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Spacecraft Trajectory Planning with Avoidance Constraints
Using Mixed-Integer Linear Programming

Arthur Richards,¤ Tom Schouwenaars,† Jonathan P. How,‡ and Eric Feron§
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A method for � nding fuel-optimal trajectories for spacecraft subjected to avoidance requirements is introduced.
These include avoidance of collisions with obstacles or other vehicles and prevention of thruster plumes from one
spacecraft impinging on another spacecraft. The necessary logical constraints for avoidance are appended to a
fuel-optimizing linear program by including binary variables in the optimization. The resulting problem is a mixed-
integer linear program (MILP) that can be solved using available software. The logical constraints can also be used
to express the con� guration requirements for maneuvers where only the � nal relative alignment of the vehicles
is important and the assignment of spacecraft within the � eet is not speci� ed. The collision avoidance, trajectory
optimization, and � eet assignment problems can be combined into a single MILP to obtain the optimal solution
for these maneuvers. The MILP problem formulation, including these various avoidance constraints, is presented,
and then several examples of their application to spacecraft maneuvers, including recon� guration of a satellite
formation and close inspection of the International Space Station by a microsatellite, are shown. These examples
clearly show that the trajectory design methods presented are particularly well suited to proposed formation � ying
missions that involve multiple vehicles operating in close proximity.

Nomenclature
G = number of global con� gurations available for end states
M = large number for logical constraints
N = number of dimensions
P = plume length
T = number of time steps
u = control input
V = number of vehicles
W = plume width
x = vehicle state

Subscripts

g = global con� guration for � nal states
i = time step
l = obstacle
n, m = axes in some orthogonal coordinate frame
p, q = vehicles
r = position within � nal con� guration

I. Introduction

A UTONOMOUS formation � ying of satellite clusters has been
identi� ed as an enabling technology for many future NASA

and U.S. Air Force missions.1¡4 The use of � eets of smaller satel-
lites instead of a single monolithic satellite offers improved science
return through longer baseline observations, enables faster ground
track repeats, and provides a high degree of redundancy and re-
con� gurability in the event of a single vehicle failure. These bene-

Presented as Paper 2001-4091 at the AIAA Guidance, Navigation, and
Control Conference, Montreal, QC, Canada, 6–9 August 2001; received 2
November 2001; revision received 20 February 2002; accepted for publi-
cation 20 February 2002. Copyright c° 2002 by the American Institute of
Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper
may be made for personal or internal use, on condition that the copier pay
the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rose-
wood Drive, Danvers, MA 01923; include the code 0731-5090/02 $10.00 in
correspondenc e with the CCC.

¤Research Assistant, Space Systems Laboratory; arthurr@mit.edu.
†Research Assistant, Laboratory for Information and Decision Systems;

toms@mit.edu.
‡Associate Professor, Space Systems Laboratory; jhow@mit.edu. Senior

Member AIAA.
§Associate Professor, Laboratory for Information and Decision Systems;

feron@mit.edu. Senior Member AIAA.

� ts can be achieved at the expense of more stringent requirements
on � eet coordination, high-level mission management, and fault
detection.5;6 This paper is concerned with the trajectory-planning
aspects of mission management. A method is described for design-
ing fuel-optimal maneuvers that accounts for the presence of other
vehicles. The approach builds on recent research on the use of lin-
ear programming (LP) to design fuel-optimal solutions to spacecraft
maneuvering problems.5;7;8 In particular, this paper shows how in-
teger constraints can be added to the linear program to account for
three extensions of the basic maneuvering problem: collision avoid-
ance, plume impingement avoidance, and con� guration selection.

A common feature of these problems is a combinatorial aspect
to the optimization. This results from the nonconvex nature of the
feasible solution space. For example, when a vehicle approaches
an obstacle in two-dimensional space, it can choose to pass on
either the left or right, each option leading to a further path-planning
subproblem. Including these choices makes these trajectory design
problems intrinsically dif� cult to solve: Path-planning in the pres-
ence of obstacles has been shown to be NP-complete.9

The approach presented in this paper formulates the problem as
a mixed-integer linear program (MILP). This is a special case of a
linear program in which some variables are constrained to take only
integer values. In particular, we use binary variables, taking only the
values 0 or 1. Constraints on such variables enable the inclusion of
logical expressions in the optimization,10;11 encoding the combina-
torial part of the problem. MILPs are also NP complete,12 but can
be solved in many instances using a branch-and-bound algorithm.
A key advantage of writing the trajectory optimization in the MILP
form is the existence of highly optimized, commercially available
software that can be used to solve these mixed-integer linear prob-
lems. These codes were developed to solve MILPs in the � eld of
operations research, such as airline scheduling.13 CPLEX optimiza-
tion software14 is used to solve the MILPs in this paper, although
various other options exist. CPLEX implements the branch-and-
bound algorithm in conjunction with many adjustable heuristics,
allowing quite large problems to be solved in practical computation
times.

The MILP form of the trajectory optimization problems is linear
throughout, and so the method is immune to issues of local minima,
and global optimal solutions are found. Because all of the constraints
in the MILP problem must be linear, it is necessary to represent
the system dynamics model in linear form. Spacecraft avoidance
problems are well suited to this approximation. Vehicles typically
operate in close proximity, performing maneuvers over relatively
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short timescales of the order of an orbit. Under these circumstances,
the linearized Hill’s equations (see Ref. 15) provide a good model
of the relative vehicle dynamics.16

Depending on the nature of the trajectory problem, various other
techniques can be used to simplify the MILP and accelerate the
solution process. These methods involve using prior knowledge
of the solution to identify redundant or inactive constraints before
solving the problem. For example, in many cases it is possible to
predict that the optimal solution will only involve � ring at the be-
ginning and end of the maneuver with a coasting phase between,
which is the familiar bang–off–bang result from optimal control
theory. With this prior observation, constraints on thruster � ring
during the predicted coasting phase can be removed. The resulting
trajectory can then be postanalyzed to con� rm that all avoidance
constraints are satis� ed at every time step. Examples of this ap-
proach and other useful simpli� cations are discussed in detail in the
paper.

