = 2:25; kvw = 5; kem = 6; �= 1:05: (a) simulation for four
swings and (b) implementation for four swings.

Implementation of the algorithm was carried out on
an experimental setup and the relevant plots are shown
in Figs. 3–5. The implementation plot in Fig. 4(b) has
the 5rst one swing removed from all axis (including
time). Figs. 3(a) and (b) show the simulation and im-
plementation results, respectively, for three swings. It
is seen that the pendulum angle and cart position dur-
ing experimental swing-up bear a strong resemblance
with the simulation results. However, the practical
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Fig. 5. Simulation and implementation results for six swings, ksu = 0:87; kcw = 2:25; kvw = 5; kem = 6; � = 1:05: (a) simulation for six
swings and (b) implementation for six swings.

system is found to be noisy and it takes a longer time
to reach the steady state. The noise occurs primarily
due to the computation of the velocity terms in the
state by diGerentiation of position variables in the ex-
perimental setup. It may also be mentioned that fric-
tion was not taken into account in the mathematical
model used for control design. Figs. 4 and 5 show the
corresponding results for four and six swings, respec-
tively. In all cases there is quite good correspondence
between theory and experiments.

6. Stability analysis

As the system under study is a hybrid control sys-
tem with three distinct modes of operation, it has
been found necessary to consider multiple Lyapunov
functions, one for each of the modes. Following [7],
we formulate distinct Lyapunov functions for each of
the locations of operation which are continuous, but
not necessarily smooth, for the overall stability of a
hybrid system. We then derive su9cient conditions
under which the system will be stable.

The stability of the control system is primarily
determined by the swing-up mode and the “cruise”
modes in which energy is actively injected into the
pendulum. The third mode is stabilizing by design
around the local operating point of the upright

unstable equilibrium position. We therefore analyze
the stability of the swing-up mode 5rst by 5nding
a Lyapunov function and determine the conditions
under which it satis5es conditions of stability.

6.1. The swing-up mode

Before carrying out the formal proof of stability let
us note the following:

• In view of the nature of subsystem dynamics given
by Eq. (3), the [�; �̇]T subsystem does not depend
on the [x; ẋ]T subsystem.

• The existence of the system in the swing-up mode
depends on the energy imparted to the [�; �̇]T sub-
system.

• If it can be shown that the [�; �̇]T subsystem acquires
su9cient energy in a 5nite time, then the stability
of the swing-up mode will be guaranteed, since all
the associated state variables will be bounded.

We prove the latter by de5ning a Lyapunov function
for the [�; �̇]T subsystem, based on the energy function
Erp as follows.

For the swing-up process to be stable in [�; �̇]T

subspace, there must exist a function Vsw-up(X[�; �̇]T)
such that Vsw-up¿ 0 ∀X[�; �̇]T �= 0; Vsw-up(0)=0 and
V̇sw-up6 0; ∀t ¿ 0. A candidate for such a function
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is Vsw-up = (Eup − Erp), since it is positive during
the swing-up mode, �∈ ]0; 2�[. We examine V̇sw-up

below:

V̇sw-up = −Ėrp = m Kxl�̇ cos �:

Substituting the acceleration Kx from Eq. (9), we ob-
tain Eq. (14) as the condition for stability in [�; �̇]T

subspace in the sense of Lyapunov:

V̇sw-up = ml�̇ cos �
(
−ksu sgn(�̇ cos �) − d�

dx

)

6 0; (14)

which necessarily means that

ksu¿
(
−d�

dx

)
sgn (�̇ cos �):

Since ksu¿ 0, a su9cient condition is ksu¿|d�=dx|.
In the present context, where a logarithmic cart po-

tential well has been chosen, the above result means
that

|x|
L
6

(
1 − exp

(
− ksu
kcw

))
:

The above is a su9cient condition for stability in the
[�; �̇]T subsystem. It is clear that the ratio ksu=kcw plays
a very important role in this regard. In physical terms,
it ensures that the energy injection component of the
acceleration is the dominating component so that the
sign of dErp=dt in Eq. (5) is maintained negative. This
is intuitively quite logical. Once this condition is sat-
is5ed, the values of ksu and kcw can be chosen as a
trade oG between the rate of energy rise and the track
length restrictions.

