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Satellite Clusters with Constant Apparent Distribution

David F. Chichka¤

University of California, Los Angeles, Los Angeles, California 90095

The problemof creating a cluster of satellites such that the arrangement maintains its apparent relative formation
as viewed from the planetary surface, without active station keeping, is considered. It is shown that it is possible
to create a cluster with nearly constant circular form, but that rotates about its center. The amount of variation
from the perfect circle is characterized in terms of the eccentricity of the satellite orbits. Because of the nature of
the cluster, it is possible to put a large number of satellites into a cluster, with no danger of satellite collisions. An
illustrative example is included.

I. Introduction

T HE work begun in this paper was motivated by the problem of
creating a cluster of satellites that would maintain a constant,

or nearly constant, shape and size when viewed from the Earth.
Such a cluster might be said to have constant apparent (as opposed
to physical) distribution. In such a formation, all satellites would
have a clear � eld of view of the surface, and would remain in suf� -
ciently close formation to share their information. Such formations
are of interest for large distributed-aperture sensing, for example.
Another possibility is that of forming clusters from many small,
inexpensive satellites, each with a particular type of sensor and
some computing power. Remaining in a close formation would al-
low the satellites to share information and computing ability among
themselves.

For such missions, it might be unnecessary to maintain extremely
precise relative positions; rather, it might be suf� cient to know the
relative position accurately, and to remain in close enough prox-
imity to allow intercraft communication. In addition, an effect of
constant apparent distribution is that the angular dispositions of the
satellites relative to their ground targets and each other would be
constant.

One of the desires of this work is to reduce the need for station-
keeping thrust. For this reason, we consider orbits in which the
natural motion of the satellites keeps them in a cluster. The need for
station-keeping would then be reduced to eliminating the effects of
perturbations on the array. These effects will be found in the bulk
motion of the array and in the relative motions of the satellites in the
array. For missions in which precise knowledge of position is the
primary goal, some cyclic perturbations may be acceptable if they
are suf� ciently small and well understood.

In the next section, we will examine the problem using the well-
known Clohessy–Wiltshire (C–W) linearized equations.1 This will
produce a result valid for a very small cluster. In the third section,
we will use classical orbital parameters to quantify the errors in the
linear approximation. An example is then included.

While developing the ideas in this paper, the author became aware
of the work of DeCou,2 who examined the problem of satellite in-
terferometry. This special case limits the cluster to three colinear
satellites, reducing them to the same circular orbit for the problem
considered here. More general study of interferometry in solar orbit
is reported in Refs. 3 and 4. Several other authors have also addressed
the problem of widely spaced satellite constellations (see, for ex-
ample, Ulybyshev,5 McInnes,6 and the references therein). More
recently, some results of linear cluster analysis have been reported
by Sedwick et al.7
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II. Notation and Problem Description
In what follows, the motion of a satellite will be described with

respect both to a moving reference point and as seen by an observer
on the surface of a spherical planet. The motion of the reference
point can be visualized by thinking of it as the position of a (possibly
hypothetical) reference satellite on a circular orbit of radius R, which
will be referred to as the reference orbit. This reference point will
serve as the origin of a local coordinate system. This reference frame
was � rst described by Hill,8 who derived it in his work on the motion
of the moon about the Earth.

Let R be the position of the reference satellite, following the
reference orbit under idealized two-body motion, and r the position
of a nearby point. Both R and r are expressed in an inertial frame
centered at the planetary center of mass. Hill’s coordinate frame
moves with the reference point, and rotates such that the x axis is
aligned with R. The y axis is tangent to the reference orbit at the
reference point, and positive in the direction of the orbital motion.
The z axis completes the orthogonal set, as illustrated in Fig. 1.
Thus, the reference point is also the origin of the moving reference
frame.

Hill’s frame allows the motion of the actual satellite to be de-
scribed with respect to the reference point. It will be shown that the
motion of the satellite in this frame will create an orbit; this orbit
will be called the relative orbit, as shown in Fig. 1. We are primarily
interested, however, in the relative motion as it appears to a � ctional
observer on the planetary surface, whose position is always on the
ray connecting the center of the planet to the reference point. This
observer represents the point on the surface that is the subject of
observation by the satellite cluster.

