
TRANSITIONS BETWEEN HOVER AND LEVEL FLIGHT FOR A

TAILSITTER UAV

by

Stephen R. Osborne

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering

Brigham Young University

December 2007

Copyright c© 2007 Stephen R. Osborne

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Stephen R. Osborne

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date Randal W. Beard, Chair

Date Timothy W. McLain

Date D.J. Lee

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Stephen
R. Osborne in its final form and have found that (1) its format, citations, and bibli-
ographical style are consistent and acceptable and fulfill university and department
style requirements; (2) its illustrative materials including figures, tables, and charts
are in place; and (3) the final manuscript is satisfactory to the graduate committee
and is ready for submission to the university library.

Date Randal W. Beard
Chair, Graduate Committee

Accepted for the Department

Michael A. Jensen
Chair

Accepted for the College

Alan R. Parkinson
Dean, Ira A. Fulton College of
Engineering and Technology

ABSTRACT

TRANSITIONS BETWEEN HOVER AND LEVEL FLIGHT FOR A

TAILSITTER UAV

Stephen R. Osborne

Department of Electrical and Computer Engineering

Master of Science

Vertical Take-Off and Land (VTOL) Unmanned Air Vehicles (UAVs) possess

several desirable characteristics, such as being able to hover and take-off or land in

confined areas. One type of VTOL airframe, the tailsitter, has all of these advan-

tages, as well as being able to fly in the more energy-efficient level flight mode. The

tailsitter can track trajectories that successfully transition between hover and level

flight modes. Three methods for performing transitions are described: a simple con-

troller, a feedback linearization controller, and an adaptive controller. An autopilot

navigational state machine with appropriate transitioning between level and hover

waypoints is also presented. The simple controller is useful for performing a immedi-

ate transition. It is very quick to react and maintains altitude during the maneuver,

but tracking is not performed in the lateral direction. The feedback linearization

controller and adaptive controller both perform equally well at tracking transition

trajectories in lateral and longitudinal directions, but the adaptive controller requires

knowledge of far fewer parameters.

ACKNOWLEDGEMENTS

I would first like to thank the members of my committee for their support and

guidance in the creation of this thesis. Dr. Beard and Dr. McLain also deserve my

gratitude for their leadership in the Magicc Lab, where I have worked for the past two

years. Dr. Beard has also been an invaluable resource in directing my research and

proofreading this thesis numerous times. Along with these professors, I also thank all

my fellow Magicc Labbers who have helped me in any way, shape, or form during my

stay here. Special thanks goes to Nate Knoebel for his assistance and expertise on

tailsitter issues, as well as for many hours spent during flight testing in the summer

heat.

Table of Contents

Acknowledgements xi

List of Tables xvii

List of Figures xix

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Literature Review . 3

1.3 Contributions . 5

1.4 Document Organization . 5

2 Tailsitter Physics 7

2.1 Three-dimensional Model . 7

2.1.1 Quaternion Motivation and Definition 7

2.1.2 Quaternion/Euler Conversions 9

2.1.3 Navigation Equations . 9

2.1.4 Kinematic Equations . 10

2.1.5 Force Equations . 11

2.2 Two-dimensional Model . 13

2.3 Chapter Summary . 17

3 Experimental Platform 19

xiii

3.1 Simulation . 19

3.2 Flight Test Setup . 19

3.3 Quaternion Attitude Control . 21

3.4 Hover Position Control . 23

3.5 Level Flight Control . 26

3.6 Chapter Summary . 28

4 Trajectory Tracking Algorithms 31

4.1 Desired Trajectories . 31

4.2 Simple Controller . 35

4.3 Feedback Linearization Controller . 37

4.4 Adaptive Controller . 40

4.4.1 Lyapunov Stability . 40

4.4.2 Equations of Motion . 41

4.4.3 Reference Model . 41

4.4.4 Controller Derivation . 42

4.5 Simulation Results . 45

4.5.1 Simple Controller Simulations 46

4.5.2 Feedback Linearization Controller Simulations 48

4.5.3 Adaptive Controller Simulations 50

4.6 Flight Test Results . 53

4.6.1 Simple Controller Flight Results 53

4.6.2 Feedback Linearization Controller Flight Results 56

4.6.3 Adaptive Controller Flight Results 59

4.7 Chapter Summary . 62

5 Autopilot State Machine 63

xiv

5.1 Autopilot Structure . 63

5.2 Autopilot Flight Results with Simple Controller 66

5.3 Autopilot Flight Results with Feedback Linearization Controller . . . 69

5.4 Autopilot Flight Results with Adaptive Controller 71

5.5 Chapter Summary . 73

6 Conclusion 75

6.1 Summary of Results . 75

6.2 Future Work . 75

Bibliography 77

xv

xvi

List of Tables

5.1 Autopilot state machine state numbers 67

xvii

xviii

List of Figures

1.1 Convair XFY-1 Pogo, 1954 . 2

1.2 Ryan X-13 Vertijet, 1956 . 2

2.1 Lift and drag coefficients versus α. 13

2.2 Forces acting on tailsitter . 14

3.1 The Magicc Lab Pogo airframe . 20

3.2 Kestrel Autopilot . 21

3.3 Quaternion attitude controller performance in flight test 24

3.4 Hover position tracking flight data . 27

3.5 Level waypoint tracking flight data 29

4.1 Hover-to-level trajectory goal . 32

4.2 Level-to-hover trajectory goal . 32

4.3 Desired p-trajectories . 34

4.4 Desired h-trajectories . 36

4.5 Simple controller hover-to-level trajectory tracking in simulation . . . 46

4.6 Simple controller level-to-hover trajectory tracking in simulation . . . 47

4.7 Feedback linearization controller hover-to-level trajectory tracking in
simulation . 48

4.8 Feedback linearization controller level-to-hover trajectory tracking in
simulation . 49

4.9 Adaptive controller hover-to-level trajectory tracking in simulation . . 51

xix

4.10 Adaptive controller level-to-hover trajectory tracking in simulation . . 52

4.11 Simple controller hover-to-level transition flight data 54

4.12 Simple controller level-to-hover transition flight data 55

4.13 Feedback linearization controller hover-to-level trajectory tracking flight
data . 57

4.14 Feedback linearization controller level-to-hover trajectory tracking flight
data . 58

4.15 Adaptive controller hover-to-level trajectory tracking flight data . . . 60

4.16 Adaptive controller level-to-hover trajectory tracking flight data . . . 61

5.1 Autopilot state machine . 64

5.2 State machine flight results with simple controller 68

5.3 State machine flight results with feedback linearization controller . . . 70

5.4 State machine flight results with adaptive controller 72

xx

Chapter 1

Introduction

1.1 Background and Motivation

Throughout the history of flight, new airframes have constantly been developed

in response to changing needs and new mission requirements. One unique airframe

design in particular is the tailsitter. Tailsitters, as the name implies, sit on their

tail when not in flight. They take off and land vertically, making them a member

of the VTOL (Vertical Take-Off and Land) family of aircraft. Equipped with a

powerful engine, tailsitters can utilize a “prop-hanging” technique to hover in place.