In all cases, a single optimization problem is solved to gener-
ate the minimum-fuel trajectory and associated control inputs to
complete the maneuver in a speci� ed time. This may be thought
of as a reference input for the system to follow. In practice, there
will be unmodeled disturbances, measurement uncertainty, and mis-
match between the real dynamics and the model used for planning.
Ongoing research involves the incorporation of an MILP trajectory
planner in a real-time, predictive control scheme to reduce the im-
pact of the unmodeled effects, but this is beyond the scope of this
paper.

The following subsections present each of the trajectory design
problems of interest, including a discussion of the motivation and
previous work in each case. The “Problem Formulation” section
presents the equations for the constraints to be added in each case.
Examples of the results of these techniques applied to represen-
tative problems are shown in the “Application Examples” section.
This includes computation time results and a discussion of problem-
speci� c simpli� cations to the formulation.

A. Collision Avoidance
Many approaches have been investigated for solving the prob-

lem of trajectory optimization with collision avoidance for dynamic
systems. For example, randomized searches17 were developed to
� nd feasible paths through � elds of obstacles rapidly. In reactive
schemes,18 vehicles � y a nominal trajectory and perform prede-
termined evasive maneuvers when con� icts are detected. For air-
craft, the path-planning problem can be reduced to a single heading
change decision,19 which greatly simpli� es the global trajectory op-
timization. Potential � eld modeling20 has also received signi� cant
attention. The approach typically includes an additional proxim-
ity penalty in the cost function in the optimization to account for
the collision constraints. Other approaches use splines21 and lower-
dimensional representations22 of nonlinear systems to reduce the
solution space before performing nonlinear optimization.

In the MILP formulation, the objective is todesign trajectories that
minimize the fuel for the maneuvers. The MILP approach is simpli-
� ed by the use of discretized, linear dynamics, which is a reasonable
approximation for most formation � ying spacecraft problems.16 In-
teger constraints are appended directly to the fuel-minimization lin-
ear program (LP) to enforce collision avoidance at each time step.
Thus, in contrast to reactive techniques, collision avoidance is in-
cluded in the trajectory planning for all vehicles along the entire
maneuver, permitting more ef� cient operation through cooperative
maneuvering. Another advantage is the clear tunability of the MILP
formulation: The trajectories will avoid collisions by exactly the
margin speci� ed in the constraints. This contrasts with the potential
function approach in which the cost penalty for proximity typically
has to be adjusted to achieve the desired balance between fuel con-
servation and the avoidance margin.

B. Plume Impingement
The plumes of high-energy gas particles emitted when a thruster

is � red can cause adverse effects if they hit another spacecraft.
Concerns include degradation of panels, deposition on instruments,
and excess structural loading. In particular, loading due to plume

impingement during docking was a design driver for International
Space Station solar panels.23 Instrument and spacecraft damage is a
concern for a number of forthcoming formation � ying missions,24;25

particularly those involving interferometry.4;26 In contrast to the col-
lision avoidance, plume impingement has not been widely studied
in connection with path planning. However, it can be included in
an MILP using a similar formulation to collision avoidance, forcing
other vehicles to remain outside a certain region when a thruster is
� red.

C. Final Con� guration Selection
For formation � ying missions involving multiple identical space-

craft, the arrangement of the vehicles within the formation is typ-
ically not important. For example, in a standard formation � ying
scenario,4;7 the vehicles will be arranged around a passive aperture,
which is a short-baseline, periodic formation con� guration that pro-
vides good, distributed Earth imaging while reducing the tendency
of the vehicles to drift apart.16;27¡29 Changing the viewing mode
of the � eet could require a change in the formation con� guration,
which involves relatively expensive maneuvers from one aperture
to another. The MILP formulation can be extended to include the
assignment of vehicle locations on the new aperture. The solution of
the MILP then gives the recon� guration maneuver with the lowest
overall fuel cost.

Previous approaches to this recon� guration problem include sepa-
rating the recon� guration into permutation maneuvers within groups
of satellites.30 Another method7 computes the costs for many ma-
neuvers and then selects the one that gives the lowest overall cost.
These approaches attempt to decouple the problems of con� gura-
tion selection and trajectory planning. Once the trajectory costs have
been calculated for each con� guration option, the selection is a lin-
ear assignment problem, which is readily solved using standard LP
tools.31

In contrast, the MILP approach in this paper retains the inherent
coupling of the fuel minimization and con� guration selection by in-
cluding both in a single optimization. The combinatorial constraints
for the con� guration selection can readily be included in an MILP
as a modi� cation of the terminal constraints in the LP problem.
Another advantage is that the optimal MILP solution will satisfy all
collision avoidance and impingement constraints, which cannot be
directly enforced in the decoupled approaches.

II. Problem Formulation
This section presents the details of the MILP formulations to solve

the various trajectory optimization problems.

A. Basic LP
The core of the optimization is to choose discrete state values xi p

for each vehicle p and time step i 2 [0; : : : ; T ] and the correspond-
ing input values ui p . The state at the � rst time point is constrained
to be the speci� ed starting conditions

x0p D xSp (1)

where xSp is the initial state vector for the pth vehicle. Similarly, the
state at the � nal time point is � xed at the speci� ed end conditions

xT p D xFp (2)

where xFp is the � nal state vector for the pth vehicle. The states
at intermediate points of time must be consistent with the system
dynamics

x.i C 1/p D Axi p C Bui p (3)

where A and B are a discretized form of the continuous system
dynamics. For simplicity, the constraints show the same dynamics
for all vehicles, but it is straightforward to modify the formulation
to account for heterogenous vehicles. For the problems of interest in
this paper, in which the spacecraft are in close proximity on similar
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orbits, the most common approximation for spacecraft dynamics are
the linearized Hill’s equations (see Ref. 15)
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where the x coordinate is in the radial direction, the y coordinate is
in the in-track direction, and the z component is in the out-of-plane
direction.15 The spacecraft mass is m and the natural frequency of
the reference orbit is !. The corresponding state and input vectors
are x D [x y z Px Py Pz]T and u D [u x u y uz]T . These equations can
be discretized resulting in the form in Eq. (3) by assuming that the
thrust ui p is applied continuously throughout the time step. Other
discretization methods could be used, such as in impulsive input at
the beginning of each time step, to suit the problem at hand. Note
that other linearized models of the relative dynamics exist and can
also be used in this optimization framework.32

The state and input vectors are con� ned to lie within speci� ed,
symmetrical limits

¡xmaxn · xi pn · xmaxn (5)

¡umaxn · u i pn · umaxn (6)

where xipn and u i pn denote the nth component of the state and thrust
vectors, respectively, for the pth vehicle at the i th time step. The
input limit is typically used to represent the limited force available
from each thruster. The state limit has no such signi� cance, but is
necessary to bound the problem and ensure the optimization has a
unique solution.