To this end, we de� ne the apparent orbit. Consider a point on
the planetary surface that moves with time such that it is always
between the center of the planet and the origin of Hill’s frame. The
apparent orbit is the motion of the satellite relative to the reference
point as seen from this point. As this is purely a matter of the line of
sight from the viewer to the satellite, there is no physical meaning to
the apparent orbit. However, it is helpful to visualize it as the trace
left by the intersection of the line of sight as it passes through the
y–z plane in the Hill’s coordinate frame, as shown in Fig. 2.

The analysis that follows will be primarily concerned with three
angles that describe the position of the satellite on the apparent orbit.
The elevation angle j , the lateral angle k , and the rotary angle u
are shown in Fig. 3. The angles are all positive as shown, with u
increasing in right-hand rotation about the Hill’s-frame x axis.

The maximum value of k will be referred to as the angular width
of the orbit, and the maximum value of j as the angular height.
RP will denote the radius of the planet, and the value R ¡ RP will
be called the altitude of the reference orbit. This is also the mean
altitude of the satellite cluster.

Remark 1: A more rigorous de� nition of the apparent orbit would
be the trace of the line of sight as it passes through a spherical shell
centered at the viewpoint, with radius R ¡ RP . Using this de� nition,
a perfectly circular apparent orbit would result in a constant total
angle between the line of sight and the line joining the viewpoint
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Fig. 1 Hill’s reference frame for satellite relative motion.

Fig. 2 Reference, relative, and apparent orbits.

Fig. 3 Geometry description and de� nitions.

to the origin of the Hill’s frame. This will not be important in what
follows, as the analysis will be done by considering the angles them-
selves, rather than projected distances. The apparent orbit can then
be calculated by multiplying the angles by R ¡ RP . The difference
in this formal method and the visualization suggested above is ex-
tremely small for clusters in which the cluster radius is small with
respect to its mean altitude.

The symbols a and e will denote the semimajor axis and eccentric-
ity of an orbit. The variable n is the mean motion or average angular
motion of a body on an orbit, and for an elliptic orbit is given by
the relation n =

p
( l / a3), where l is the gravitational parameter of

the central body (the mass of the planet times the universal gravita-
tional constant). The true anomaly m of a point on an eccentric orbit

Fig. 4 Orbital elements of the eccentric orbit.

will be measured from periapsis, as shown in Fig. 4. Later sections
will consider an eccentric orbit, inclined with respect to a circular
reference orbit. In this case, the reference plane will be the plane of
the circular orbit, and the line of nodes will be taken to be the line
of intersection of the two orbit planes. The argument of periapsis x
of the eccentric orbit will be measured from this line of nodes. The
inclination will be denoted i and will be the angle between the two
orbit planes. Finally, the angle u = x + m is the angle from the line
of nodes to the radial vector. Note that this is de� ned for circular as
well as eccentric orbits.

III. Linearized Approach
The C–W equations are a natural choice for describing the motion

of a satellite near a circular reference orbit. They are de� ned in Hill’s
reference frame as in Fig. 1, and are sometimes referred to as Hill’s
equations. The equations are written

ẍ = 3n2x + 2n Çy (1)

ÿ = ¡ 2n Çx (2)

z̈ = ¡ n2z (3)

where n =
p

( l / R3) is the angular rate of the reference orbit. It
follows immediately that the out-of-plane motion is given by

z(t ) = Az cos(nt + u z) (4)

where Az is the magnitude and u z is a constant phase shift. Solving
for x and y is only slightly more dif� cult. Following usual practice,
integrate y to get

Çy = ¡ 2nx + k (5)

where k is a constant of integration. Subsitute this into the x equation
to get

ẍ = ¡ n2x + 2nk

This is directly solved to get

x(t ) = Ax cos(nt + u x ) + 2k / n (6)

which is substituted into Eq. (5) and integrated to get

y(t ) = ¡ 2Ax sin(nt + u x ) ¡ 3kt + c (7)

where c is the constant of integration.
Because we require a purely cyclic motion with the same period

as the reference orbit for our problem, k = 0; c is simply an offset
term and can be given the value zero without loss of generality.

We are concerned only with the orbit as it appears from the surface
of the planet. In keeping with the assumptions made to linearize the
equations of motion, we assume that the variation in r is negligible
with respect to the altitude of the orbit. The appearance of the orbit
will then be its projection on the y–z plane. We have

y(t ) = ¡ 2Ax sin(nt + u x ) (8)

z(t ) = Az cos(nt + u z) (9)
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Fig. 5 Apparently circular cluster of satellites.

Setting u x = u z results in a perfectly elliptic projection. By properly
specifying the initial conditions, it is possible to set Az = 2Ax and the
apparent orbit becomes a circle. (Note that setting u x = u z + p also
results in an elliptic projection, with the direction of the projected
motion reversed.)