Additionally, they can transition to a level flight mode and fly in a traditional fixed-

wing mode, which is much more energy efficient than hover mode. Being able to

transition between hover and level modes opens the door to a wide variety of possible

missions unavailable to traditional aircraft or other VTOL airframes like helicopters,

which stay in the energy-inefficient hover mode at all times.

In the years following World War II, the tailsitter design concept was explored

in depth and even developed into a few experimental aircraft for flight testing. The

primary research focus was to develop a short-range combat aircraft that could take

off from a confined environment like the deck of a Navy destroyer. One such aircraft

was the Convair XFY-1 Pogo, first flown in 1954 and pictured in Figure 1.1. The

Ryan X-13 Vertijet in Figure 1.2 was another famous jet-powered tailsitter design

that successfully flew in 1956. Although the tailsitter was aerodynamically sound

and made sense on paper, in practice it proved difficult for the test pilots to fly.

Controlling the tailsitter in hover mode, and especially landing while looking at the

ground over one’s shoulder was very tricky and dangerous. Ultimately, the tailsitter

design was abandoned and largely forgotten.

1

Figure 1.1: Convair XFY-1 Pogo, 1954

Figure 1.2: Ryan X-13 Vertijet, 1956

In recent years, advances in miniaturization and computation have enabled a

rapid increase in research and development of Unmanned Air Vehicles (UAVs). Small

UAVs in particular have proved very useful in both military and civilian applications,

such as aerial surveillance, target tracking, forest fire monitoring, border patrol, search

and rescue, and as links in communication networks. As UAV research has continued,

the advantages of a VTOL UAV capable of hover flight have become clear. For

instance, when monitoring a stationary or slow moving target, a UAV unable to hover

must make several passes over the area, resulting in the target being unavailable for

2

continual reconnaissance. With a hover-capable UAV, however, the target can remain

under surveillance for as long as needed, constrained only by the battery life of the

UAV.

The limitations of finite battery life quickly become significant with a typical

hovering UAV. Hovering requires a great amount of energy because the airframe’s

entire weight is generally lifted by the force of the propulsion system alone, without

any of the benefits that a lifting surface gives to a normal fixed-wing platform. Adding

more batteries to a small UAV to increase flight time only increases the weight, often

negating any desired improvement.

Primarily due to the problem of simultaneously desiring long flight time and

the advantages of hover flight, the tailsitter airframe design has been renewed for

use as a UAV platform. The main difficulties with the tailsitter design when first

conceived and tested in the 1950’s are largely solved with a computerized autopilot

in command, rather than a human pilot. The BYU Magicc Lab has developed a

tailsitter UAV autopilot that allows the UAV to hover or travel in level mode be-

tween waypoints. Of particular importance are the transitions between the two flight

regimes. The primary focus of the research in this thesis is to develop a method to

safely transition in a controlled manner between vertical and horizontal modes while

tracking a desired trajectory.

1.2 Literature Review

Tailsitter research is still in its infancy. The BYU Magicc Lab has demon-

strated flight results on UAVs that contribute to the work of this thesis. In this

thesis, an adaptive control algorithm similar to [1] is described. An overview of pre-

liminary tailsitter research and a description of BYU’s tailsitter research platform is

contained in [2].

In addition to the contributions of this thesis and the work of the BYU Magicc

Lab, R. Hugh Stone of the University of Sydney, Australia has published papers

detailing efforts to construct and fly an autonomous tailsitter. In [3], the preliminary

airframe design of Stone’s tailsitter is presented. A good overview of the project as

3

well as a description of possible applications for tailsitters is given in [4]. The control

and guidance architecture is presented in [5]. Of particular interest to this thesis is

[6], which describes optimization methods of the tailsitter’s stall-tumble maneuver

transitions between hover and level flight.

Although not much literature is available detailing their efforts, a tailsitter

UAV named SkyTote has been under development since 1998 by AeroVironment

[7], a company specializing in unmanned aircraft systems. As discussed in [8], the

SkyTote is being designed as a precision cargo delivery system, capable of delivering

a 50 pound payload to within a 15 foot area up to 200 miles away from the mission

start point, with a 1.5 hour max battery life. Mission parameters like these are ideal

for a tailsitter which has the precision landing capability of a hovering UAV and the

energy-efficiency of a fixed wing airframe. At this time, it is unknown what progress

has been made on the SkyTote system.

Green and Oh at Drexel University have contributed several papers of interest

to tailsitter research. Although the flight platform described is not a tailsitter, it can

transition between level and hover flight. Much of the research focus is on developing

a UAV that can fly in confined spaces, such as inside buildings. These efforts are de-

scribed in [9], [10] and [11]. The same authors also use vision-based guidance systems

to control small MAVs with similar hover characteristics to a miniature tailsitter in

[12], [13], and [14].

Other authors contribute useful theoretical discussion applicable to tailsitter

research. Methods for trajectory tracking with a VTOL aircraft are presented in

[15], [16], and [17]. Costic, et. al., [18] describe a quaternion-based attitude track-

ing controller for spacecraft. Trajectory tracking for fixed-wing UAVs performing

aggressive flight maneuvers is explored in [19]. An excellent description of attitude

representations, including an extensive description of the quaternion representation,

is presented in [20].

4

1.3 Contributions

The research described in this thesis presents three different control methods

which may be used for transitioning a VTOL tailsitter UAV between hover and level

flight modes. Simulation and flight test results for each of the modes are also pre-

sented. The tailsitter physics models used in the derivation as well as simulation of

the control methods are also given, and will prove useful to others seeking to further

develop tailsitter autopilot technology. Finally, a tailsitter navigational autopilot is

presented which provides a framework for flying a flight plan composed of hover and

level waypoints.

1.4 Document Organization

In Chapter 2, both 2D and 3D physics models are presented that will be

used in later derivations of controllers as well as for testing the algorithms in simu-

lation. Chapter 3 describes the simulation and hardware environments used in this

research. Chapter 4 contains derivations for simple, feedback linearization, and adap-

tive controllers for negotiating transitions between flight modes for a tailsitter UAV.

Simulation and flight test results for transitions are also included. In Chapter 5, a

navigational autopilot for flying a flight path composed of mixed hover and level way-

points is described and flight results are given. Conclusions and recommendations for

future work are given in Chapter 6.

5

6

Chapter 2

Tailsitter Physics

The starting point for developing trajectory tracking control is to develop an

accurate physical model of the system. Two models are presented in this chapter,

describing three-dimensional and two-dimensional dynamics. The three-dimensional,

quaternion-based, high fidelity model is used in simulation testing of the tracking

algorithms, but is too complex to be used as the basis for developing implementable

control. Therefore, a two-dimensional model that captures the essential features of

the system is used to develop the control algorithms.

