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Satisficing: A New Approach to Constructive
Nonlinear Control

J. Willard Curtis, Member, IEEE, and Randal W. Beard, Senior Member, IEEE

Abstract—The main contribution of this paper is a construc-
tive parameterization of the class of almost smooth universal for-
mulas which render a system asymptotically stable with respect
to a known control Lyapunov function (CLF), and a constructive
parameterization of a class of inverse optimal universal formulas
having Kalman-like stability margins. The novelty of the param-
eterization is that it is given in terms of two function which are
constrained to be locally Lipschitz and satisfy convex constraints.
The implication of this result is that the CLF/universal formula
approach can be combined with a priori performance objectives
to design high performance control strategies. Two examples illus-
trate the approach.

Index Terms—Control Lyapunov functions (CLFs), inverse op-
timality, nonlinear control, stability margins.

I. INTRODUCTION

LYAPUNOV theory plays a major role in stability analysis.
Given a nonlinear ordinary differential equation without

inputs, if a Lyapunov function candidate can be shown to be
negative definite along the trajectories of the system, then the
system is guaranteed to be asymptotically stable [1], [2]. One
of the traditional criticisms of Lyapunov theory is that it is not
constructive: one must propose a feedback function and then
search for an appropriate Lyapunov function. Traditional Lya-
punov theory has been used for synthesis purposes by proposing
a Lyapunov function candidate, and then finding a feedback
strategy that renders it negative definite [1], [3].

The synthesis problem was made more formal by the intro-
duction of control Lyapunov functions (CLFs) [4]–[6]. A CLF
is a positive definite, radially unbounded function that can be
made negative definite at each state, by some feasible input. In
contrast with traditional Lyapunov functions, a CLF can there-
fore be defined for a system with inputs, without specifying a
particular feedback function.

The synthesis problem is completed by using the CLF to
choose a (typically smooth) feedback function that renders the
derivative of the CLF negative definite along trajectories of the
system [7]–[9]. Sontag has shown that if a CLF is known for a
nonlinear system that is affine in the control, then the CLF and
the system equations can be used to find formulas that render
the system asymptotically stable [7]. These formulas are called
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universal formulas because they depend only upon the CLF and
the system equations and not on the particular structure of those
equations.

There are several known universal formulas, in particular,
Sontag’s formula [7], and Freeman and Kokotovic’s min-norm
formula [10], [11]. It is obvious that there is a large class of
universal formulas, however the size and structure of the set of
universal formulas has not yet been identified.

One of the contributions of this paper is to completely param-
eterize the set of universal formulas. In particular, our parame-
terization is constructive in that the parameterization is given
in terms of two, state dependent selection, or tuning, functions
that are only required to satisfy mild constraints. Any functions
satisfying these conditions can be used to construct a universal
formula.

It has been shown that Sontag’s formula and the min-norm
formula are “good” universal formulas in the sense that they
enjoy certain stability margins and are inverse optimal [9], [11],
[12]. It is natural to wonder if the set of universal formulas that
enjoy these properties can also be parameterized. Another con-
tribution of this paper is to show that this is the case. In addition,
the parameterization is shown to be convex.

One of the drawbacks with Sontag’s formula is that it does
not provide any convenient parameters to tune the performance
of the control. The only available tuning device is to modify
the control Lyapunov function itself. Freeman and Kokotovic’s
min-norm formula addresses this problem by adding an addi-
tional scalar function that specifies the minimum rate of de-
crease of the CLF. Performance of the closed loop system can
be “tuned” by modifying this function [11]. The parameteriza-
tion introduced in this paper can be used to address closed-loop
performance in a natural way. Performance can be achieved
by specifying an auxiliary optimization problem that chooses
the selection functions at each state. As long as the selection
functions satisfy mild continuity and convex boundedness con-
straints, the resulting “optimized” system will be asymptoti-
cally stable. Other approaches along these lines include [13],
[14] which use CLFs to guarantee stability of receding horizon
approaches.