Remark 2: The statement that the apparent orbit is the y–z projec-
tion assumes that the viewpoint is on the line connecting the center
of the planet to the center of the relative orbit. Extension to the case
of a viewpoint above or below this line is straightforward, so long
as the viewpoint remains on the plane normal to the plane of the
reference orbit.

Because the initial angle u z in Eq. (9) is arbitrary, it is possible to
place as many satellites in a circular apparent orbit as desired, each
separated from the next by some constant angle. This would give a
“pinwheel” effect from the planetary surface as the satellites rotate
about the center of the cluster. The cluster would spin about its own
center once during each orbit of the planet.

The radius of the apparent orbit is also arbitrary. Thus, it is possi-
ble to create a cluster of an almost arbitrary number of satellites, by
creating concentric rings about the reference satellite, as in Fig. 5.
The period of the apparent orbit is always that of the reference or-
bit, so that the entire cluster will maintain its shape relative to the
center. Thus, separation angles such as u 12 in Fig. 5 should remain
constant.

As the C–W equations are linearizations, it is to be expected that
they do not fully describe the relative motion of the satellite. An
approximation of their error can be made by examining the higher-
order terms in the orbital equations. This is the subject of the next
section.

Remark 3: Note that the height of the apparentorbit is independent
of the width. Thus, whereas this paper is concerned only with the
apparent relative orbit, this technique can also be used to generate
a relative orbit that is very nearly circular in actuality, and which
appears elliptic when viewed from the planetary surface.

IV. Orbital Mechanics
The motion of the satellite described by the C–W equations is

caused by slight differences in the orbital parameters of the satel-
lites. The satellite in the elliptic orbit moves more slowly than the
reference when at apoapsis, and more quickly near periapsis. It thus
seems to lag behind and then to catch up. When combined with in-
clination, this leads to an apparent orbit about the reference satellite.

Investigating the apparent orbit in terms of the orbital elements is
not as straightforward as using the linear equations, but this approach
allows an investigation of the limits of the linearized approach, and
an estimate of the corrections due to nonlinearity. In this section, we
will investigate the eccentricity and inclination required to produce
a circular apparent orbit.

In developing the ideas of this section, we will con� ne our atten-
tion to orbits inwhich periapsis is 90 deg from the line of nodes. This
ensures the symmetry of the apparent orbit about the Hill’s-frame
z axis. (Recall that we are de� ning the line of nodes as the line of
intersection of the orbital plane with the reference plane.)

The description of the apparent orbit will be expressed in terms
of the eccentricity of the satellite orbit. These terms will be on the
order of e; thus, second-order terms in e may be considered � rst-
order corrections. In the following analysis, we will � nd estimates
for these correction terms.

A. Apparent Angular Width
We � rst examine the eccentricity needed to produce an apparent

orbit of a particular width. The width will be de� ned by projecting
the line of sight to the satellite onto the reference plane. The angle
between this projection and the line of sight to the reference point
is then the angular separation of the satellite and the reference point
(this is the angle k in Fig. 3). The width of the orbit is then the
maximum value of this angle.

If the inclination of the orbit is zero, the angle is easily computed.
We take the reference orbit and the eccentric orbit to have equal
semimajor axes and thus equal periods. The motion of the reference
point is then equivalent to the mean motion of the eccentric orbit.
The separation at any point is then the difference between the true
anomaly m and the mean anomaly M . This is easily addressed, as
the expansion of m in terms of M is well known. Assuming the
inclination is small enough that its effects are negligible then allows
us to extract some information quickly. The expansion as given in
Moulton9 is

m ¡ M = 2e sin M + 5
4
e2 sin 2M + ¢ ¢ ¢ (10)

Finding the maximum is then a matter of simple calculus. Taking
the expansion through second order and taking the derivative with
respect to M results in

4e cos M + 5e2 cos 2M = 0 (11)

For e ! 0, this leads to values of M approaching p /2, agreeing with
intuition. Setting M = p /2 + d and dividing through by e allows
Eq. (11) to be rewritten as

¡ 2 sin d ¡ 5e cos 2d = 0 (12)

Again, e = 0 gives d = 0, and for very small e we have that d is ap-
proximately ¡ 5e /2. The sign of d is less important than the knowl-
edge that d is of order e. This will make obvious the order of terms
in the analysis to follow.