2.1 Three-dimensional Model

The three-dimensional physics model uses a quaternion representation of tail-

sitter attitude. Quaternions, as described in this section, provide a unique description

of attitude without the singularity introduced in a hover position by an Euler angle

attitude representation.

2.1.1 Quaternion Motivation and Definition

Euler angles are traditionally used to represent aircraft attitude in aerospace

literature. Starting from an aircraft orientation with the nose facing North (the

world frame x axis), the right wing facing East (the world frame y axis) and the

belly facing down (the world frame z axis), each angle signifies a rotation about an

individual axis. The order of rotations is non-commutative and so a standard order

of rotations is used. First the aircraft is rotated about the z axis by ψ, called the

yaw angle. Then the aircraft is rotated about the newly created y axis by θ, the pitch

angle. The final rotation is about the new x axis and is called the roll angle, φ.

7

Euler angles are an intuitive measure of the aircraft’s attitude and thus are very

useful in aircraft control. However, this Euler angle representation has singularities

at θ = ±π
2
. At these points when the pitch angle is pointed straight up or straight

down, a situation called gimbal lock occurs where the body-fixed x and inertial z axes

are now aligned. This situation is analogous to being at the North or South pole of

the Earth where all longitudinal lines come together at a point, or singularity. At

the North pole, for instance, all directions point south. For the aircraft Euler angle

representation, no yaw information can be gathered at the singularities and attitude

cannot be properly determined. Quaternions, fortunately, do not suffer from gimbal

lock and provide a singularity-free version of attitude representation.

A quaternion contains four elements and may be thought of as the composition

of an axis of rotation and an angle specifying the magnitude of rotation about that

axis. A rotation of Θ radians about a three-dimensional vector ~v is represented as

the quaternion

η =




η1

η2

η3

η4




=




sin Θ
2
v1

sin Θ
2
v2

sin Θ
2
v3

cos Θ
2




. (2.1)

For the tailsitter, attitude can be described with a single quaternion. This attitude

quaternion represents the axis of rotation (defined in the world frame) and magnitude

of rotation to achieve the current tailsitter orientation when starting from the initial

attitude of nose facing North and right wing facing East.

8

2.1.2 Quaternion/Euler Conversions

A unit quaternion can be translated to traditional Euler angle representation

by the transformation




φ

θ

ψ


 =




tan−1 2(η2η3+η4η1)

1−2(η2
1+η2

2)

sin−1(−2(η1η3 − η4η2))

tan−1 2(η1η2+η4η3)

1−2(η2
2+η2

3)


 (2.2)

and Euler angles are converted to a quaternion by




η1

η2

η3

η4




=




sin φ
2

cos θ
2
cos ψ

2
− cos φ

2
sin θ

2
sin ψ

2

cos φ
2

sin θ
2
cos ψ

2
+ sin φ

2
cos θ

2
sin ψ

2

cos φ
2

cos θ
2
sin ψ

2
− sin φ

2
sin θ

2
cos ψ

2

cos φ
2

cos θ
2
cos ψ

2
+ sin φ

2
sin θ

2
sin ψ

2




. (2.3)

Due to the singularity at θ = ±π
2
, care must be taken when converting from a quater-

nion to Euler angles when the pitch of the aircraft is near these values, as ψ will be

indeterminate.

2.1.3 Navigation Equations

Body frame velocities are translated to the inertial frame by




ẋ

ẏ

ż


 =




cos θ cos ψ sin φ sin θ cos ψ − cos φ sin ψ cos φ sin θ cos ψ + sin φ sin ψ

cos θ sin ψ sin φ sin θ sin ψ + cos φ cos ψ cos φ sin θ sin ψ − sin φ cos ψ

− sin θ sin φ cos θ cos φ cos θ







u

v

w




or, with quaternions,




ẋ

ẏ

ż


 =




1− 2(η2
2 + η2

3) 2(η1η2 − η4η3) 2(η1η3 + η4η2)

2(η1η2 + η4η3) 1− 2(η2
1 + η2

3) 2(η2η3 − η4η1)

2(η1η3 − η4η2) 2(η2η3 + η4η1) 1− 2(η2
1 + η2

2)







u

v

w


 . (2.4)

9

2.1.4 Kinematic Equations

We assume a quaternion-based attitude controller. The quaternion update

equation is

η̇ =
1

2
AΩ

with

A =




η4 −η3 η2

η3 η4 −η1

−η2 η1 η4

−η1 −η2 −η3




and

Ω =




p

q

r




where p, q, and r are angular velocities about the body frame x, y, and z axes,

respectively. The angular rates are updated by

Ω̇ = kΩ(Ωc − Ω)

where

Ωc = keηe − kdΩ.

In these equations, kΩ, ke, and kd are gains and ηe is known as the error quaternion,

given by

10

ηe =




η4 η3 −η2 −η1

−η3 η4 η1 −η2

η2 −η1 η4 −η3

η1 η2 η3 η4




ηc.

The error quaternion is the error between the tailsitter’s current attitude, given by

η, and the desired attitude, ηc. The attitude controller adjusts the angular rates p, q,

and r to achieve the desired orientation. In practice, the angular rates are adjusted

by controlling the aileron, elevator, and rudder control surfaces.

2.1.5 Force Equations

World frame accelerations are found by taking the derivative of (2.4):




ẍ

ÿ

z̈


 = N




u̇

v̇

ẇ


 + Ṅ




u

v

w


 (2.5)

= NV̇ + ṄV (2.6)

where N is the rotation matrix from (2.4) and

Ṅ =




−4η3η̇3 − 4η4η̇4 2η2η̇3 + 2η̇2η3 − 2η1η̇4 − 2η̇1η4

2η2η̇3 + 2η̇2η3 + 2η1η̇4 + 2η̇1η4 −4η2η̇2 − 4η4η̇4

2η2η̇4 + 2η̇2η4 − 2η1η̇3 − 2η̇1η3 2η3η̇4 + 2η̇3η4 + 2η1η̇2 + 2η̇1η2

2η2η̇4 + 2η̇2η4 + 2η1η̇3 + 2η̇1η3

2η3η̇4 + 2η̇3η4 − 2η1η̇2 − 2η̇1η2

−4η2η̇2 − 4η3η̇3




and

V̇ = (−Ω× V) + N−1G +
1

m
T +

1

m
L +

1

m
D

11

where G is the world frame gravity vector, T is the thrust vector, and L and D are

lift and drag vectors given by

L =
ρV 2S

2




sin αCl(α)

0

− cos αCl(α)




and

D =
ρV 2S

2




− cos αCd(α)

0

− sin αCd(α)




where Cl(α) and Cd(α) are the coefficients of lift and drag and are approximated by

Cl =





sin 2α + Clαᾱe−λ(α−ᾱ), α > ᾱ

sin 2α− Clαᾱeλ(α+ᾱ), α < −ᾱ

sin 2α + Clαα, otherwise

(2.7)

and

Cd =





Cd2(π/2)2 + Cd4(π/2)4, α > π/2

Cd2(π/2)2 + Cd4(π/2)4, α < −π/2

Cd2α
2 + Cd4α

4, otherwise.