The objective is to minimize the total fuel consumption of all
vehicles in the problem. For a total of V vehicles moving in
N -dimensional space over T time steps, the cost function is

J D
T ¡ 1X

i D 0

VX

p D 1

NX

n D 1

ju i pn j (7)

This piecewise linear function can be converted to a linear function
using slack variables.33

In summary, the minimum-fuel path-planning LP, neglecting
avoidance so far, is

min
u;x

J D
T ¡ 1X

i D 0

VX

p D 1

NX

n D 1

jui pn j (8)

such that

8p 2 [1; : : : ; V ]; x.i C 1/ p D Axi p C Bui p ; 8i 2 [0 : : : T ¡ 1]

and x0 p D xSp

and xT p D xFp

and ¡ xmaxn · xi pn · xmaxn

8i 2 [0 : : : T ¡ 1]; 8n 2 [1 : : : N ]

and ¡ umaxn · ui pn · umaxn

8i 2 [0 : : : T ¡ 1]; 8n 2 [1 : : : N ] (9)

All of the problems considered in this paper involve the linear pro-
gram shown, subject to additional mixed-integer constraints to en-
force various forms of avoidance. A second formulation is given
later in the paper that replaces the � nal state constraints with a more
� exible formulation that can be used to select the � nal con� guration
as part of the optimization.

B. Obstacle Avoidance
This section presents the additional constraints on the LP to avoid

static obstacles.34;35 The obstacles can be modeled in this framework
as convex polygons of any number of sides, but, to simplify the
presentation, the results in this paper only use rectangles. Collisions
are prevented by ensuring that the vehicle trajectories lie outside the
obstacles at each of the discrete time points. Note that it is feasible
for the trajectory to cut into obstacles in between the discrete time
points. It is, therefore, necessary to enlarge the obstacle models and
select the time-step length such that these incursions cannot intersect
the real obstacles.

For visualization, the constraints are � rst derived for the two-
dimensional case. The location of the rectangular obstacle is de� ned
by its lower left-hand corner .xmin; ymin/ and its upper right-hand
corner .xmax; ymax/. At all time steps i , the position .xi ; yi / of the
vehicle must lie in the area outside of the obstacle. This requirement
can be formulated as the set of conditions

xi · xmin

or xi ¸ xmax

or yi · ymin

or yi ¸ ymax (10)

These constraints can be transformed into a mixed-integer form by
introducing binary variables.10;12 A set of binary variables ak are
added to the problem for each pair of vehicles at each time step.
Additional subscripts on ak for time steps, vehicles, and obstacles
are omitted for clarity, but they will be included later. Let M be an
arbitrary positive number, larger than any distance in the problem.
The constraints in Eq. (10) are represented by the following mixed-
integer constraints:

xi · xmin C Ma1

and ¡xi · ¡xmax C Ma2

and yi · ymin C Ma3

and ¡yi · ¡ymax C Ma4

and
4X

k D 1

ak · 3 (11)

Note that, if ak D 0, then the kth constraint from Eq. (10) is enforced.
However, if ak D 1, then that constraint is relaxed because the M
term moves the upper bound beyond the solution space. The last and
constraint in Eq. (11) ensures that no more than three constraints
from Eq. (10) are relaxed, and, hence, at least one of the original or
constraints is satis� ed.

This process can be extended to a general number of dimensions
(in practice, N D 2 or 3), time steps, vehicles, and obstacles. The po-
sition of vehicle p at time step i is the vector xi p D [xi p1; : : : ; xi pn]T .
The vertex of obstacle l with the minimum value of each coordi-
nate is at position Ll . This is the bottom-left-hand corner in the
two-dimensional case. Its vertex with the maximum of each coor-
dinate is at Ul . The binary variables ai plk are the switches, with
k 2 [1; : : : ; 2N ], corresponding to being on one of two sides of the
obstacle in each of N dimensions. The complete formulation is

8p; 8l; 8i 2 [1; : : : ; T ¡ 1] : xi pn ¸ Uln ¡ Mai pln 8n

and xi pn · L ln C Mai pl.n C N / 8n

and
2NX

k D 1

ai plk · 2N ¡ 1 (12)
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These become additional constraints on the LP in Eqs. (8) and (9).
The binary variables a become extra decision variables in the prob-
lem. The new constraints in Eq. (12) are linear in the decision vari-
ables, and so the new problem is an MILP.

C. Collision Avoidance
This section derives constraints to avoid collisions between dif-

ferent vehicles.34;35 Every pair of vehicles must be at least a speci� ed
distance apart in each direction at each time step. This corresponds
to the enforcement of a rectangular exclusion region around each
vehicle.

As in the preceding section, the constraints are � rst shown in
two dimensions for clarity. Let the safety distances in the X and Y
directions be denoted by rx and ry , respectively. Denote the positions
of two different vehicles p and q at time step i as .xi p; yi p/ and
.xiq ; yi q/, respectively. The constraints can be written as

xi p ¡ xiq ¸ rx ;

or xiq ¡ xi p ¸ rx

or yi p ¡ yiq ¸ ry;

or yiq ¡ yi p ¸ ry (13)

As in the preceding section, these can be converted to the more
useful and constraints by introducing binary variables, giving

xi p ¡ xiq ¸ rx ¡ Mb1

and xiq ¡ xi p ¸ rx ¡ Mb2

and yi p ¡ yiq ¸ ry ¡ Mb3

and yiq ¡ yi p ¸ ry ¡ Mb4

and
4X

k D 1

bk · 3 (14)

where the vehicle and time-step subscripts on the binary variables
b have been omitted for clarity. M is the same large number used in
the preceding section.