Our parameterization of universal formulas is derived
using the recently introduced notion of satisficing decision
theory [15]–[17]. Satisficing decision theory can be seen as a
formal application of cost–benefit analysis to decision making
problems. The basic idea is to define two utility functions
that quantify the benefits and costs of an action. At each
state, the benefits of choosing a control action are given by
a “selectability” function. Similarly, at each state, the costs
associated with choosing the control action are given by a
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“rejectability” function. The “satisficing” set is defined to
be those options for which selectability (benefits) exceeds
rejectability (costs) [17].

The first application of the satisficing approach to feedback
control was derived in [16]. The selectability function was
chosen as the distance from the predicted state at the next time
instant to the origin, and the rejectability function was chosen
to be proportional to the control effort. The resulting control
strategy is reminiscent of model predictive control. There
are two limitations of the control strategies derived in [16]:
First, closed-loop stability was not guaranteed analytically,
and second, at each state, a search needed to be performed
to find the satisficing set. This paper solves both of those
problems. First, by linking the “selectability” function to a
CLF, closed-loop asymptotic stability is ensured. Second, by
imposing an affine-in-the-control structure on the nonlinear
system, the structure of the satisficing set is used to derive a
closed-form description of the satisficing set at each state.

This paper is organized as follows. In Section II, we define
a state dependent subset of the control space which we call
the satisficing set and show that this set is convex and can be
parameterized by state dependent selection functions. In Sec-
tion III, we define satisficing controls to be continuous selec-
tions from the satisficing set, and derive a constructive formula
for these controls. We show that all satisficing controls render
the closed-loop system asymptotically stable. In Section IV, we
show that continuous selections from a convex subset of the sat-
isficing set, which we call the robust satisficing set, result in
closed-loop control strategies that enjoy Kalman-like stability
margins in the spirit of [9], [18], and [19]. In Section V, we
show that these closed-loop strategies are also inverse optimal
in the sense of [11], [20]–[22]. Section VI contains the main
result which shows that the satisficing framework completely
parameterizes all universal formulas that are locally Lipschitz,
and zero at the origin. Section VII illustrates the ideas with two
simple examples. In Section VIII we offer perspective and con-
cluding remarks.

Throughout this paper, we will denote the partial derivative
with a subscript: , where is assumed to be a
column vector. denotes the transpose of the matrix .
denotes the Euclidean norm of the vector , and denotes
the induced Euclidean norm of the matrix .

II. SATISFICING SET

Consider the affine nonlinear system

(1)

where , , and .
We will assume throughout this paper that and are locally
Lipschitz functions and that .

Definition 1: A twice continuously differentiable function
is said to be a CLF for system (1), if is

positive definite, radially unbounded, and if

for all .

The existence of a CLF implies that there exists a, possibly
discontinuous, control law such that the CLF is a Lyapunov
function for the closed-loop system. Hence, the CLF can be
viewed as a candidate Lyapunov function, where the control law
which will render the system stable has not yet been specified.

It has been shown in [4], [5] that system (1) is asymptotically
controllable to the origin, if and only if there exists a CLF for the
system. In general, finding a CLF is an open problem, however
constructive techniques are known for a large class of practically
important systems [8] including feedback linearizable systems
and systems which are amenable to integrator backstepping.

A CLF is said to satisfy the small control property [12] for
(1) if there exists a control law continuous in such that

The satisficing paradigm calls for the definition of two
utility functions: the selectability function , and the
rejectability function [17]. Following [16], selectability
should be large for control values that are desirable in some
sense. Similarly, rejectability should be large for control
values that are expensive to implement. In addition, define

to be the selectivity, or boldness, index.
Definition 2: The satisficing set is defined to be the

set of control values such that the selectability times the selec-
tivity index is greater than the rejectability, i.e.,

In other words, the satisficing set is the set of all point-wise
control values where the instantaneous benefits of applying that
action outweigh the instantaneous costs. For practical reasons,
we are interested in the case when is a convex set.