(2.8)

The approximations of Cl and Cd were obtained by an approximation to experimental

data. Figure 2.1 shows the approximation using the formulae for Cl and Cd described

above. A number of parameters help define the shape of the curves. For the ap-

proximation to closely match the experimental data curves, the values are Clα = 4.0,

ᾱ = 0.1676, λ = 20, Cd2 = 1.0, and Cd4 = −0.2. These are the values used in

simulations presented in this thesis.

12

−100 −50 0 50 100
−1.5

−1

−0.5

0

0.5

1

1.5

α (degrees)

C
L

−100 −50 0 50 100
0

0.5

1

1.5

α (degrees)

C
D

Figure 2.1: Lift and drag coefficients versus α.

After substituting in the kinematic equation for η̇, as well as enforcing the

quaternion unit norm constraint, the force equations simplify to




ẍ

ÿ

z̈


 =




(T
m

+ Ax

m
)(1− 2η2

3 − 2η2
4) + Az

m
(2η1η3 + 2η2η4)

(T
m

+ Ax

m
)(2η1η4 + 2η2η3) + Az

m
(2η3η4 − 2η1η2)

(T
m

+ Ax

m
)(2η2η4 − 2η1η3) + Az

m
(1− 2η2

2 − 2η2
3) + g


 (2.9)

where Ax and Az are the combined aerodynamic lift and drag forces given by

Ax =
ρV 2S

2
(sin αCl(α)− cos αCd(α))

and

Az =
ρV 2S

2
(− cos αCl(α)− sin αCd(α)).

2.2 Two-dimensional Model

In the course of this research, the three-dimensional tailsitter physics model

proved difficult to work with in the development of a transition controller. Resulting

controllers were overly complex due to the large number of control inputs (T , η1,

η2, η3, and η4) and the nature of these inputs being interspersed throughout the

13

force equations. For the scope and purpose of this thesis, it is convenient to derive a

simpler, two-dimensional physics model and develop controllers based upon it. Since

the transitions will be performed in the direction of current heading of the tailsitter,

the extra dimension is not necessary in any case.

Figure 2.2: Forces acting on tailsitter

The forces acting at the tailsitter in a two-dimensional frame are shown in

Figure 2.2. The forces are acting on the center of mass of the tailsitter that lies in a

two-dimensional inertial coordinate frame. The p dimension is in the direction of the

tailsitter’s heading in the horizontal plane and represents the distance travelled along

the ground-track path. Transitions will always be performed along the p axis, with

the nose or belly of the tailsitter always aligned with this axis. The h dimension is

the altitude of the tailsitter. A pitch controller is assumed, which provides a moment

about the axis perpendicular to both p and h. By balancing forces acting on the

tailsitter, the equations of motion are given by

m


p̈

ḧ


 = G + L + D + T

14

and

θ̇ = a(θc − θ)

where θ is the pitch angle, G is the force due to gravity, L is the lift force acting on

the wing, D is the drag force acting on the wing, T is the thrust produced by the

motor, and θc is the commanded pitch angle. It is assumed that a pitch controller is

available with first-order characteristics described by the positive autopilot constant

a.

In the inertial frame, the gravity vector is given by

G =


 0

−mg


 .

We will assume that the thrust vector is directed along the tailsitter’s body

frame x axis. Therefore, in the inertial frame we have

T = R(θ)


T

0




where R is the rotation matrix between body and inertial frames given by

R(ϕ)
4
=


cos ϕ − sin ϕ

sin ϕ cos ϕ




and T is the magnitude of thrust produced by the motor. We will assume that T > 0

is an input to the system.

Similarly, the lift and drag vectors are given by

L = R(θ − α)


0

L




and

D = R(θ − α)


−D

0




15

where

L =
1

2
ρV 2SCl(α)

is the magnitude of lift and

D =
1

2
ρV 2SCd(α)

is the magnitude of drag. Here Cl(α) and Cd(α) are given by Equation 2.7 and 2.8

and are shown in Figure 2.1. Combining the forces due to lift and drag gives

L + D =
1

2
ρV 2SR(θ − α)


−Cd(α)

Cl(α)


 .

Note that the airspeed is given by

V =

√
ṗ2 + ḣ2

and the angle of attack is given by

α = θ − tan−1

(
ḣ

ṗ

)
.

Therefore θ − α = tan−1
(

ḣ
ṗ

)
and

cos(θ − α) = cos

(
tan−1

(
ḣ

ṗ

))

=
ṗ√

ṗ2 + ḣ2

=
ṗ

V

16

and

sin(θ − α) = sin

(
tan−1

(
ḣ

ṗ

))

=
ḣ√

ṗ2 + ḣ2

=
ḣ

V
.

Therefore

L + D =
1

2
ρV 2S




ṗ
V

− ḣ
V

ḣ
V

ṗ
V





−Cd

Cl




=
1

2
ρV S


−ṗCd − ḣCl

−ḣCd + ṗCl




and the equations of motion are given by


p̈

ḧ


 =


 0

−g


 +

1

2m
ρV S


−ṗCd − ḣCl

−ḣCd + ṗCl


 + R(θ)




T
m

0


 (2.10)

and

θ̇ = a(θc − θ).

2.3 Chapter Summary

Chapter 2 has given an overview of the quaternion representation used to de-

scribe the tailsitter’s attitude. The three-dimensional, quaternion-based dynamics

model will be used for simulations of controllers that will be described in later chap-

ters. A simpler, two-dimensional dynamics model was also developed. This model

will be used in the derivation of transition controllers. In Chapter 3, description

of the experimental setup and underlying navigational controllers will complete the

prerequisite discussion necessary before the development of transition controllers in

Chapter 4.

17

18

Chapter 3

Experimental Platform

This chapter describes the simulation and hardware platforms used to test

the algorithms derived to track tailsitter transition trajectories. Also, other Magicc

Lab research developed for tailsitter attitude control is described. Since the attitude

controller is prerequisite to being able to control the tailsitter during transitions with

the algorithms described in Chapter 4, it is included for completeness even though

it is not the focus of this thesis. Similarly, the navigational state machine autopilot

described in Chapter 5 for navigating between hover and level waypoints uses hover

control, level control, as well as transition control between the two modes. The hover

position controller and level flight controller are therefore briefly explained. Further

description of underlying tailsitter attitude and position controllers is found in [21].

3.1 Simulation

Each of the transition algorithms were developed and tested first in Matlab

with Simulink. The Matlab code was then converted to C and combined with the

navigational state machine code to get simulation results of the whole system at work.