This is extended to the general case using the same notation as
before. The safety avoidance distance in direction n is rn . The con-
dition q > p avoids duplication of the constraints on the positions
of pairs of vehicles:

8p; qjq > p : 8i 2 [1; : : : ; T ¡ 1] :

xi pn ¡ xiqn ¸ rn ¡ Mbi pqn; 8n

and xiqn ¡ xi pn ¸ rn ¡ Mbi pq .n C N /; 8n

and
2NX

k D 1

bi pqk · 2N ¡ 1 (15)

These constraints can also be added to the LP of Eqs. (8) and (9).
The binary variables b become additional decision variables in the
optimization problem.

D. Plume Avoidance for Vehicles
This section develops the formulation to prevent plume impinge-

ment by one vehicle on another.36 The plumes extend in discrete
directions from the vehicle, which assumes that the thrusters are
aligned with the axes. The inclusion of vehicle attitude within this
formulation would complicate it considerably and is the subject of
ongoing research. As in the case of obstacle avoidance, the plume
region could be represented by any convex polygon, but a rectangu-
lar shape is used here for simplicity. All other vehicles are required
to remain outside this region while the thruster is � ring. Conversely,
a spacecraft cannot � re its thrusters if the resulting plume would
impinge on another vehicle.

a) Exclusion region for plume impingement on vehicles

b) Exclusion region for plume impingement on obstacles

Fig. 1 Plume impingement regions in two dimensions.

Once again, the constraints are � rst developed in two dimensions
to simplify the visualization. Figure 1a shows the modeled impinge-
ment region extending in the ¡X direction. The vehicles shown by

are clear of the plume because they are outside the impingement
region. The vehicle shown by £ will be impinged if the thruster is
� ring in the ¡X direction, generating thrust in the CX direction,
but could still escape impingement if the thruster is not � ring. Thus,
for the plume shown, there are � ve ways to avoid impingement:
Either the thruster is not � ring or the target vehicle is clear of the
box in any of the four directions. These can be represented by the
or constraints

ux i p · 0

or xi p ¡ xiq ¸ P

or xiq ¡ xi p ¸ 0

or yi p ¡ yiq ¸ W

or yiq ¡ yi p ¸ W (16)

where W is the plume half-width, P is the plume length, and ux i p

is the thrust from vehicle p in the X direction at time step i . Thus,
for the situation shown in Fig. 1, vehicle p is marked by the ¤ and
any of the others may be vehicle q. The vehicles marked by each
satisfy one of the last four constraints. The vehicle marked by £
satis� es none of the last four constraints because it is inside the
plume region, but it will not be impinged if the � rst constraint is
satis� ed.

As shown earlier, these constraints can be converted to the more
convenient and form using binary variables

ux pi · Mc0

and xi p ¡ xi q ¸ P ¡ Mc1

and xiq ¡ xi p ¸ ¡Mc2

and yi p ¡ yi q ¸ W ¡ Mc3

and yiq ¡ yi p ¸ W ¡ Mc4

and
4X

k D 0

ck · 4 (17)

To extend the constraints to the most general case of dimensions
and vehicles, denote the thrust vector for vehicle p at time-step i as
ui p D [u i p1; : : : ; ui pN ]T . The formulation for vehicle q to avoid the
plumes from forward (positive thrust) thrusters of vehicle p is
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8p; qjq 6D p : 8n : 8i 2 [0; : : : ; T ¡ 1] :

¡u ipn ¸ ¡McC
i pqn0

and xi pn ¡ xiqn ¸ P ¡ McC
i pqnn

and xiqn ¡ xipn ¸ ¡McC
i pqn.n C N /

and xi pm ¡ xiqm ¸ W ¡ McC
i pqnm ; 8mjm 6D n

and xi qm ¡ xi pm ¸ W ¡ McC
i pqn.m C N /; 8mjm 6D n

and
2NX

k D 0

cC
i pqnk · 2N (18)

Similarly, the constraints for avoiding plumes from reverse thrusters
are

8p; q jq 6D p : 8n : 8i 2 [0; : : : ; T ¡ 1] :

ui pn ¸ ¡Mc¡
i pqn0

and xi pn ¡ xiqn ¸ ¡Mc¡
i pqnn

and xiqn ¡ xi pn ¸ P ¡ Mc¡
i pqn.n C N /

and xi pm ¡ xiqm ¸ W ¡ Mc¡
i pqnm; 8m jm 6D n

and xiqm ¡ xi pm ¸ W ¡ Mc¡
i pqn.m C N /; 8m jm 6D n

and
2NX

k D 0

c¡
i pqnk · 2N (19)

When these constraints are added to the LP in Eqs. (8) and (9), the
variables c become additional decision variables.

E. Plume Avoidance for Obstacles
This section derives the constraints to prevent vehicles from � ring

their thrusters when they would impinge on stationary obstacles. In
spacecraft applications, it is often useful to represent large, compli-
cated structures, such as a space station, as combinations of � xed
obstacles. The constraints are similar to the ones in the preceding
section.