Using these results, return to Eq. (10). This equation can now be
written

m ¡ M = 2e cos d ¡ 5
4 e2 sin 2d + ¢ ¢ ¢

Because d is small, cos d » 1 and sin2 d » 2d . Because d is of order
e, the second term on the right in the above equation is » e3 and can
be ignored. Thus, to second order,

m ¡ M = 2e (13)

Thus, the angular width of the apparent orbit as seen from the center
of the central body is 4e. From the surface of the planet, the angular
spread is wider. Letting k denote the angle between the lines of sight
to the satellite and to the reference, geometry gives

k = tan ¡ 1

³
r sin( m ¡ M)

r cos( m ¡ M) ¡ RP

´
(14)

Expanding the radius of the elliptic orbit in M and e, again writing
M as p / 2 + d , gives

r = R[1 ¡ e sin d + (e2 / 2)(cos 2 d ¡ 1) + ¢ ¢ ¢ ]

Using the expansions for m ¡ M and r as given, we � nd that to � rst
order

k =
2R cos d

R ¡ RP
e ¼ 2Re

R ¡ RP

(15)
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and that the coef� cient of the second-order term is of order d , mak-
ing the term of third order. This gives a total angular width of the
apparent orbit of

2 k ¼ 4e[R / (R ¡ RP )] (16)

For a low-altitude orbit, RP may be nearly as large as R, and thus
the angular spread of the apparent orbit as seen from the planetary
surface might be several times larger than the value of m ¡ M .

B. Correction for Inclination
To allow for orbital inclination, the expansions used to compute

the width of the apparent orbit must be extended to include the
inclination. Consider the angle between the projection of the radial
vector onto the reference plane and the projection of the eccentricity
vector (that is, the vector from the center of the planet to periapsis).
Letting this angle be denoted º, we have

º = tan ¡ 1

³
r sin m

r cos m cos i

´
= tan ¡ 1

³
tan m

cos i

´
(17)

The width of the apparent orbit is then the difference between this
angle and the mean anomaly M of the reference orbit.

We expect that this angle will be maximized near m = p /2. Be-
cause we have assumed that the argument of periapsis x = p / 2, this
corresponds to the descending node. Expanding about this point, we
de� ne the small parameter e = m ¡ p / 2, and the angle correspond-
ing to º as

tan " =
r sin e cos i

r cos e
) " = tan ¡ 1[ a tan e ] (18)

where for brevity we use a in place of cos i . This angle is measured
from the line of nodes to the projection of the radial vector. We
expect that e ¼ 0, so that Eq. (18) should be valid over the area of
interest.

The expansion for " is straightforward:

" = a e + [( a + a 3) /3]e 3 + O( e 5) (19)

The angular width is found by introducing the expansion for m into
this expression. At this point, we make the assumption that our
earlier results were “nearly” correct, and thus that d is in fact of
about the same size as e and that i ¼ ce for some constant c at least
through � rst order.

Knowing that d is of the order of e allows us to ignore all terms
above third order combined in the two variables. Thus, we achieve

" ¡ d = ( a ¡ 1) d + (1 ¡ a 2) a d 3 / 3 + 2 a cos d [1 + (1 ¡ a 2) d 2]e

+ [16(1 ¡ a 2) d cos2 d ¡ 5 sin 2 d ]( a /4)e2 + [32(1 ¡ a 2) cos3 d

¡ 3 cos d ¡ 13 cos 3 d ]( a /12)e3 + ¢ ¢ ¢ (20)

Substituting cos i = cos(ce) for a and expanding the trigonometric
terms gives the expansion as

" ¡ d = 2e ¡ d 2e ¡ (5 + c2) d e2 / 2 ¡ (c2 + 4/ 3)e3

through third order combined. Through � rst order, we again have the
width to be 2e, and we see once more that there are no second-order
terms.

C. Apparent Vertical Size
The apparent vertical size of the orbit is determined by the eleva-

tion angle between the line of sight to the satellite and the reference
plane. Relative to the center of the planet, this angle can be expressed
as

j c = sin ¡ 1[sin u sin i ] (21)

where u is the angle from the line of nodes to the radial vector. As a
result of our requirement on the argument of periapsis, the absolute
value will be maximized for u = § p /2. For a circular orbit, we

require that the maximum value of j c equal the maximum value of
m ¡ M . Thus, from Eq. (13) we have

j c = sin ¡ 1(sin i ) = i = m ¡ M = 2e (22)

to second order in e.
The vertical angle as seen from the surface of the planet is

widened, as is the lateral. However, as the maximum vertical spread
occurs at the extrema of the radius, there is a � rst-order contribution
of e to r that must be examined.