The full flight path regime of hover and level waypoint following with transitions

was included. Doing this allowed the entire simulation to be tested at once. The

performance of the transition algorithms could also be seen and evaluated in the

context of residing in a larger autopilot system.

3.2 Flight Test Setup

The tailsitter test vehicle used for experimentation was the model Pogo air-

frame shown in Figure 3.1. The Pogo is modeled after the Convair Pogo mentioned in

19

the Introduction. The airframe is available commercially as a radio-controlled model

airplane kit. In the original kit purchased by the Magicc Lab, the construction ma-

terial was thin, tough styrofoam. In subsequent revisions and reworks of the Pogo,

corrugated plastic has replaced styrofoam due to its superior durability.

Figure 3.1: The Magicc Lab Pogo airframe

Prime characteristics of the Pogo airframe include very large control surfaces

and a powerful motor with large propeller attached. The motor and propeller are

able to generate a large air flow, or prop-wash over the control surfaces. In a typical

fixed-wing aircraft, aerodynamic lift forces are primarily used to keep the vehicle in

the air. When the Pogo is in hover flight, the only source of lift is generated by

the motor, and therefore the resultant thrust must be very large to keep the aircraft

aloft. The control surfaces, actuated by three electric servos typically used by radio-

controlled model airplane builders, are very large to maximize potential control in

the prop-wash region.

The Kestrel Autopilot version 2.2 shown in Figure 3.2, developed by Procerus

Technologies [22], is the heart of the Pogo. The autopilot is lightweight and compact,

measuring 5 x 10 x 1 centimeters and weighing 16 grams. The autopilot is equipped

with a Rabbit 3100 29MHz microprocessor, on which all autopilot control code is pro-

20

grammed. The autopilot also has a variety of on-board sensors, including three-axis

accelerometers and rate gyros, absolute and differential pressure sensors. Ports are

available for attaching an external GPS receiver and three-axis magnetometer. With

these sensor measurements, the autopilot is able to reasonably estimate the tailsitter’s

current state, including world frame position, altitude, attitude, and airspeed.

Figure 3.2: Kestrel Autopilot

The Kestrel Autopilot is also equipped with a communication link to the

ground station control software, Virtual Cockpit, via a 900MHz modem. The Virtual

Cockpit software, developed by the BYU Magicc Lab, displays heads-up information

about the aircraft’s current state. A satellite map of nearby terrain is also displayed,

allowing waypoints to be placed at desired locations. The waypoints and other com-

mands are uploaded and data from the aircraft can be downloaded and logged. A

bread-crumb trail of the aircraft’s trajectory is plotted.

3.3 Quaternion Attitude Control

The goal of quaternion attitude control is to adjust the tailsitter’s control

surfaces to achieve a desired attitude, as represented by the quaternion η̄d. To begin

with, quaternion multiplication can be defined as

η̄′′ = η̄′ ⊗ η̄ =


η4η

′ + η′4η − η′ × η

η′4η4 − η′η


 (3.1)

21

where η̄′′ is the result of two successive rotations represented by η̄ and η̄′ [20]. Equation

(3.1) can also be written as

η̄′′ = η̄′ ⊗ η̄ = {η̄}Rη̄′ (3.2)

where

{η̄}R =




η4 −η3 η2 η1

η3 η4 −η1 η2

−η2 η1 η4 η3

−η1 −η2 −η3 η4




.

In

η̄d = η̄ε ⊗ η̄a = {η̄a}Rη̄ε (3.3)

η̄a represents the actual attitude and η̄ε represents the error between the desired

and actual quaternions expressed in the aircraft’s body reference frame. Noting that

{η̄}T
R{η̄}R equals the identity matrix, the error quaternion can be written

η̄ε = {η̄a}T
Rη̄d. (3.4)

The error quaternion is conveniently expressed in the aircraft body reference frame.

The aileron (δa), elevator (δe), and rudder (δr) can be used to directly control ηε and

drive Θε to zero. Therefore, for the case of zero external disturbances, stable attitude

control can be achieved by the PID-like strategy




δa

δe

δr


 = k1ηε − k2Ω + k3ηεi (3.5)

where k1, k2, and k3 are diagonal gain matrices. In practice these values are gain

scheduled by dividing by the current prop-wash, creating larger gains and therefore

larger control surface deflections when the prop-wash is low. The Ω term represents

22

the current angular rates in each direction and provides a dampening effect. The

integral of quaternion error, ηεi, is used in the control to eliminate steady state error.

To provide smoother attitude tracking, the attitude control algorithm is en-

hanced by introducing a reference model quaternion. The model quaternion tracks

the desired quaternion with first-order characteristics. The model quaternion is then

used to formulate the error quaternion in Equation 3.4 rather than ηd. This provides

a smoother shift between attitudes.

The transition controllers described in Chapter 4 depend on the existence of an

underlying attitude controller. The transition controller algorithms generate desired

pitch and heading angles. These values are transformed into a desired quaternion for

input into the quaternion attitude controller. Figure 3.3 shows typical performance

during flight testing of the quaternion attitude controller. The first four subfigures

shows how each element of η is tracked. The desired value, reference model value,

and actual value for the quaternion parameters are shown. The quaternion error plot

is also shown. For perfect tracking, the error quaternion would be

ηe =




0

0

0

1




.

Finally, the desired and actual pitch angle data is extracted from the quaternion infor-

mation. This allows an easier visualization of the attitude controller’s performance.

3.4 Hover Position Control

Position control is an outer loop of the quaternion attitude controller. A

desired quaternion that will maneuver the tailsitter in the direction of the desired

hover waypoint is given by

η̄d = η̄c ⊗ η̄v. (3.6)

23

0 2 4 6 8 10
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

time, s

et
a 1

eta
1
 desired

eta
1
 model

eta
1
 actual

(a) η1

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time, s

et
a 2

eta
2
 desired

eta
2
 model

eta
2
 actual

(b) η2

0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time, s

et
a 3

eta
3
 desired

eta
3
 model

eta
3
 actual

(c) η3

0 2 4 6 8 10

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

time, s

et
a 4

eta
4
 desired

eta
4
 model

eta
4
 actual

(d) η4

0 2 4 6 8 10
−0.5

0

0.5

1

time, s

qu
at

er
ni

on
 e

rr
or

eta
1
 error

eta
2
 error

eta
3
 error

eta
4
 error

(e) Error quaternion

0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

45

time, s

de
g

desired theta
actual theta

(f) θ tracking

Figure 3.3: Quaternion attitude controller performance in flight test

The term

η̄v =




0
√

2/2

0
√

2/2




24

is the vertical quaternion, representing the tailsitter’s attitude with the nose of the

tailsitter pointing straight up and the belly facing North. In terms of the previously

described axes, the nose points along the negative z axis and the belly faces the

positive x axis.