Figure 1b shows how vehicles may avoid impinging on an obsta-
cle in two dimensions. The vehicles marked by are all free to � re
as shown because their plumes will not contact the obstacle. The
vehicle marked by £ will impinge on the obstacle if it � res in the
direction shown. It is clear from this example that there is a region
around the obstacle in which the vehicles cannot emit plumes in the
¡X direction without impinging. As before, there are � ve ways to
avoid impinging: to be outside the box, or not to � re. These can be
written as the following or group using the corners of the obstacle,
as shown in the obstacle avoidance section:

ux i p · 0

or xi p ¡ xmax ¸ P

or xmin ¡ xi p ¸ 0

or yi p ¡ ymax ¸ W

or ymin ¡ yi p ¸ W (20)

As before, binary variables are added to convert to and form and
extend to the general case. The constraints for forward thrust are

8p : 8l : 8n : 8i 2 [0; : : : ; T ¡ 1] :

¡u i pn ¸ ¡MdC
i pqn0

and xipn ¡ Uln ¸ P ¡ MdC
i pqnn

and L ln ¡ xi pn ¸ ¡MdC
i pqn.n C N /

and xi pm ¡ Ulm ¸ W ¡ MdC
i pqnm ; 8mjm 6D n

and L lm ¡ xi pm ¸ W ¡ MdC
i pqn.m C N /; 8mjm 6D n

and
2NX

k D 0

dC
i pqnk · 2N (21)

and, similarly, for reverse thrust

8p : 8l : 8n : 8i 2 [0; : : : ; T ¡ 1] :

u i pn ¸ ¡Md¡
i pqn0

and xi pn ¡ Uln ¸ ¡Md¡
i pqnn

and L ln ¡ xi pn ¸ P ¡ Md¡
i pqn.n C N /

and xi pm ¡ Ulm ¸ W ¡ Md¡
i pqnm ; 8m jm 6D n

and L lm ¡ xi pm ¸ W ¡ Md¡
i pqn.m C N /; 8mjm 6D n

and
2NX

k D 0

d¡
i pqnk · 2N (22)

Again, these can be appended to the LP equations (8) and (9), the
binary variables d becoming extra decision variables in the opti-
mization.

F. Final Con� guration Selection
The constraint in Eq. (2) enforces a � xed � nal state for each

vehicle. This section generalizes that constraint to the case where
each vehicle is assigned a speci� c � nal state from a set of possible
alternatives.35 A subset of � nal states, known as a global con� gu-
ration, is selected, and spacecraft are assigned to positions within
that subset. The selection and assignment are performed within the
trajectory optimization to achieve the lowest overall fuel cost. For
example, it might be required that the satellites recon� gure so that
they are evenly spaced around a given ellipse, forming a passive
aperture for a particular interferometry observation. If the space-
craft are assumed to be identical, their ordering around the ellipse
is not important. In addition, the rotation of the whole formation
around the ellipse is not important. In the MILP formulation, the
ellipse is discretized into a set of possible rotation angles for the for-
mation. Each of these is entered as a global con� guration, containing
the � nal state for each spacecraft with the formation at that angle.
When the resulting MILP is solved, the formation angle and the
assignment of spacecraft around the formation are selected within
the optimization to give the minimum fuel use in the recon� guration
maneuver.

The � nal state constraints for this formulation can be thought of
as an extensive or expression, in which the � nal states of the vehicles
must be one of the available global con� gurations g, and the vehicles
can be distributed in any one of the possible permutations across the
terminal states. In more concise terms

8p : xT p D xg
Fr

(23a)

for some

g 2 [1; : : : ; G] (23b)

where r is the unique position within the formation assigned to
vehicle p. With binary variables, these constraints can be expressed
as

8p : xT p D
GX

g D 1

VX

r D 1

xg
Fr

f pgr (24)

where binary variable f pgr D 1 if vehicle p takes the r th position
within the gth global con� guration and 0 otherwise. It is then nec-
essary to place the following logical constraints on these variables:

8p :
X

g

X

r

f pgr D 1

8g; 8p :
X

r

f pgr D
X

r

frgp

8g :
X

p

X

r

f pgr D V
X

r

f1gr (25)
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The � rst constraint ensures that a satellite p chooses exactly one
position. The second constraint ensures that different satellites move
to different positions r . The third constraint then ensures that the
chosen positions belong to only one con� guration corresponding
to the global con� guration g. The right-hand side of this equation
equals 0 or V , the number of satellites.

III. Computation Considerations
This section discusses issues related to the implementation and

solution of the optimization problemsposed in the preceding section.
The methods presented here do not change the basic constraints
already described, but assist greatly in obtaining solutions within
practical computation times.

A. Normalization
The constraints shown so far can involve quantities of very dif-

ferent magnitudes. For example, separation distances can be on the
order of hundreds of meters, whereas thrust inputs may be a few
micronewtons. To improve the numerical conditioning of the prob-
lem, the variables are normalized. New normalized states Ox and
inputs Ou are related to the full-scale quantities by

x D X Ox (26)

u D U Ou (27)

where X and U are diagonal matrices of scaling factors equal to the
original upper bounds in Eqs. (5) and (6). The new state and input
bounds are given by

¡1 · Ox i pn · 1 (28)

¡1 · Ou i pn · 1 (29)

Other position quantities such as the obstacle de� nitions L and U
and the plume scales P and W are scaled by the same factors.
As a result, all of the decision variables are of the same order of
magnitude because the binary variables lie between 0 and 1, by
de� nition. This modi� cation has been found to make signi� cant
improvements in computation time in some cases, but no difference
in others. Whereas the reason for the improvement is not exactly
clear, it appears to be a result of an improvement in the ef� cacy of
the heuristics employed by the CPLEX software to select branching
nodes and directions.

B. Simplifying Approximations
This section describes additional approximations that can be used

to simplify the problems given earlier to reduce the solution time.
The most useful approach is to use prior knowledge to identify
redundant or inactive constraints. These can then be removed from
the problem, which typically leads to a faster solution time. Two
strategies are presented for identifying these removable constraints,
each well suited to a particular class of problems.

1. Removal of Plume Constraints During Coast
In constrained-input, minimum-fuel problems of the type in

Eq. (9), the optimal solution can be shown to consist of � ring at the
beginning and end of the trajectory, separated by a coasting phase.
This is more commonly known as a bang–off–bang trajectory.37 In
certain problems, where the maneuvering space is large compared to
the avoidance regions, it is possible to predict that the optimal solu-
tion including avoidance constraints will still be of a bang–off–bang
form. Therefore, during the coasting phase, the plume constraints
will be inactive.