When the satellite is at the apses, the apparent elevation angle can
be written as

j = tan ¡ 1

³
R(1 + e ) sin i

R(1 + e ) cos i ¡ RP

´

where e is equal in magnitude to the eccentricity, and is positive at
apoapsis and negative at periapsis. We expand about e = 0 to get

j = tan ¡ 1

³
R sin i

R cos i ¡ RP

´
¡ RRP sin i

(R ¡ RP )2 + R2 sin2 i
e + ¢ ¢ ¢ (23)

Recalling Eq. (22) and making small angle approximations, the � rst
term reduces to

j ¼ 2Re/ (R ¡ RP )

as would be expected. The second term is the � rst-order correction
to j .

Note that the coef� cient of the correction contains R and RP . We
make the assumption that the product Re/ (R ¡ RP ) is small. This is
of concern only when RP approaches R, as for a low-altitude orbit.
In this case, it is seen that the correction term is of second order in
Re/ (R ¡ RP ).

The coef� cient of the correction term is negative, showing an
expansion of the angle at periapsis and a contraction at apoapsis.
The effect of this could be to raise the apparent orbit slightly with
respect to the reference plane. If in fact the apparent orbit is elevated,
there should be a corresponding elevation at the points of maximum
lateral spread.

To investigate this, we require a value for the position of the
satellite on its orbit at which the apparent orbit achieves it maximum
width. In an attempt to � nd this value, we can return to Eq. (20). If
we take the derivative of this equation, however, we � nd no terms
that are of � rst order combined. Because the value of " ¡ d , and
thus of i , is de� ned only through second order, � rst-order terms are
necessary to obtain any information. Numerical investigations show
that the elevation of the point of maximum width is in fact not linear
with e.

D. Phase Separation in Apparent Orbit
When there is more than one satellite in apparent orbit about the

reference point, they will be separated by some angle, constant to
the accuracy of the C–W equations. In Fig. 5, the angle denoted u 12

is such a separation angle.
The separation angle between two satellites in the same apparent

orbit is a function of the angle between the lines of nodes of their
orbits. Nominally, the separation angle equals this angle. The sep-
aration will vary as a result of the second-order deviations of the
apparent orbit from perfect circularity; the actual amount of variance
will be dependent upon the separation.

Although this makes it impossible to de� ne the change in separa-
tion angle, we can investigate the angular rate of the satellite in its
apparent orbit. It is clear that the satellite will sweep its angle faster
when it is at periapsis than at apoapsis; the ratio will be the same as
that for the true anomaly rates:

Çu p / Çu a = [(1 + e) / (1 ¡ e)]2

where u is the phase angle in the apparent orbit and the subscripts
refer to periapsis and apoapsis.

An estimate of the total variation in u (t ) from that predicted
by the C–W equations can be had by � nding the value of the true
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anomaly when the mean anomaly equals p / 2. This is easily enough
accomplished through the same expansion used earlier:

m = M + 2e sin M + (5e2 /4) sin 2M + ¢ ¢ ¢ ) m = p /2 + 2e

through second order. The phase angle in the apparent orbit, mea-
sured from the vertical, can be expressed approximately as

u (M = p /2) =
p

2
+ tan ¡ 1

³
r sin u sin i

R( m ¡ M)

´
¼ p /2 + sin i

Recalling that i ¼ 2e, this implies that the satellite sweeps through
4e less apparent angle as M goes from p /2 to 3p /2 than during
the other half of the orbit. Thus, two satellites in orbit about the
reference, separated by a 180-deg difference in phase, will vary in
their relative positions by §4e radians during the orbit.

E. Geometry of the Relative Orbit
The apparent orbit with which we have been concerned is in a

sense the projection of the relative orbit onto a plane normal to the
radius of the reference orbit. The actual relative orbit is not circular.
Rather, it is nearly elliptical. This follows from the results of Sec. III.

The depth of the motion is clearly the difference between periapsis
and apoapsis, which by de� nition is 2Re. As the � rst-order approxi-
mation of the diameter of the apparent orbit is 4Re, this implies that
the relative motion lies near a plane that is angled 60 deg with respect
to the reference plane. As a result of this, the variation in the actual
distance from the reference point to the satellite will vary from a
minimum of the apparent orbital radius (when the satellite crosses
the reference plane) to a maximum of approximately

p
(5) /2 times

this amount (at periapsis and apoapsis). Thus the actual maximum
distance will be (to � rst order in e)

p
(5)(R ¡ RP )e.