The term η̄c is a correction quaternion that describes the rotation needed to

tilt the nose of the aircraft in the proper direction for x-y position tracking and is

given by

η̄c = η̄cv ⊗ η̄cp (3.7)

where ηcp is based on position error and ηcv provides dampening based on body frame

velocities. The quaternion parameters η̂cp and Θcp are given by

η̂cp =




0

0

1


×




(x− xd)/||ep||
(y − yd)/||ep||

0




and

Θcp = k3||ep||

where k3 is a gain, xd and yd refer to the aircraft desired position, and ||ep|| is the

norm of position error

||ep|| =
√

(x− xd)2 + (y − yd)2.

The quaternion components η̂cv and Θcv are given by

η̂cv =




0

0

1


×




w√
v2+w2

v√
v2+w2

0




and

Θcv = k4

√
v2 + w2

25

where k4 is a gain.

Along with generating a desired quaternion for waypoint tracking, an altitude

controller also exists to allow the tailsitter to obtain and hold a given altitude while

in a hover position. Since the nose of the tailsitter generally points up in hover flight

mode, altitude can be adjusted with the throttle. First, a desired thrust command

is generated that would allow the tailsitter to descend or ascend to its commanded

altitude. A control loop that adjusts the throttle to match a desired thrust is then

used. This same throttle from thrust loop will be used by the transition controllers

in Chapter 4, which rely on being able to command and achieve a desired thrust.

In practice, descending is difficult for the tailsitter due to air flowing in the

opposing direction over the control surfaces and the decrease in prop-wash due to a

decreased throttle setting. It is therefore recommended to descend slowly, in order

to keep the throttle setting above some minimum value required to give good control

authority. With such considerations in mind, it is possible to control the tailsitter’s

altitude.

Typical performance of the hover position controller is shown in Figure 3.4.

In this experiment, the tailsitter hovers at (0,0) and then is commanded to hover to

a point 30 meters to the south. Also, the altitude is controlled by throttle and is set

to a desired value of 10 meters. The tailsitter begins on the ground and takes off at

about t = 10 seconds. It is seen that the tailsitter does move south 30 meters, but

also drifts to the east a considerable distance, which is caused by wind. Due its large

wing area and lightweight construction materials, the tailsitter is very susceptible to

wind, especially while in a hover position. The hover controller can compensate for

some wind by tilting the nose of the tailsitter into the wind, but for this flight test

this was not enough to prevent drifting in the direction of wind.

3.5 Level Flight Control

The level flight controller also has the quaternion attitude controller as an

inner loop. Desired Euler angles θc and ψc are generated and converted to a command

quaternion by Equation 2.3. The roll angle, φc is left at zero for level flight control.

26

0 5 10 15 20 25 30 35 40 45
−30

−25

−20

−15

−10

−5

0

time, s

N
or

th
 (

m
)

desired
actual

(a) North

0 5 10 15 20 25 30 35 40 45
0

2

4

6

8

10

12

14

16

time, s

E
as

t (
m

)

desired
actual

(b) East

0 5 10 15 20 25 30 35 40 45
−2

0

2

4

6

8

10

12

time, s

al
tit

ud
e

(m
)

desired altitude
actual altitude

(c) Altitude

0 5 10 15 20 25 30 35 40 45
−20

0

20

40

60

80

100

time, s

θ
(d

eg
)

desired pitch
actual pitch

(d) Pitch

0 5 10 15 20 25 30 35 40 45
−200

−150

−100

−50

0

50

100

150

200

time, s

θ
(d

eg
)

desired heading
actual heading

(e) Heading

Figure 3.4: Hover position tracking flight data

The desired heading angle, ψc, is generated from vector field path following

approach as discussed in [23]. Given the tailsitter’s current position, and a desired

straight path to follow between two waypoints, a heading angle is generated that will

simultaneously return the tailsitter to the path (if deviation has occurred) and point

it in the direction of the current waypoint.

27

Pitch angle, θc, and the throttle setting are generated to track desired altitude.

When within a window of the desired altitude, the pitch angle is controlled with a

feed-forward loop using altitude error, and the throttle is used to maintain airspeed.

Above the altitude window, pitch is controlled to maintain airspeed and throttle is

set to a designated low setting. Below the altitude window, the pitch-from-airspeed

loop is also in effect, but throttle is turned on to full. With this scheme, good altitude

tracking in level flight is possible.

Flight results showing typical performance of the level flight controller is shown

in Figure 3.5. In this experiment, an X-shaped path of waypoints was flown. Looking

at the North-East GPS waypoint track plot, the tailsitter travels from the Northeast

point to the Southwest point, then to the Southeast point and finally the Northwest

point. Different altitudes are commanded for each waypoint to demonstrate altitude

tracking ability. The tailsitter’s altitude controller uses throttle to control airspeed

and adjusts the pitch angle to try to achieve the desired altitude.

3.6 Chapter Summary

In this chapter, the method for simulation and the experimental setup for

flight testing were described. Several underlying controllers were also described. The

stage is now set for the derivation of transition algorithms in the next chapter.

28

−140 −120 −100 −80 −60 −40 −20 0 20
−140

−120

−100

−80

−60

−40

−20

0

20

40

60

East (m)

N
or

th
 (

m
)

(a) N-E waypoints

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

time, s

al
tit

ud
e

(m
)

desired altitude
actual altitude

(b) Altitude

0 10 20 30 40 50 60
−2

0

2

4

6

8

10

12

time, s

ai
rs

pe
ed

 (
m

/s
ec

)

desired airspeed
actual airspeed

(c) Airspeed

0 10 20 30 40 50 60
−40

−30

−20

−10

0

10

20

30

40

50

time, s

φ
(d

eg
)

desired roll
actual roll

(d) φ

0 10 20 30 40 50 60
−20

−10

0

10

20

30

40

50

60

time, s

θ
(d

eg
)

desired pitch
actual pitch

(e) θ

0 10 20 30 40 50 60
−200

−150

−100

−50

0

50

100

150

200

time, s

ψ
 (

de
g)

desired heading
actual heading

(f) ψ

Figure 3.5: Level waypoint tracking flight data

29

30

Chapter 4

Trajectory Tracking Algorithms

In this chapter, a method for creating desired two-dimensional trajectories for

tailsitter transitions is presented. Also, three methods for following that trajectory

through each type of maneuver (hover-to-level and level-to-hover) are given. Simula-

tion results and actual flight test results are also given for each of the three methods.

4.1 Desired Trajectories

The goal of trajectory design is to develop trajectories that will be followed

during each type of transition maneuver. The trajectories should be simple and easy

to follow. Trajectory design is performed in a two-dimensional world frame. The

parameter p represents the distance travelled in a line along the current heading.

Altitude is referred to as h. The trajectories are all time based, with t being the

current time and t = 0 at the start of the transition.

In practice, a transition will occur between a level waypoint and a hover way-

point, or vice versa. The straight line path between the two waypoints is the heading

along which the maneuver is performed. The point along that path that the maneuver

begins is dictated by a higher level command module that is described in Chapter 5.