This prior knowledge can be exploited by omitting some of the
plume constraints during the anticipated coasting phase before solv-
ing the problem. The reduced number of binary variables and con-
straints typically leads to a faster solution time. However, it is then
necessary to verify that no plume impingement occurred at the steps
where the constraints were removed. This can be done quickly, and
if no impingement is found, the result is also the optimal solution
to the completely constrained problem. Note that this behavior ex-
empli� es an NP-complete problem: The optimality of a candidate

solution can be veri� ed in polynomial time, but the global optimum
cannot necessarily be found in polynomial time. If impingement is
found to occur, it would then be necessary to include some of the
removed constraints and solve again. This leads to an iterative solu-
tion process, but this is often still faster than solving the complete,
global problem.

2. Time-Step Grouping
For problems where the avoidance regions are not small compared

to the maneuvering space, there is likely to be extensive interaction
between vehicles, and it is not likely that the trajectory will be of
the bang–off–bang type. However, as vehicles and obstacles move
past each other, the interactions typically last for several time steps
at least, due to the comparatively large avoidance regions. Conse-
quently, the binary variable settings for those regions will typically
be identical over a long sequence of steps. For example, if a vehicle
is on one side of an avoidance region at a certain time step, it is
likely to be on the same side at adjacent time steps.

This prediction can be used by sharing binary variables across
small groups of adjacent time steps. This essentially equates the
binary variables across groups. Note that these extra constraints
add conservatism to the problem. However, the prediction of equal
binary settings implies that the solution to the original problem is
likely to satisfy these new constraints, and so the expected fuel
penalty is small.

In physical terms, the grouping represents the requirement that all
members of the group be on the same side of an avoidance region,
or satisfy the same one of the original or constraints. Consider an
example with plume impingement. A vehicle might move within
impinging range of an obstacle on the second of three time adja-
cent steps. In the full problem, the vehicle can � re on the � rst step
without impinging on the obstacle, but not on the second and third
steps. When these three steps are grouped together, the formulation
prevents � ring on all three steps. To compensate, the solution would
involve � ring in the group before or after, if necessary. However,
because the time-steps are close together compared to the size of
the obstacle, shifting the � ring by one or two steps should not sig-
ni� cantly impact the fuel cost. Time step grouping does, however,
signi� cantly reduce the problem size, as shown in the examples.

C. Implementation
The global optimization problem is solved by amixed-integer pro-

gram solver implemented in the CPLEX software package.14 The
AMPL language38 is used as the interface to CPLEX. Implementing
the constraints in AMPL is straightforward, requiring minimal trans-
lation from the form shown in this paper. The problem formulation
and constraints are de� ned in a model � le, whereas the parameter
values are in a separate data � le. As a result, changes to the problem
can be made without rebuilding the constraint expressions. AMPL
combines the model and data � les into a suitable format before in-
voking CPLEX to solve the problem. A combination of MATLAB®

and AMPL scripts enables the path-planning problem to be initi-
ated by a single command and then conveniently combined with
simulation and plotting utilities.

IV. Application Examples
This section presents four examples to demonstrate all of the con-

straint formulations from the preceding section. The results include
the designed trajectories for each maneuver and the computation
times required. The models used for the simulations were the same
as those in the trajectory design: The problem of compensating for
unmodeled effects will be addressed in future work. In all cases, the
MILP problems were solved on a 1-GHz personal computer with
256 MB of RAM. Table 1 summarizes the features included in each
example. The � rst two examples are simple cases to demonstrate
that the constraints work as intended. The second pair of examples
involves larger and more realistic problems, illustrating the appli-
cation of the approximation techniques to reduce solution times.

A. Multiple Vehicles in Two Dimensions
These examples involve a very simple maneuver that clearly

illustrates the effects of adding collision avoidance and then plume
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Table 1 Summary of examples

Collision avoidance Plume avoidance
Con� guration

Example Obstacles Vehicles Obstacles Vehicles selection Dynamics

Multiple vehicles in two dimensions —— Xa —— X —— Free space
Multiple satellites —— X —— X —— Hill’s equations
ISS remote camera X —— X —— —— Hill’s equations
Formation recon� guration —— X —— X X Hill’s equations

aX indicates that those constraints were included in that example.

Table 2 Start and end positions
for two-dimensional example

Vehicle Start position End position

1 (¡2,0) (8,0)
2 (0,0) (6,0)
3 (2,0) (4,0)

a) Collision avoidance

b) Collision and plume avoidance

Fig. 2 Maneuvers in two dimensions.

impingement constraints. Three vehicles, each modeled as a point
mass moving in free space with thruster actuation in two dimen-
sions, are required to move between the positions given in Table 2.
The start and end positions are all on the X axis, but the order of the
vehicles is reversed. Therefore, the LP solution of straight-line tra-
jectories would clearly lead to a collision between all three vehicles
at the halfway point.

Figure 2a shows the result of the MILP optimization that includes
the collision avoidance constraints from Eq. (15) with a safety dis-
tance of one unit. Vehicles 2 (lower) and 3 (upper) move in the
Y direction off of the X axis to allow vehicle 1 to follow a straight-
line path. The heavy dots indicate the positions of the vehicles at
the 10th time step, with the corresponding exclusion boxes shown
dashed. Vehicles 1 and 3 are separated by exactly the safety distance
in the Y direction. At earlier time steps, vehicles 1 and 2 also move
along the edges of the exclusion regions. This shows that collision
avoidance is ef� ciently implemented in this MILP formulation.

In Fig. 2a, vehicle 2 leaves its starting position by moving down
and to the right. The velocity component in the X direction indi-
cates that its positive X thruster must have � red at the start of the
maneuver, which would impinge on vehicle 1 if the plume extended
that far. Vehicle 3 would also have impinged on both vehicles to its
left. Given these observations, adding the plume impingement con-
straints should have a signi� cant effect on the designed trajectories.