V. Example
We consider here an example to demonstrate numerically the ef-

fects of the correction terms on the linearized solution. As a dif� cult
case, we will consider a fairly large apparent orbit at a low altitude.

As has been mentioned in the preceding section, the appearance
of the relative orbit is a matter of the angles between the lines of
sight to the satellite and to the reference, from a point on the plane-
tary surface along the vector joining the center of the planet to the
reference. To speak of the radius of the apparent orbit requires a
more precise de� nition. In this case, we will simply multiply the
angles describing the relative orbit by the altitude of the reference
orbit.

Consider a cluster of Earth satellites, such as shown in Fig. 6, in
apparent orbit about a central point. The nominal orbital altitude is
552 km (298 nmi). To exaggerate the second-order effects, we will
set the radius of the apparent orbit at 10 km. We assume a spherical
Earth. The cluster consists of a single ring, with six satellites equally
spaced such that their nominal apparent angular separation is 60 deg.

Fig. 6 Ring of six equally spaced satellites.

Using the results derived above, we have that the angular spread
of the desired orbit is k = 10/ 552 = 0.0181 rad. From Eq. (16) we
then have that

0.0181 = 2Re/ (R ¡ RP ) ) e = 7.21 £ 10 ¡ 4

The inclination angle equals the spread angle, so that i = 2e =
1.44 £ 10 ¡ 3 = 0.0827 deg. The � rst-order corrections to the vertical
spread of the orbit are

D j = 0.209e = 1.51 £ 10 ¡ 4 = 0.00865 deg

which when multiplied by the nominal altitude of the orbit produces
an apparent shift of 83.34 m.

The shape of the apparent orbit is so close to circular that it
appears to be so to the naked eye. The widest point is reached at
t / P = 0.2484, and the value of m ¡ M at this point is 1.99992e. The
width as viewed from the surface of the Earth is 9.9995 km, an error
due to higher-order terms of less than one meter.

Figure 7 shows the errors in vertical and horizontal positions,
again in meters. The vertical error is primarily above the zero axis,
re� ecting the vertical shift in the apparent orbit discussed in the

Fig. 7 Apparent position variations from nominal.

Fig. 8 Variation in radius of apparent orbit from nominal.

Fig. 9 Error in angle in apparent orbit, normalized to eccentricity.
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Fig. 10 Apparent distance between opposed satellites.

Fig. 11 Angle between neighboring satellites in cluster of six.

Fig. 12 Errors in relative angle in cluster of six satellites.

preceding paragraphs. The vertical error is negative, however, in the
neighborhood of t / P = 0.25.

Figure 8 shows the variation in the distance from the reference
point to the satellite, in meters; the maximum value is 83.13 m,
within 0.22 m of the value predicted by the � rst-order correction
term. Figure 9 shows the difference between the calculated angular
position in the apparent orbit and the ideal. The ideal value of the
angle is simply 2 p t / P . The displayed error value is divided by the

eccentricity. It is seen that the maximum value is very close to the
predicted value of 2e.

The apparent distance between two satellites on opposite sides of
the apparent orbit is shown in Fig. 10. The distance is constant to
within 2.2 m; the variation from nominal for one satellite is almost
perfectly matched by an equal variation for the other.

The angle between two neighboring satellites in the cluster of
six is shown in Fig. 11. Here, it is seen that the angle is variable
by approximately §0.09 deg. This is about 2.18e, well within the
predicted §4e. This is made more explicit in Fig. 12, in which this
error is displayed normalized to the eccentricity. Also shown in
Fig. 12 is the variation of the angle between two opposing satellites
in the cluster. Here we see precisely the ¡ 4e to 4e cycling predicted.

VI. Conclusions
This paper looks at the possibility of creating satellite clusters that

through their natural motion retain a constant shape when viewed
from a planet’s surface. It is shown that the shape of the apparent
circular orbit can be described in terms of the eccentricity of the
orbit, and that terms through second order in e are suf� cient to
describe the motion to a high order of accuracy. An example is
included to demonstrate the accuracy of the analysis.

The analysis of this paper considers only viewpoints that are on
the line connecting the center of the planet to the origin of the moving
reference frame. It is also limited by the assumption of a spherical
planet; in considering satellite clusters about the Earth, the effects
of nonsphericity must be included. These efforts are the subject of
continuing work.
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