A desirable transition will guide the tailsitter in between an initial position,

(p0, h0), and a final desired position, (pf , hf). For a hover-to-level transition, the tail-

sitter will be in a hover position at (p0, h0) and be flying level with a constant velocity

at (pf , hf), as shown in Figure 4.1. For a level-to-hover transition, the tailsitter will

be flying level with some initial velocity at (p0, h0) and hovering at (pf , hf), as shown

in Figure 4.2.

31

Figure 4.1: Hover-to-level trajectory goal

Figure 4.2: Level-to-hover trajectory goal

The trajectory generation algorithm generates the quantities p, ṗ, p̈, h, ḣ and

ḧ for accomplishing a desired transition. The inputs to the algorithm are the initial

position (p0, h0), the desired final position (pf , hf), and either the initial velocity V0 for

level to hover transitions or the final desired velocity Vf for hover to level transitions.

The maneuver time tm, the length of time the maneuver will take, is computed from

the other parameters.

Trajectory design is treated independently for both dimensions. The p-trajectory

is velocity based. For a hover-to-level transition, the tailsitter’s velocity will initially

32

be zero and will need to increase to Vf when it is in level flight. For a level-to-hover

transition, the velocity will initially be V0 and will then go to zero as the tailsitter

assumes a hover position. Trajectories in the p direction are developed with this goal

in mind and are given by

p̈d =





Vf

tm
, t ≤ tm

0, otherwise

ṗd =





Vf

tm
t, t ≤ tm

Vf , otherwise

pd =





Vf

2tm
t2 + p0, t ≤ tm

Vf (t− tm) + Vf
tm
2

, otherwise

where

tm =
2(pf − p0)

Vf

for a hover-to-level transition and

p̈d =




− V0

tm
, t ≤ tm

0, otherwise

ṗd =




− V0

tm
t + V0, t ≤ tm

0, otherwise

pd =




− V0

2tm
t2 + V0t + p0, t ≤ tm

− V0

2tm
t2m + V0tm + p0, otherwise

where

tm =
2(pf − p0)

V0

33

for a level-to-hover transition.

0 5 10 15 20 25 30 35 40

0

0.1

0.2

0.3

0.4

0.5

s

pd
 d

do
t

(a) Desired p̈ for hover to level

0 5 10 15 20 25 30 35 40

−0.5

−0.4

−0.3

−0.2

−0.1

0

s

pd
 d

do
t

(b) Desired p̈ for level to hover

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9

10

11

s

pd
 d

ot

(c) Desired ṗ for hover to level

0 5 10 15 20 25 30 35 40
−1

0

1

2

3

4

5

6

7

8

9

10

s

pd
 d

ot

(d) Desired ṗ for level to hover

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

s

pd

(e) Desired p for hover to level

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100

s

pd

(f) Desired p for level to hover

Figure 4.3: Desired p-trajectories

34

For desired trajectories in the h dimension a different approach is desired. For

both transition types, we desire a smooth shift from a constant altitude to another

constant altitude. This can be achieved with the use of sigmoid functions. For both

hover to level and level to hover transitions, the desired trajectories are given by

hd =
hf − h0

1 + e−k(t− tm
2

)
+ h0,

ḣd = k(hf − h0)
ekt+(tm

2
)k

(ekt + etm
k
2)2

,

and

ḧd =
−k2(hf − h0)(e

kt − etm
k
2)ekt+tm

k
2

(ekt + etm
k
2)3

.

In these equations, k is a constant that determines how quickly the desired

altitude trajectory curves arrive at their final value. The length of time of the ma-

neuver is determined by the distance along the path, from p0 to pf , and is calculated

in the discussion on desired p trajectories. Once the value of tm is determined, it is

used in sigmoid functions to develop smooth h trajectories.

The desired p-trajectories are shown in Figure 4.3. Desired h-trajectories are

shown in Figure 4.4. For both maneuvers, the input parameters are (p0, h0) = (0, 50)

and (pf , hf) = (100, 60).

4.2 Simple Controller

It is desirable to develop a controller that will successfully follow the trajec-

tories generated in Section 4.1. Sections 4.3 and 4.4 both describe methods that will

follow the trajectories. The controller described in this section, however, will suc-

cessfully perform a transition, but only follows the desired h trajectory. This type

of transition is useful when the lateral distance travelled is not as important as per-

35

0 5 10 15 20 25 30 35 40
50

51

52

53

54

55

56

57

58

59

60

61

s

hd
(a) Desired h for both transition types

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

s

hd
 d

ot

(b) Desired ḣ for both transition types

0 5 10 15 20 25 30 35 40
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

s

hd
 d

do
t

(c) Desired ḧ for both transition types

Figure 4.4: Desired h-trajectories

forming a transition with little altitude deviation. For instance, if the tailsitter were

equipped with some sensor that could detect a nearby wall directly in the level flight

path, a quick level-to-hover transition could be commanded. Furthermore, the de-

velopment of a simple controller will provide a baseline for judging performance and

other issues with the other two, more complex controllers.

36

When the maneuver begins with the simple controller, a desired quaternion is

generated from Equation 2.3 with φ = 0, ψ being the heading between the previous

and current waypoint, and θ being zero for a hover-to-level transition or ninety degrees

for a level-to-hover transition. This is used as the desired quaternion in the quaternion

attitude controller described in Section 3.3 and in [21]. While the tailsitter is making

the transition, the throttle from altitude control loop is enabled, allowing desired

altitude to be tracked. This control loop generates a desired thrust to follow to

achieve a desired altitude. The desired thrust is tracked by adjusting the throttle.

4.3 Feedback Linearization Controller

Feedback linearization is a technique of controlling nonlinear systems by trans-

forming them into an equivalent linear system [24]. Fortunately for the case of tail-

sitter dynamics, Equation 2.10 is already in normal form, with the control inputs T

and θ separated from the nonlinearities. The feedback linearization controller relies

on knowledge of the aerodynamic model to derive a controller to track both p and h

trajectories through transition maneuvers. First, define position error as

p̃ = p− pd

and

h̃ = h− hd.

Then acceleration error is


 ¨̃p

¨̃h


 =


p̈− p̈d

ḧ− ḧd




=




ρS
2m

√
ṗ2 + ḣ2(−ṗCd − ḣCl) + T

m
cos θ − p̈d

−g + ρS
2m

√
ṗ2 + ḣ2(−ḣCd + ṗCl) + T

m
sin θ − ḧd


 .

37

The control input we will define as

U
4
=




T
m

cos θ

T
m

sin θ


 = U1 + U2

where U1 will be used to cancel nonlinearities from the system and U2 is a pseudo-

input that will be selected to drive tracking error to zero. By selecting U1 as

U1 =


 − ρS

2m

√
ṗ2 + ḣ2(−ṗCd − ḣCl)

g − ρS
2m

√
ṗ2 + ḣ2(−ḣCd + ṗCl)




the system is linearized and now becomes


 ¨̃p

¨̃h


 = U2 −


p̈d

ḧd


 .

To track the desired p and h trajectories with second order characteristics, it is

desirable for

¨̃p = −kdp
˙̃p− kppp̃

and

¨̃h = −kdh
˙̃h− kphh̃

where kdp, kpp, kdh, and kph are tunable gains.

To achieve this, let

U2 =


−kdp

˙̃p− kppp̃ + p̈d

−kdh
˙̃h− kphh̃ + ḧd


 .

The control input is then




T
m

cos θ

T
m

sin θ


 = U1 + U2 =


 − ρS

2m

√
ṗ2 + ḣ2(−ṗCd − ḣCl)− kdp

˙̃p− kppp̃ + p̈d

g − ρS
2m

√
ṗ2 + ḣ2(−ḣCd + ṗCl)− kdh

˙̃h− kphh̃ + ḧd


 .

38

To be able to eventually command thrust values and pitch commands, it is necessary

get independent expressions for T and θ. We find it convenient to redefine the rows

of the input vector as

F1
4
= − ρS

2m

√
ṗ2 + ḣ2(−ṗCd − ḣCl)− kdp

˙̃p− kppp̃ + p̈d

and

F2
4
= g − ρS

2m

√
ṗ2 + ḣ2(−ḣCd + ṗCl)− kdh

˙̃h− kphh̃ + ḧd

resulting in the expressions
T

m
cos θ = F1 (4.1)

and
T

m
sin θ = F2. (4.2)

By squaring both of these equations and adding the results together, we have

T 2

m2
= F 2

1 + F 2
2

and therefore the value for thrust is

T = m
√

F 2
1 + F 2

2 .

If we divide Equation 4.2 by Equation 4.1,

T
m

sin θ
T
m

cos θ
=

F2

F1

and

tan θ =
F2

F1

so

θ = tan−1 F2

F1

.

39

We now have command values for thrust and θ. In practice, the commanded

pitch value along with the heading angle along which the maneuver is to be performed

is converted to a quaternion using Equation 2.3. This quaternion is then used as the

desired quaternion in the quaternion attitude controller from Section 3.3. The throttle

command T is fed to the throttle from the thrust feedback control loop, which adjusts

the throttle setting to effect a desired thrust.

The feedback linearization controller requires knowledge of several parameters

that are not known or measured accurately on the tailsitter. These parameters pri-

marily include Cl and Cd, which are given by Equations 2.7 and 2.8. This controller’s

performance is therefore expected to be greatly affected by how well the true values

of these parameters are known.

4.4 Adaptive Controller

In the feedback linearization example, several parameters that are not typically

known were made available to the controller. In this section, a model reference

adaptive controller (MRAC) is described which requires knowledge of only m, g,

state information p, ṗ, h and ḣ, and desired trajectories for pd and hd. We will then

eliminate the need to require knowledge of Cl and Cd in order to successfully track a

desired trajectory.

4.4.1 Lyapunov Stability

Derivation of the adaptive control method relies on Lyapunov stability theory,

discussed in [24], which provides conditions to prove a system’s stability. First a

Lyapunov function V (x) is chosen, where x denotes the state variables that need to

be driven to zero. In the case to be described below, x is the trajectory tracking error,

that we would like to drive to zero. The choice of V (x) must adhere to the following

rules:

1. V (0) = 0,

2. V (x) > 0, or in other words, V (x) is positive definite,

40

3. V (x) is continuously differentiable.

If V (x) meets these criteria and V̇ (x) < 0 for x 6= 0, or in other words, V̇ (x) is

negative definite, then x → 0 asymptotically.

The adaptive control method described in this section will develop a Lyapunov

function based on the error in tracking desired trajectories. Then, with the addition

of a proper parameter estimation scheme, it will be shown that the derivative of the

Lyapunov function is negative definite and therefore the error in trajectory tracking

will go to zero.

4.4.2 Equations of Motion

We rewrite the two-dimensional tailsitter equations of motion from Equa-

tion 2.10 as


p̈

ḧ


 = υ


−A −B

B −A





ṗ

ḣ


 +


 0

−g


 +




T
m

cos θ

T
m

sin θ




or

Ẍ = υΥẊ + G + U (4.3)

where υ =

√
ṗ2 + ḣ2 is airspeed. The true values of parameters that will be estimated

are

A
4
=

ρS

2m
Cd

and

B
4
=

ρS

2m
Cl.

4.4.3 Reference Model

The reference model is a second order model that tracks the commanded po-

sition values. The reference model evolves according to


p̈m

ḧm


 = −


α1p 0

0 α1h





ṗm

ḣm


−


α2p 0

0 α2h





pm

hm


 +


α2p 0

0 α2h





pd

hd




41

or

R̈ = −α1Ṙ− α2R + α2Rc (4.4)

where α values are tunable gains and pd, hd are desired trajectory values.

4.4.4 Controller Derivation

The adaptive controller is given in Theorem 4.1. The proof is used to show

that with adaptive parameter estimation, the position error

X̃
4
= X −R

and the velocity error

˙̃X = Ẋ − Ṙ

are both asymptotically stable.

Theorem 4.1 If the estimates of A and B, called Â and B̂, are updated according

to

˙̂
A = γ1

√
ṗ2 + ḣ2(−ṗ ˙̃p− ḣ ˙̃h)

and

˙̂
B = γ2

√
ṗ2 + ḣ2(−ḣ ˙̃p + ṗ ˙̃h)

where γ1 and γ2 are gains, and the control input is given as

U = −k ˙̃X − X̃ − υΥ̂Ẋ −G− α1Ṙ− α2R + α2Rc

where the reference model propagates according to Equation 4.4, then

˙̃X → 0

and

X̃ → 0

42

asymptotically.

Proof: Consider the Lyapunov function candidate

V =
1

2
X̃T X̃ +

1

2
˙̃XT ˙̃X +

1

2γ
ξ̃T ξ̃ (4.5)

where

ξ̃ = ξ − ξ̂

is the difference between actual and estimated A and B parameters and is given by

ξ̃ =


Ã

B̃


 =


A

B


−


Â

B̂




and γ is the vector of adaptive control gains

γ =


γ1

γ2


 .

The time derivative of (4.5) can be shown to be

V̇ = ˙̃XT X̃ + ˙̃XT ¨̃X +
1

γ
˙̃ξT ξ̃ (4.6)

where

¨̃X = Ẍ − R̈.

Replacing ¨̃X in Equation 4.6 with Ẍ from Equation 4.3 and R̈ from Equation 4.4

results in

V̇ = ˙̃XT (X̃ + υΥẊ + G + U + α1Ṙ + α2R− α2Rc) +
1

γ
˙̃ξT ξ̃.

Substituting U with the expression given in the statement of Theorem 4.1 gives

V̇ = −k ˙̃XT ