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Hybrid Control of the Pendubot
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Abstract—Swing up and balance control are two interesting con-
trol problems for the Pendubot. Many studies have been conducted
for swing up control of the Pendubot. A few results have been re-
ported for feedback stabilization of the Pendubot. In this paper, we
will apply a new hybrid controller for feedback stabilization of the
Pendubot. To the best of the authors’ knowledge, this is the first
implementation of a hybrid controller for feedback stabilization of
the Pendubot. Furthermore, it is well-known that it is impossible
to use smooth feedback to stabilize a class of underactuated me-
chanical systems around their equilibra, even locally. Various non-
smooth controllers have been presented for feedback stabilization
of this type of system. However, most of the studies are either based
on theoretical proofs or simulations. There is a strong need for ex-
perimental study. The Pendubot arises as a special test bed for this
purpose. This experimental study has particular interest for feed-
back stabilization of underactuated mechanical systems that are
not feedback stabilizable using smooth control.

Index Terms—Hybrid control, nonholonomic systems, the Pen-
dubot, underactuated mechanical systems.

I. INTRODUCTION

A PENDUBOT [1] is a two-link (two-degree-of-freedom)
planar robot, whose first link (shoulder) is actuated and

second link (elbow) is not actuated. It is a simple underactuated
mechanical system (see Fig. 1).

The position shown in the figure [1] is an unstable inverted
equilibrium, which is the most difficult case for feedback sta-
bilization among all the equilibria. In order to feedback stabi-
lize the Pendubot to this position, swing up control is usually
used for moving the Pendubot close to the equilibrium mani-
fold; then switch to a balance controller. Many studies have been
conducted for swing up control of the Pendubot [2], [3]. This is
not the purpose of this paper. We are interested in the balance
control of the Pendubot, particularly, feedback stabilization of
the Pendubot around an inverted equlibrium.

Spong and Block [4] used a linear quadratic regulator (LQR)
and pole placement for the balancing and stabilizing controller.
Fantoni, Lozano and Spong [3] discussed some results using
energy based control by simulations. As well addressed in [3],
these are the only solutions existed in the literature for balance
control. No hybrid controller has been reported in the literature
for feedback stabilization of the Pendubot. This is the purpose
of this paper, which is the first contribution of this paper. The
Pendubot also possesses some unique features and challenges
for control research not found in other underactuated mechan-
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Fig. 1. Picture of the Pendubot.

ical systems, such as control of a cart [2], control of an Acrobot
[5] and position control of the underactuated robot [6].

For example, the Pendubot exhibits second-order nonholo-
nomic properties, which means the dynamics of the Pendubot
are subject to second-order nonintegrable differential con-
straints.

The systems that subject to nonintegrable differential con-
straints are called nonholonomic systems. It has also been
shown that a class of underactuated mechanical systems can
be regarded as second-order nonholonomic systems [7], [8].
Control of nonholonomic systems has been one of the most
active research areas in the last few years. The difficulty is that
for a class of nonholonomic systems, it is impossible to use
smooth feedback to stabilize the system around an equilibrium
even locally. Hybrid control has been considered as a good
choice.

The hybrid controller presented in this paper is developed
based on a general dynamic model of underactuated mechanical
systems by extended application of the new stability theories for
hybrid dynamical systems [9], [10]. The particular interest of the
hybrid controller is for feedback stabilization of nonholonomic
systems. As reported in [7], [8], [11], and [12], many theoret-
ical studies have been performed for control of nonholonomic
systems. However, few results have been implemented. There is
a strong need for the experimental study of control of nonholo-
nomic systems. The Pendubot arises as a special test bed for this
purpose. As a result, this experimental study has special inter-
ests for feedback stabilization of nonholonomic systems. This
is the second contribution of this paper.

In this paper, we will first present the dynamic model and
control properties of the Pendubot. Then, we will discuss the
new hybrid controller and its implementation for the Pendubot.
Finally, experimental results of the hybrid controller are com-
pared with the controller supplied by the manufacturer.

1083-4435/02$17.00 © 2002 IEEE
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II. DYNAMIC MODEL AND CONTROL PROPERTIES OF THE

PENDUBOT

The general dynamic model of underactuated mechanical
systems with actuated joints from a total of joints can be
expressed as follows [13]:

(1)

where is the vector of joint variables. Here,
represents the vector of the control links andrep-

resents the vector of the underactuated links. is the
inertia matrix, is the vector of Coriolis and centripetal
torques, is the gravitational term and is the vector of
control torque.

A. Dynamic Model of the Pendubot

For the dynamics of the Pendubot (see Fig. 2), defineand
as the mass of actuated link (called link one) and unactuated

link (called link two), respectively, define and as the angles
that link one and link two make with the horizontal lines,and

the lengths of the two links, and the distances to the
center of mass of link one and two, andand the moments
of inertia of link one and link two about their centroids. It can
be shown that the physical and geometrical characteristics of
the plant can be described by seven dynamical parameters,

, , , , , . The seven dynamical parameters can be
grouped into the following five new parameters for describing
the dynamic of the Pendubot by a minimal set of parameters.
This procedure is called reparameterization.

Fig. 2. Dynamics of the Pendubot.

Then, we obtain the following dynamic model of the Pendubot.
See (2) at the bottom of the page.

B. Equilibrium Configuration

An equilibrium configuration is a particular value of the state
and the control input for which the Pendubot is at rest, i.e,
Examining the equations in (2) of the Pendubot, the equilibrium
points are given by

Suppose , then solving for the equilibrium config-
uration

arc

; n=1,3,5,

which means the Pendubot will balance at a state
, if we apply a constant torque . The

last two elements of the state are velocities.
We are interested in the natural equilibria of the Pendubot

when . Examining the above solutions, we have the
following four equilibrium configurations.

• , , (both link 1 and link 2 are in their
lower positions).

(2)
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• , , (link 1 is in its lower position and
link 2 is in its upper position).

• , , (both link 1 and link 2 are in their upper
positions).

• , , (link 1 is in its upper position and link
2 is in its lower position).

Note that only the first equilibrium point of the above four equi-
libria is stable. The remaining three equilibrium points are un-
stable. An arbitrary small disturbance causes at least one of the
links to fall and consequently a large motion is produced. Fur-
thermore, the third equilibrium configuration ,
is the most difficult case for feedback stabilization, since very
small disturbances will cause both links to fall.

C. Control Properties of the Pendubot

From (2), we see the dynamics of the Pendubot are subject to
a second-order differential constraint as follows:

(3)

The integrability of dynamic constraints is an important prop-
erty for many physical systems. Depending on the integrability
of their dynamic constraints, dynamic systems can be classi-
fied as either holonomic or nonholonomic. Dynamic systems
that subject to nonintegrable differential constraints are called
nonholonomic systems. A class of underactuated mechanical
systems, such as the Pendubot, are second-order nonholonomic
systems. Controllability and stabilizability of underactuated me-
chanical systems are closely related to this integrability prop-
erty. It is well known that it is difficult if not impossible to use
smooth feedback to asymptotically stabilize a class of nonholo-
nomic systems to the equilibrium state. In this case, nonsmooth
feedback stabilization must be pursued or different control ob-
jectives must be addressed [8].

In order to check whether a system is holonomic or nonholo-
nomic, integrability of the differential constraint needs to be
checked. However, many integrability conditions in the litera-
ture can not be used for this purpose. They are either coordinate
dependent or have strong assumptions.

We have developed new integrability condition for classifying
holonomic or nonholonomic systems using the Frobenius The-
orem in differential forms [14]. The condition is coordinate in-
dependent and in general can be applied for any order of dif-
ferential constraint. The condition states that a differential con-
straint is integrable if and only if the wedge product,, of the
constraint and the exterior derivative of the constraint in differ-
ential form is vanishing.

To interpret the above differential form condition, we intro-
duce the following notations and definitions.

A function can be considered as a 0-form. Its ex-
terior derivative is called
1-form. Further exterior derivative of 1-form, such as

is called 2-form
and so on. A differential form is a-form for some , where is
a positive integer or zero. The Frobenius Theorem in differential
forms gives necessary and sufficient condition for integrability
of differential constraints and the condition is coordinate inde-

pendent. Interested readers many refer [14] for detailed infor-
mation. The -sign represents wedge product, which is an alter-
nating multi-linear functional. The wedge product takes-form
and -form to create an -form. It is the only outer
product possible given the change of sign that incurs when dif-
ferentials are passed over one another. For example, the wedge
product of and is .
The wedge product may be considered as set intersection. For
example, surfaces of constant and surface of constant

intersects along the lines given by . The notion
of interpreting the wedge product as set intersection is appealing
from a topological standpoint.

Consider the second-order differential constraint (3). After
simple transformation, we obtain the following differential
forms

where is a differential form obtained from the original differ-
ential constraints and is the exterior derivative of .

It is easy to check that . We conclude that the
Pendubot is a second-order nonholonomic system.

Oriolo and Nakamura [15] have shown that the dynamic con-
straint of an underactuated two-link robot is holonomic if the
gravity term vanishes and only the second link is controlled.
If the first link is actuated, it is a second-order nonholonomic
system. For the Pendubot, not only is the first link actuated, but
also the gravity term is not zero. Thus, it is a second-order non-
holonomic system. This observation is consistent with our con-
clusion using new integrability conditions in differential forms.

III. H YBRID CONTROL FOR THEPENDUBOT

In order to feedback stabilize the Pendubot around the equi-
librium and (both links are in their upper
position), we need to move the Pendubot from its stable down-
ward position (both links in their lower positions) to an un-
stable equilibrium manifold close to the inverted position. Our
strategy is to use swing up control first to move the Pendubot
close to the equilibrium manifold, then switch to the hybrid con-
troller for feedback stabilization. For swing up control, we use
the same technique as the manufacturer. However, the manufac-
turer’s controller will switch to LQR for the balance control. We
will first introduce the swing up controller, then the hybrid con-
troller.

A. Swing Up Control

Moving the Pendubot from its downward position to a neigh-
borhood of its equilibrium manifold is called swing up control.
Swing up has been well studied in the literature. A good choice
for swing up for the Pendubot is partial feedback linearization
[1], [5].

It has been shown that the Pendubot dynamics are not feed-
back linearizable with static state feedback and nonlinear co-
ordinate transformation [5], [16]. However, we may achieve a
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linear response from either link, but not both, by suitable non-
linear partial feedback linearization.

Same as in [1], [4], expanding (1) for one control input of
total two degrees of freedom, then

(4)

(5)

From (5), one gets

(6)

Substitute (6) into (4), one obtains

(7)

where

Choose the swing up control as

then

(8)

Substitute (8) into (5), the result is

(9)

where

The system in (1) is partially feedback linearized andis an ad-
ditional (outer loop) control input to be designed. Similar con-
trol technique is also used in [5].

Define the equilibrium point , where is the
actuated part and is the unactuated part. Choose the control

as

(10)

It can be shown that if we choose and and
suppose that the output identically tracks the equilibrium

, then the linearized subsystem defines a globally at-
tractive invariant manifold. The remaining nonlinear subsystem
can be defined as the zero dynamics of the system with respect
to the output . The strategy for swing up control is to excite
the zero dynamics sufficiently by the motion of link one so that
the pendulum swings close to its unstable equilibrium manifold.

B. Feedback Stabilization

By extended application of the stability theory for hybrid dy-
namical systems [9], [10], we obtained the following hybrid
control for feedback stabilization of underactuated mechanical
systems in the general dynamic model as (1).

The system (1) is uniformly asymptotically stable to, under
the following hybrid control , if there exists constants , ,

, , , and a positive real number , such that is
nonsingular and has all its eigenvalues within the unit circle.
Here, represents the switching time for the discrete control

All above parameters are consistent with the model described in
(1).

By investigating the above controller, we can easily con-
clude that it contains a continuous-time control partand a
discrete-time control part as follows:

As shown in the block diagram Fig. 3, this is a hybrid controller.
The basic idea of the two parts of this hybrid controller is that
the continuous-time control part depends on continuous-time
state information and the discrete-time control part changes
values at fixed time interval. The values are determined by both
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Fig. 3. Block diagram for the hybrid controller.

the previous discrete-time control part and the state informa-
tion. Whenever the discrete-time control part switches to a new
value, the discrete-time control part will always keep part of
the previous control information. The hybrid controller design
easily calculates matrices to satisfy proper conditions. The
continuous-time control part contributes for partial feedback
linearization and the discrete-time control part can be regarded
as cancellation of the drift terms. Once the Pendubot reaches
the unstable equilibrium manifold via swing up control, the
controller will switch to the new hybrid controller for asymp-
totically stabilizing the system to the equilibrium state.

IV. I MPLEMENTATION RESULTS FOR THENEW

HYBRID CONTROL

The proposed swing up and hybrid controllers have been im-
plemented for control of the Pendubot.

• For our implementation, the parameters of the Pendubot
from the manufacturer’s user manual are identified as fol-
lows [1]:

vs

vs

vs

vs m

vs m (11)

For future discussion, we call this Model One. The units
in the above parameters follow the International System
for Units.

• For the purpose of robustness comparison, we also imple-
mented the controllers for the following model with varied
parameters (called Model Two).

vs

vs

vs

vs m

vs m (12)

For implementing the swing up control of the Pendubot,
we choose the following parameter values.

• For the Model One, we choose s and
s.

• For the Model Two, we choose s and
s.

Our particular interest is in the balance control. We compared
the experimental results of the hybrid controller with the con-
troller supplied by the manufacturer, which is the only controller
in the literature implemented for feedback stabilization of the
Pendubot.

We have implemented the hybrid control algorithm for both
the Model One and the Model Two. One may use MAPLE or
MATLAB to conduct the computation and design the hybrid
control parameters for the balance control and asymptotically
stabilizing the system to the equilibrium state.

• For implementing the balance control of the Model One,
we choose

• For implementing the balance control of the Model Two,
we choose

For the purpose of comparison, some external disturbances were
added randomly by lightly hitting the links using a metal stick
to test the robustness of the algorithm. Trajectories for both link
one and link two are given. The interesting fact is that the man-
ufacturer’s balance controller does not work for the model with
variation. Our hybrid controller still works well. Please see the
following various test cases for detailed information.

A. Control Based on Model One

The following cases have been performed using hybrid con-
trol for Model One(as supplied by the manufacturer).

• Without disturbances: Fig. 4(a) and (b) show the positions
and position errors of the two links.

• With randomly added quick disturbances: Fig. 5 shows the
positions of the two links.
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(a)

(b)

Fig. 4. Without disturbances.

• With randomly added slow disturbances for visually esti-
mating the region of attraction: Fig. 6 shows the positions
of the two links.

B. Control Based on Model Two

Fig. 7(a) and (b) show the positions and position errors of the
two links implementing hybrid control for Model Two.

V. IMPLEMENTATION RESULTS FOR THECONTROLLER

SUPPLIED BY THE MANUFACTURER

The manufacturer [1] supplied controllers uses LQR and pole
placement for balance control of the Pendubot at the open loop
unstable equilibrium and . Since the effect
of friction in the motor brushes and bearings at the first joint
and in the bearings at the second joint generally result in limit
cycle behavior, the controller supplied by the manufacturer also
includes a small dither signal that reduces the amplitude of the
limit cycle. This reduction is called the friction compensation
technique. However, for our hybrid controller, we simply ne-

Fig. 5. Randomly added quick disturbances.

Fig. 6. Randomly added slow disturbances.

glect friction without using any compensation technique and it
still works better than the manufacturer’s controller.

Fig. 8(a) and (b) show positions and position errors of link
one and link two.

VI. A NALYSIS AND COMPARISON OF THEEXPERIMENTAL

RESULTS

From studying the above experimental results, we have come
to the following conclusions.

• Implementation results show that the hybrid controller
works very well. It shows a small transient shortly after
the system is switched to hybrid control.

• Fig. 5 shows that the hybrid controller responds very
quickly and robustly, even to large uncertain disturbances.

• Fig.6showsthat the regionofattraction isquite large for the
hybridcontroller.Slowuncertaindisturbanceswereapplied
forestimatingtheregionofattraction,whichwasfoundtobe
72degreescenteredaround the equilibrium state. However,
we observed that the region of attraction for the controller
suppliedbythemanufacturer isverysmall,whichwasabout
38 degrees centered around the equilibrium.
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(a)

(b)

Fig. 7. Varied parameters model.

• The hybrid control is very robust with respect to the model
variation. Fig. 7 shows a somewhat surprising result: the
hybrid control still works very well for large variations
of the dynamic model. However, the manufacturer’s
controller does not perform well under these conditions.
For our hybrid controller, the swing up controller can be
switched into it much earlier than the controller supplied
by the manufacturer.

• By observation, we found in most cases the manufacturer’s
swing up controller can not be switched to the LQR for the
model with variations. Since the region of attraction is very
small for the linearized system, the manufacturer’s con-
troller works very well only when the swing up will move
thePendubotveryclose to theequalibriumstates.However,
in most cases it is very hard for the model with variation.
The swing up either over shooting or under shooting the
state under which the controller can be switched to the
LQR. However, this is not the case for the hybrid controller,
since the region of attraction is quite large, the swing up
controller can always be easily switched to the hybrid
controller for balance control.

(a)

(b)

Fig. 8. Manufacturer’s controller.

• Comparison of Fig. 4 with Fig. 8 shows that the hybrid
controller works better than the controller supplied by
the manufacturer. For the hybrid controller, both position
and velocity errors are significantly smaller than that of
the controller supplied by the manufacturer. Also, the re-
sponse time is much faster than that of the controller sup-
plied by the manufacturer. Once our controller switches to
hybrid control, it quickly reaches steady-state.

• The Pendubot remains a very special case among un-
deractuated mechanical systems that can use Linear
Quadratic Optimal Theory for achieving smooth control.
For a class of underactuated mechanical systems, it is
impossible to use smooth feedback to asymptotically
stabilize the system around the equilibrium state. For
this reason, we developed the hybrid control technique,
which can be used for designing a hybrid controller for
a class of underactuated mechanical systems, especially
where smooth feedback cannot be used to asymptotically
stabilize the equilibrium state.

• We should note that we did not consider any technique for
friction compensation in our hybrid control. Even though
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friction is large and asymmetric for the Pendubot, the hy-
brid controller still outperforms the controller supplied by
the manufacturer.

VII. CONCLUSIONS

We have presented a new hybrid controller for feedback stabi-
lization of the Pendubot. The hybrid controller was constructed
based on a general form originally created for feedback stabiliza-
tion of a class of underactuated mechanical systems. Various test
cases have been presented and compared with the available con-
troller fromthemanufacturer forbalancecontrolof thePendubot.
Theexperimental resultsshowourhybridcontroloutperformsthe
existing algorithm and it is very robust. To the best of the authors’
knowledge, this is the first hybrid controller proposed and imple-
mented for feedback stabilization of the Pendubot.

ThePendubotisasimpleunderactuatedmechanicalsystemthat
shows second-order nonholonomic properties. It is well-known
that it is impossible to use smooth feedback to stabilize a class
of nonholonomic systems even locally. Hybrid control has been
considered as a good choice. However, few study has been
implemented in real system. This experimental study has special
meanings for control of nonholonomic systems. Gravity terms
makethePendubotaspecialcaseforsecond-ordernonholonomic
systems. If there were no gravity terms, it could not be feedback
stabilized using smoothcontrol and thecontroller supplied by the
manufacturer could not be used. In such conditions, our hybrid
control can be used. The case for the omission of gravity terms
can be easily found for airplanes, space craft, underwater manip-
ulators,and underwater robotic vehicles and vessels. However, a
practical implementation remains to be demonstrated.
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