Lemma 3: If for each , is a concave function of
and is a convex function of , then is a convex
(and, hence, connected) set.

Proof: The lemma follows directly from the definition
.

Note that we only require convexity in and not in . There-
fore, we do not impose any convexity restrictions on the system,
only on the incremental measures of benefit and cost.

We will associate the notion of selectability with stability, and
the notion of rejectability with instantaneous cost. In particular,
let

(2)

where is a CLF. Note that stabilizing control values make
positive. We choose the rejectability criterion to be

(3)

where is a positive–definite matrix function
whose elements are locally Lipschitz and is a
locally Lipschitz nonnegative function. Note that

is a linear function in and is, hence, concave
in . Additionally, is convex in .
For these choices of and the satisficing set becomes

(4)

which by Lemma 3, is guaranteed to be a convex set.
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Fig. 1. Selectability and rejectability functions as a function of u, for a
particular x, and the resulting satisficing set.

Fig. 1 shows , and for a particular state for the
case of a single input .

The following theorem completely characterizes the satis-
ficing set for the particular selectability and rejectability func-
tions chosen previously.

Theorem 4: If and
, then the satisficing set at state is nonempty if and

only if satisfies the inequality

(5)

at that state.
Furthermore, if is nonempty, it is given by

(6)

Thus, is the set of control values, defined at each state,
that satisfy the condition

The benefit of (6) is that it provides an explicit formula for
control values which satisfy this condition whenever is
nonempty. Note that this formula provides a mapping from the
open unit ball ( is a free parameter whose only constraint is
that it lie in the unit ball) to the satisficing set. Note also that
when , the satisficing set is well defined and given by

The proof of Theorem 4 depends upon the following lemma
which provides a generalization of the quadratic formula.

Lemma 5: If , then the set of solutions to the
quadratic inequality

where , is nonempty if and only if

and is given by

where .
Proof: Since , it is invertible and can be

factored as where is also symmetric and
invertible [23]. By completing the square, we get that

Therefore

Obviously the left hand side of this expression is positive which
implies that a solution exists if and only if ,
in which case we have

Note that the aforementioned expression constrains the magni-
tude but not the direction of . Therefore

Proof of Theorem 4: The satisficing set is given by

The theorem therefore follows from Lemma 5 with ,
, and .

Theorem 4 shows that the selectivity index plays a crit-
ical role in the size of . The next lemma shows that for
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each , can always be chosen such that the satisficing set
is nonempty. Toward that end, define

if

otherwise.
(7)

Lemma 6: If is a CLF for system (1), is given by (7), and
is given by (6), then for each
1) ;
2) implies that ;
3) if satisfies the property

(8)

then is locally Lipschitz on .
Proof: If , then since is a CLF, ,

therefore, (5) is satisfied if and only if

If , then (5) is satisfied if and only if

Restricting attention to positive solutions, this inequality is true
if and only if

which is clearly greater than or equal to zero.
To show that is locally Lipschitz on we follow

the arguments used in [12, pp. 8–10] to show the continuity of
Sontag’s formula. Following their arguments, we show that the
function

if and

elsewhere

is smooth on the set and
and and and .

Define the function

which is smooth on in all of its arguments. By direct substitu-
tion, it is straightforward to show that
for all . If , then

which is strictly less than zero since is a CLF. If , then

which, by (8), is nonzero on . Therefore, by the implicit
function theorem, is smooth on . Since ,

, and are locally Lipschitz on ,
is also locally Lipschitz on

.
Letting

(9)

(10)

we can take the union of over all for all
to obtain

(11)

Lemma 6 guarantees that is nonempty for . In addi-
tion, we have shown that the satisficing set can be parameterized
by the selection functions and , where

and .

III. SATISFICING CONTROLS

In this section, we define satisficing controls to be locally Lip-
schitz selections from the satisficing set. It is shown that satis-
ficing controls asymptotically stabilize the closed-loop system.