Once stability in [�; �̇]T space is ensured, we claim
that the swing-up mode exists for a 5nite time. This
follows from the condition in Eq. (14) that Vsw-up is
a non-increasing function. In fact, the equality is valid
only instantaneously, when the pendulum switches
swinging direction.

6.2. The “cruise” mode

In a similar spirit to the swing-up mode, we es-
tablish that the “cruise” mode exists for a 5nite time.
For the “cruise” mode to be stable in [�; �̇]T subspace,
there must exist a function Vcruise(X[�; �̇]T) such that
Vcruise(X[�; �̇]T)¿ 0 ∀X[�; �̇]T �= 0; Vcruise(0) = 0 and

V̇cruise6 0; ∀t ¿ 0. A candidate for a Lyapunov func-
tion is Vcruise = 1

2 (Erp − Eup)2 since it is positive for
all values of Erp, and at the origin of the state space,
it is 0 since Erp = 0. We examine V̇cruise below:

V̇cruise = (Erp − Eup)Ėrp

= (Erp − Eup)(−m Kxl�̇ cos �):

For the system to be stable, with (Erp − Eup) =
TErp; � = �(ẋ) the cart-velocity potential function
� = �(x) the “cart potential function”, f(Erp) the
energy maintenance component (function),

Vcruise = sgn(TErp)Ėrp6 0

⇒ sgn(TErp) sgn(�̇ cos �) Kx¿ 0

⇒ kemf(Erp)¿sgn(TErp)sgn(�̇cos�)
[
d�
dx

+
d�
dẋ

]

⇒ kem |f(Erp)|¿
∣∣∣∣d�dx +

d�
dẋ

∣∣∣∣ :
In the present context, where logarithmic cart poten-
tial and cart velocity potentials have been chosen, the
above result means that, from Eq. (13),

kem |exp|Erp − �Eup| − 1|

¿
∣∣∣∣kcw ln

(
1 − |x|

L

)
sgn(x)

+ kvw ln
(

1 − |ẋ|
|ẋmax|

)
sgn(ẋ)

∣∣∣∣
⇒ kem |exp|Erp − �× Eup| − 1|

¿
∣∣∣∣kcw ln

(
1 − |x|

L

)

+ kvw ln
(

1 − |ẋ|
|ẋmax|

)∣∣∣∣ ; �¿ 1: (15)

The above is a su9cient condition for stability of the
“cruise” mode in [�; �̇]T subspace. The equation shows
that the energy maintenance component of the accel-
eration should be the dominating component.

It is trivial to note that the “cruise” mode exists only
for a maximum of a single swing if the condition in
Eq. (15) is satis5ed. After this the pendulum is caught
by the stabilizing controller (the third mode), since
Erp is maintained in the second mode close to the
value corresponding to the upright (static) condition.
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Local stability around this operating point is ensured
by design of the LQ regulator.

7. Conclusions and further work

In this paper, a new technique has been proposed for
the swing-up and upright stabilization of an inverted
pendulum on a cart with a restricted track length. This
is achieved by generalizing the simple energy control
law with the introduction of a cart potential well to
penalize motions close to and beyond the boundary.
The energy control law is modi5ed to inject energy at
a 5xed rate. This, however, requires a “cruise” mode
of operation to ensure that energy is maintained at the
desired value after a su9cient value is acquired that
can take it to the upright con5guration. Finally, when
the pendulum comes close to an upright con5guration,
an LQ regulator designed for this operating point
stabilizes it.

The proposed control law has been found to work
well in simulation as well as experimentally. It has
been proved that the control laws for swing-up and
“cruise” mode ensures stability under fairly reason-
able conditions. These conditions have been veri5ed
through simulations.

A major problem with the proposed scheme was to
design suitable potential wells and coe9cients in the
various control laws which have been obtained using
intuition and iterations, rather than from an analytical
perspective. It would be interesting to consider what
class of functions would satisfy the desired speci5ca-
tions and how to optimize the associated parameters.
The robustness of the control scheme with respect to
knowledge of the pendulum parameters also needs to
be studied. Some of these issues are currently being
investigated by the authors.
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