Figure 2b shows the results from the optimization with both colli-
sion avoidance and plume impingement, using the constraints from
Eqs. (18) and (19). The plume region was chosen to be 10 units long
by 1 unit across. With the new constraints, it is now favorable for

a) b)

Fig. 3 Recon� guration maneuver a) without plume impingement con-
straints and b) with plume impingement constraints: trajectory of 5 ,
vehicle 1; ¤, vehicle 2; and , vehicle 3; lines indicate the direction
of the � ring plumes, and their lengths are proportional to the thrust
demanded.

vehicle 3 to remain on the X axis while the other two vehicles move
around it. The trajectory of vehicle 2 best demonstrates the plume
constraints: Because it starts with a vehicle on each side, it initially
cannot � re in the X direction. It can be seen moving away from
the axis in the Y direction only. At the third time step, marked by
the heavy dots, vehicle 2 � res in the X direction. Its plume region
is shown dashed, and it just avoids impinging on vehicle 1. Again,
this illustrates the ef� ciency of the MILP constraints in enforcing
avoidance. Note that vehicle 3 is still at its starting position at this
time: It cannot � re its thrusters until the other two vehicles are far
enough away from the X -axis. This occurs at the � fth time step, at
which time vehicle 3 � res to start its maneuver.

Even in this simple example, the optimal solution to the avoidance
problems is not obvious, but it can be found very easily using MILP.
Also, it can be seen that the designed trajectories use the avoidance
margins exactly as speci� ed.

B. Multiple-Satellite Plume Impingement Avoidance
This example demonstrates the use of the constraints from

Eqs. (18) and (19) to prevent spacecraft jet plumes impinging on
other spacecraft. Three identical spacecraft of mass 30 kg are sepa-
rated along a line in-track. They are required to recon� gure onto one
of the passive apertures, which in this case is a triangle in the plane
of the orbit. The maneuver must be done in 9 min, which is 1

10 th of a
90-min orbit. This arti� cially short timescale makes in-track � ring
a favorable option where available, and so the effect of the plume
impingement constraints is clearly demonstrated.

Each spacecraft has thrusters providing up to 0.2 N in each
direction. The plume avoidance regions for the thrusters are 50 m
wide and extend 120 m from the spacecraft. Collision avoidance
is also enforced with a safety distance of 10 m. The problem was
discretized into 20 time steps.

Figure 3a shows the trajectory designed without plume con-
straints. Note that the designed trajectories remain in the orbital



762 RICHARDS ET AL.

plane, even though the full three-dimensional model from Eq. (4)
was used in the problem. As expected, substantial in-track � ring is
used to complete the problem in the time available. This leads to
considerable plume impingement at the beginning and end of the
maneuvers. Figure 3b shows the trajectories redesigned to prevent
plume impingement. Considerable deviations from the preceding
case are evident. For example, vehicle 1 ( 5 ) moves slowly at � rst,
to allow the other vehicles to escape its plume region, before � r-
ing in-track to move toward its target. Vehicle 2 (¤) actually moves
in the opposite direction to avoid the plume from vehicle 1 before
turning toward its destination. Vehicle 3 ( ) is the only one free to
� re in-track from the beginning. It moves quickly away, but has to
approach its target point in the radial direction so that its braking
thrust does not impinge on the other vehicles. The fuel required for
the maneuver avoiding impingement is equivalent to a total 1V of
7.097 m/s, compared with 5.033 m/s for the design that does not
consider impingement.

C. International Space Station Remote Camera
This problem involves a microsatellite being used for external

inspection of the International Space Station (ISS). The satellite is
required to move between speci� ed start and endpoints on opposite
sides of the station without colliding with the structure or � ring its
thrusters at the station. The collision avoidance part of this problem
was addressed in Ref. 20 using potential functions.

The dynamics are the Hill’s equations for a 90-min orbit, as in
the preceding example. The camera satellite is modeled as a mass
of 5 kg with thrusters giving up to 1 mN in each direction. The
ISS is modeled as a collection of boxes as shown in Fig. 4. The
maneuver lasts for 4000 s and is discretized into 40 time steps.
Plume impingement on the ISS is prevented using the constraints in
Eqs. (21) and (22), using a plume length P D 10 m and half-width
W D 1 m.

This problem was � rst solved with collision avoidance con-
straints, but ignoring plume impingement. The designed trajectory is
shown in Fig. 4. The total fuel use is equivalent to a 1V of 0.236 m/s.
However, note that, during the � nal few steps, the braking thrust im-
pinges on the station. Figure 5 shows the trajectory redesigned to
prevent plume impingement, but with the same start and � nish points
and duration. The � nal stages of this maneuver are shown in Fig. 6,
seen in a larger scale from a different angle. Because the � nal po-
sition is in a corner formed by two adjacent modules, the camera
satellite must approach from the side to prevent its braking thrust
from impinging on the station. Figure 6 shows the satellite making
the necessary adjustment to its course by � ring while still clear of
the station, and its � nal approach leaves it requiring a braking thrust
in the only available direction. The total fuel use for this maneuver
is equivalent to a 1V of 0.269 m/s. The additional � ring is needed
to achieve the � nal approach direction.

Of the examples presented here, this is the most computationally
demanding. Although there is only one vehicle, collision avoidance

Fig. 4 ISS remote camera maneuver with collision avoidance but with-
out plume impingement constraints; all dimensions in meters.

Table 3 Results for ISS problem with plume constraints

Time-step Computation Fuel cost
grouping size time, s as 1V

None 1800 0.2692
2 190 0.2727
3 54 0.2746
4 67 0.2864

Fig. 5 ISS remote camera maneuver with plume impingement con-
straints added; start and end positions are the same as in Fig. 4.

Fig. 6 Final stages of maneuver from Fig. 5, shown in close-up from
below.

in three dimensions considering � ve obstacles requires some 30
binary variables per time step. Because some of the obstacles are
thin panels, it is necessary to use a short time step to ensure that
the vehicle cannot jump straight through an obstacle between time
steps. Therefore at least 40 time steps are needed. To solve for
collision avoidance alone involves roughly 1200 binary variables,
but this problem can be solved in approximately 8.0 s. Adding plume
impingement requires a further 210 binary variable per time step,
forming a problem with 9600 binary variables. Because the binary
variable search space is so large, it is impractical to compute the
global optimal solution to the full problem.The result shown in Fig. 5
is the best feasible solution found in half of an hour of computation,
returned using the solution time limit facility in CPLEX.