Definition 7: The mapping is called a satis-
ficing control for system (1) if

1) ;
2) for each ;
3) is locally Lipschitz on .
Theorem 8: If is a satisficing control for system (1),

then the closed loop system is globally asymptot-
ically stable.

The proof uses the following lemma which is stated as an
exercise in [24, p. 247].

Lemma 9: Suppose that is locally Lipschitz on
and . If there exist a continuously differentiable,

positive–definite, radially unbounded function
such that for all , then the origin is
globally asymptotically stable.

Proof of Theorem 8: Since , , and are locally Lipschitz
on , is also locally Lipschitz on [1]. Since

and , . Since
for all

The theorem therefore follows from Lemma 9.
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The next theorem parameterizes the set of satisficing controls
via two locally Lipschitz selection functions.

Theorem 10: If

1) is a CLF for system (1);
2) is locally Lipschitz on and

satisfies ;
3) is locally Lipschitz on and satisfies

, where is defined by(7);
then

if
otherwise

(12)

where and are given by (9) and (10), is a satis-
ficing control for system (1). Furthermore, if satisfies
the small control property, and in a neighborhood close to
the origin, where ,
and satisfies

where and are positive constants, then is continuous
at the origin.

Proof: From (12) and the definition of , it is clear that
and for all . Since the multiplica-

tion, addition, and composition of locally Lipschitz functions is
locally Lipschitz, and are locally Lipschitz on .
Therefore, is a satisficing control.

Suppose that satisfies the small control property. We will
show that near the origin is bounded above by a continuous
function that is zero at the origin. Since

we will derive bounds separately on and . To simplify the
notation let and .

First, consider the case when . Since sat-
isfies the small control property, there exist a continuous
with such that

which implies that . Therefore, can be
bounded as follows:

Similarly, can be bounded as

Alternatively, assume that . Then, clearly

and can be bounded as

Therefore, is continuous at .

IV. ROBUSTLY SATISFICING CONTROLS

We have shown that all satisficing controls provide asymp-
totic stability and that for a given CLF , the set of controls
generated by are parameterized by two locally Lipschitz func-
tions and . In this section, we will
show that if the selection process is limited to a convex subset of

, which we call the robust satisficing set, that the resulting
control strategies have Kalman-like gain margins.

Definition 11: An asymptotically stabilizing control law,
, has stability margins where

if for every , , also asymptotically
stabilizes the system.

In particular, it was shown in [18], [19], [25], and [26] that op-
timal control laws have stability margins of . In fact
one of the primary motivations for considering inverse optimal
control laws, is that they have guaranteed stability margins of

[9], [11]. In this section, we will show that selection
from a well defined subset of results in feedback strategies
with stability margins of .

Definition 12: The robust satisficing set for system (1), de-
noted , is defined as

where and are given in (9) and (10).
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Fig. 2. Satisficing set overparameterization.

Definition 13: The mapping is called a
robustly satisficing control for (1) if

1) ;
2) for each ;
3) is locally Lipschitz on .

Theorem 14: If is a robustly satisficing control for (1),
then it has stability margins equal to .

Proof: By definition, satisfies the following in-
equality:

Adding to both sides gives

(13)

A sufficient condition for asymptotic stability is that the
right-hand side of (13) be nonpositive for all . We need
to show that this condition is satisfied for all .
Noting that

gives

The first term is always nonpositive. The second term is non-
positive if , in which case the third term is non-
positive if .

The parameterization of the satisficing set in terms of is
a redundant parameterization since and

. Therefore, if , there may be many pairs
such that . For example, if ,

, , and , then Fig. 2 shows three
pairs corresponding to a single point in . Note that

as increases, the size of the ellipsoid determined by
grows. In addition, the center of the ellipsoid, determined by

moves in the direction of . While con-
tains the entire ellipsoid for every , only contains half
of that ellipsoid. For the values given previously, the robust sat-
isficing set is shown in Fig. 3. is to the right of the shown
boundary, where the vector lies
along the axis. Note that the intersection of the boundary of

with the vector corresponds to , in which
case and any gives the same control value. Fig. 3
suggests a minimal parameterization of , where is always
chosen perpendicular to .
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Fig. 3. Robust satisficing set.

Theorem 15: Suppose that , the SVD of
is given by

and the null space of is denoted by
. Then if and only if there exists a

unique parameterization where

and , such that

Proof: To show necessity, let . By the orthogo-
nality theorem [23], can be uniquely written as

where and .
Since

there exist a unique such that . Since
, given , there exists a unique such that

. Let (note that is uniquely
defined), then

To show sufficiency, suppose that there is a unique parame-
terization such that

Let . Since is unitary,
. Since , . In

addition, . Therefore,
.

The next theorem parameterizes the set of robustly satisficing
controls for (1).

Theorem 16: If

1) is a CLF for system (1);
2) is locally Lipschitz on and

satisfies ;
3) is locally Lipschitz on and satisfies

, where is given in (7);
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4) is a locally Lipschitz orthog-
onal matrix that spans the null space of ;
then

if
otherwise

(14)
is a robustly satisficing control for (1).

V. INVERSE OPTIMALITY

In this section, we show that all robustly satisficing control
laws are inverse optimal.

Definition 17: A control law that asymptotically sta-
bilizes the system is said to be inverse optimal
if there exists a positive–definite, radially unbounded , a
positive–definite function and a symmetric positive–def-
inite function such that

where satisfies the Hamilton–Jacobi equation

point-wise at each .
The following lemma sets the stage for our main result.
Lemma 18: If then every robustly satisficing con-

trol can be written as , where
is a positive–definite matrix function.

Proof: Let . implies that

since . Therefore, since
, where is the angle between and , we

know that or that . For the trivial case
where , we can simply let .
Suppose however, that is not parallel to . Our objective
is to construct a matrix such that for
all .

We begin by defining a new orthonormal basis for . The
first basis vector, , is a unit vector in the direction
of . The second basis vector

is a unit vector lying in the plane spanned by and with
orthogonal to . The rest of the new basis vectors
can be generated with a Gram–Schmidt algorithm such that

constitute a complete orthonormal basis. Define
the transformation matrix, , and note that

.
In this new coordinate frame, the vector be-

comes . Likewise, becomes
. We will now construct

to rotate into . Since all but the first two

elements of and are zero, let , where

. Therefore, we must have that

which implies the following equations:

Additionally, the positive definiteness of requires that

and

Letting , , and

where ensures that is well defined, we see that all
of the equations are satisfied. Define , then

By construction . Letting
shows that any can be written in the desired form.

We can now show the following result.
Theorem 19: Every robustly satisficing control law is inverse

optimal.
Proof: The proof follows the arguments in [9, p. 108]. Let

be a robustly satisficing control law. From Lemma 18 ,
there exists a positive–definite matrix function such that

. Since is asymptotically stabilizing,
we know

Choosing

, and , it is straightforward to verify
that the Hamilton–Jacobi equation

is satisfied at all .

VI. UNIVERSAL FORMULAS

Theorem 10 suggests a new class of universal formulas. In
particular, any locally Lipschitz selection function
represents a universal formula given the CLF . If in addition,
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is selected from , then inverse optimality and op-
timal robustness margins are ensured. Attention can therefore
be turned to optimizing performance via the selection functions

and .
Definition 20: A universal stabilizing formula for system

(1) is a continuous function such that for
any CLF , the following statements hold:

• ;
• , , such that

The next theorem shows that the functions and used
in Theorem 10 to parameterize the set of satisficing controls,
also parameterizes a new family of universal formulas.

Theorem 21: Assume that the hypothesis of Theorem 10 is
satisfied, then (12) is a universal stabilizing formula for (1).

Proof: The fact that for all
follows from the fact that .

In the proof of Theorem 10, we showed that
, where

Assuming that , , and gives

Since is continuous, for sufficiently small , and
can be bounded by .

Corollary 22: If the hypothesis of Theorem 16 is satisfied,
then (14) is a universal stabilizing formula for system (1) that is
both inverse optimal and has gain margins equal to .

Two well-known universal formulas are Sontag’s formula [7]
and Freeman and Kokotovic’s min-norm formula [11]. We will
demonstrate that both of these formulas are subsumed in our
approach. As described in [7], Sontag’s formula is given by

if

otherwise .
(15)

Note that this is equal to (14) when , ,
, and . Similarly, Freeman and Koko-

tovic’s min-norm formula [11] is given by

if

otherwise
(16)

which is equal to (14) when , , , and
. Therefore, (14) can be thought of as a general-

ization of both Sontag’s formula and Freeman and Kokotovic’s
min-norm formula.

We have shown that Theorem 10 parameterizes a new class
of universal formulas. One may wonder about the completeness
of this parameterization, i.e., are there universal formulas that
are not generated by Theorem 10 . Our final result is that the
parameterization is complete.

Theorem 23: If is a universal formula that is locally Lips-
chitz on and , then is a satisficing control.

Proof: Conditions 1 and 3 from Definition 7 are trivially
satisfied and it remains to show that at every
for some choice of and . This can be done by showing that
satisfies the fundamental satisficing condition

at every with .
Since is a universal formula we know that

Letting and , the satisficing condition re-
quires that which is true if and only if

. The selectivity function must also sat-
isfy . Letting
completes the proof.

VII. EXAMPLES

This section presents two examples that illustrate the po-
tential of satisficing controls. The first example illustrates the
application of the ideas to linear systems. The second example
illustrates the ideas for a second-order nonlinear system with
two inputs.

A. Linear Systems

Consider the linear system given by

(17)

where is assumed to be controllable. Let be a sym-
metric, positive semi-definite matrix such that is ob-
servable, let be a symmetric positive–definite matrix, and
let be the symmetric positive–definite solution to the Riccati
equation

(18)

controllable implies that is a CLF for
system (17) since

for all .
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From (7) we see after some algebra that for linear systems,
is shown in (19) at the bottom of the page. If we choose

, then the expression for simplifies further as
.

If we let the rejectability control penalty matrix function be
equal to [in the linear quadratic regulator (LQR) sense], then
the satisficing parametrization for (17) is

(20)

where the satisficing parameters satisfy and
.
Note that if and , then

which is the optimal controller associated with
the performance index

Also, note that by making the selection parameters and
functions of the state, satisficing controls become nonlinear

functions of the state .
As a concrete example, consider the double integrator system

with and . The solution to the Riccati equation is
given by

resulting in the CLF .
Fig. 4 shows the phase portrait of the closed loop system using

four different controllers. The phase portrait in the upper left
corresponds to the LQR controller. The phase portrait in the
upper right corresponds to Sontag’s formula. It may be desirable
in some applications to have high-gain, nonlinear response in
certain regions of the state space, but linear response in other
regions. This can be achieved by judicious choices of and

. The lower left hand phase plot shows the response to the
satisficing control with

if
otherwise

(21)

(22)

Note that the response is high-gain in the region ,
but retains the LQR response on the rest of the state–space. It is
interesting to note, that since increases the gain in the direc-
tion of , the direction of the eigenspaces are retained
in the nonlinear region. The direction of the eigenspaces can be

shaped by the function . In the lower right-hand plot, is
chosen similarly to the lower left hand plot, but is chosen to
minimize the rate of decrease along the function ,
i.e.,

Note that the apparent eigenspaces align with the eigenspaces
of the identity matrix as we might expect from .

B. Nonlinear Example

Consider the system

(23)

It can be shown that is a CLF for the system
if is positive definite and . Letting

the resulting phase portrait using Sontag’s formula (15) is shown
in the upper left subplot of Fig. 5. The phase portrait of the
system using the min-norm control

if

otherwise

where , is shown in the upper right subplot of Fig. 5
A heuristic technique that is both easy to tune and is known

to give good results is the state dependent Riccati equation
(SDRE) technique [27]. The basic idea is to factor the term

in (1) as , and then to compute the linear
quadratic control gain at each associated with the system

, where and are state
dependent weighting matrices. The drawback with the SDRE
technique is that conditions are not currently known that
guarantee that the technique results in a stable and robust
closed-loop system. The bottom left subplot of Fig. 5 shows the
phase portrait that results from applying the SDRE technique
to (23) where

, and .
The satisficing technique can be used to retain the essential

behavior of the SDRE controller while ensuring closed-loop sta-
bility and robustness properties. If is the SDRE con-
troller at state , then and are chosen according to the
following optimization problem:

(24)

if

otherwise.
(19)
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Fig. 4. Phase portrait for a double integrator systems under the control of (a) LQR, (b) Sontag’s formula, (c) satisficing #1, and (d) satisficing #2.

Since is a robust satisficing control, (24) is an inverse optimal
universal formula that retains the qualitative performance of the
SDRE controller. The phase portrait of the closed loop system
using (24) is shown in the bottom right subplot of Fig. 5.

VIII. DISCUSSION

The main results contained in this paper can be summarized
as follows. Given an affine nonlinear system and
an associated CLF , there exists a convex set called the
satisficing set, which is given by (11), and which is nonempty
for each . Furthermore, this set is completely parame-
terized by two selection functions and . Theorem 10
guarantees that if these selection functions are locally Lipschitz
and satisfy the constraints and , then
the resulting control strategy, given by (12), globally asymptoti-
cally stabilizes the system. In Definition 12 the robust satisficing
set, is defined as a convex subset of , and it was
shown that is again parameterized by selection functions

and . It was shown in Theorems 14, 16, and 19 that if
these selection functions are locally Lipschitz and satisfy certain
convex constraints, then the resulting control strategy given by
(14) has optimal robustness margins and is inverse optimal. Fi-
nally, Theorems 21 and 23 show that the satisficing framework
completely characterizes all universal formulas that can be de-
rived from a given CLF.

The techniques developed in this paper can be used as both
an analysis and as a synthesis tool. As an example of their ap-

plications as an analysis tool, suppose that a control strategy has
been designed based on Lyapunov techniques. If it is possible
to find functions , , , and , such that the con-
trol strategy takes the form of (14) then Theorem 19 guarantees
that the control law is inverse optimal. In addition, as shown in
Section VII, the techniques can be used to ensure stability and
robustness properties of heuristic control strategies such as the
SDRE technique.

As a synthesis tool, the satisficing framework developed in
this paper provides a powerful technique for developing new
control strategies with guaranteed robustness and stability prop-
erties. The satisficing set can be thought of as the set of “safe” or
“good” options available at each . Given a CLF, the synthesis
problem reduces to that of finding selection functions and

that lead to desirable performance. Stability, robustness
margins, and inverse optimality are provided for a priori. For
example, an asymptotically stable, inverse optimal model pre-
dictive control strategy can be defined as

where is a cost criteria based on model predictive
strategies.

Since the satisficing technique is built upon control Lyapunov
functions, both local and global properties of the system can be
addressed. One way of thinking about the satisficing approach
is that it bridges the gap between local and global concerns:
it is built upon the comparison of instantaneous cost with
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Fig. 5. Phase portrait for system (23) under the control of (a) Sontag’s formula, (b) min-norm formula, (c) SDRE, and (d) SDRE projected onto the robust
satisficing set.

instantaneous benefit, but by defining the benefit of a control
action in terms of a CLF this local decision inherits global
consequences.

The strength of the satisficing approach is its flexibility.
Instead of providing just another in a list of (possibly in-
verse-optimal) universal formulas, our approach completely
parameterizes the entire class of such control laws. To aid
in the choice of selection functions, the designer is free to
harness other control techniques such as model prediction,
SDRE, fuzzy logic, or neural networks, to find the selection
functions of and ,

This paper demonstrates that the satisficing approach offers
new insights into CLF-based nonlinear control and has the po-
tential to be a powerful tool in the design and analysis of non-
linear control strategies.
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