This problem is well suited to the time-step grouping technique
described in the computation section, because the obstacles are large
compared to the distance traveled in a time step. Table 3 compares
the results from using groups of different sizes. The top row shows
the results for the original problem without grouping. It can be seen
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that using groups of three time steps reduces the computation time
by a factor of at least 30 at the expense of only a 2% increase in fuel
use. This additional conservatism was expected due to the more
constrained nature of the problem when grouping is used. Note
that increasing the group size beyond three actually causes a slight
increase in the solution time.

This problem is particularly sensitive to the numerical condition-
ing of the MILP. With groups of three time steps, but without the
normalization shown in Eqs. (26) and (27), the same problem took
587 s to solve. A further experiment was done to � nd the variation
of the solution time with the particular problem instance. Problems
were solved with 52 different, randomly generated start and end po-
sitions around the station, using time-step groups of length three. All
of these gave feasible solutions within the maneuver time. The mean
solution time was 65.0 s, with individual times ranging from 0.28 to
386 s. These results suggest that in general, trajectory optimization
problems of this nature can be solved in reasonable computation
times.

D. Satellite Formation Recon� guration
In this example, a group of satellites is recon� gured to be evenly

spaced around an ellipse of a given size and inclination. In an inter-
ferometry application, this would correspond to a change in aperture,
as discussed earlier. The satellites are identical, so that the assign-
ment within the formation and the overall rotation of the ellipse can
be selected in the optimization using the terminal constraints from
Eqs. (24) and (25). This example will also be used to demonstrate
the computation times involved with various numbers of vehicles
and different constraint forms. Results are shown for cases involving
two, three, and four vehicles, with and without plume impingement.

The vehicles are initially arranged along a line in-track. Each
satellite is modeled as a point mass of 50 kg, with Hill’s equations
as the relative dynamics using a 90-min orbit. The � nal con� gu-
ration selection is discretized such that the ellipse is divided into
30 possible global con� gurations, each containing one position for
each spacecraft. The maneuver must be performed in 1000 s, equiv-
alent to just over 15 min or one-sixth of an orbit. The maneuver is
discretized into 25 time steps, each of 40 s. The plume exclusion
box is 100 m long and is 20 £ 20 m square in cross section (P D 100
and W D 10).

Figures 7 and 8 show the designed trajectories for the three- and
four-vehicle cases considering only collision avoidance. The ellipse

Fig. 7 Recon� guration maneuver for three spacecraft.

Fig. 8 Recon� guration maneuver for four spacecraft.

Table 4 Results for recon� guration maneuver, showing computation
time (in seconds) and fuel (as D V in meters per second)

and V = number of vehicles

V D 2 V D 3 V D 4

Case Time Fuel Time Fuel Time Fuel

Collision avoidance only 1.0 4.67 7.8 9.82 28 13.18
With PIa 6.8 4.67 170 10.20 1900 13.84
PI on � rst two steps 1.1 4.67 7.3 9.99 36 13.24
PI on � rst ten steps 2.0 4.67 33 10.20 640 13.84
PI on all steps, groups of three 4.8 4.67 100 10.35 2500 14.41

aPlume impingement .

associated with the � nal aperture is also shown. The � rst row of
results in Table 4 shows the computation time and fuel use in each
case. Adding plume impingement restrictions on all steps causes a
considerable increase in computation time, as shown in the second
row of Table 4. Although the computation times for two- and three-
vehicle cases are still shorter than the maneuver time, the four-
vehicle case now takes over half of an hour to compute, which is
approximately twice as long as the maneuver itself. As in the ISS
example, this complexity arises from the number of binary variables
in the problem. For example, the four-vehicle case involves 900
binaries for collision avoidance, 480 for con� guration selection,
and 9000 for plume avoidance.

This issue with the computation time can be addressed by recog-
nizing that this problem is likely to result in a bang–off–bang tra-
jectory because the vehicle avoidance regions are small compared
to the maneuvering distances. Therefore, the removal of plume con-
straints in the coast phase, as discussed in the computation section,
can be used to reduce solution time. Also, the � nal positions are
much further apart and not aligned with each other, and so impinge-
ment is not expected to occur at the end of the maneuver. The third
row of results in Table 4 was obtained by preventing plume impinge-
ment only on the � rst two time steps. However, a postanalysis of
the trajectories showed that plume impingement occurred where the
constraints had been removed. Thus, the fourth row shows results
with constraints preventing plume impingement on the � rst 10 steps.
This time, the postanalysis showed that no impingement occurred,
which can also be deduced from the matching fuel use values in the
second and fourth rows. The signi� cant reduction in solution time
with the removal of redundant constraints demonstrates that the it-
erative approach to constraint removal is often faster than solving
the completely constrained problem.

The � fth row shows the results of experimental application of the
time-step grouping idea to this problem. The grouping technique is
not expected to be very effective here because the avoidance regions
are small compared to the maneuvering space, and the interaction
between vehicles is short lived. In this case, plume impingement
was prevented on all steps, but the binary variables were shared
across groups of three adjacent time steps. The results are slightly
more conservative than those in the second row, as expected from the
grouping method.The computation times are slightly reduced for the
two- and three-vehicle cases, but increased in the four-vehicle case.
This contrasts with the ISS example, where grouping made the most
complicated case solve more quickly. This demonstrates the differ-
ence between the two approximation techniques and shows that they
are dependent on the problem characteristics. More generally, the
inclusion of prior knowledge for simpli� cation is problem speci� c.

V. Conclusion
This paper describes and demonstrates the use of MILP to de-

sign spacecraft trajectories that avoid collisions and plume impinge-
ments. Logical constraints to enforce avoidance are appended to the
basic fuel optimization to suit the application. Other logical con-
straints can be used to enforce a � nal relative alignment of identical
spacecraft while allowing the assignment of the spacecraft within
the formation to be chosen as part of the optimization. Examples are
presented across a range of applications, involving various combi-
nations of the avoidance constraints. Two important simpli� cations
are presented to enable the solution of very dif� cult trajectory op-
timization problems. The � rst is the conversion to a linear form,
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and the second is the use of prior knowledge of the problem to
remove redundant constraints and apply ef� cient approximations.
With these approaches, solutions have been obtained in practical
computation times, even in cases involving very large numbers of
binary variables.
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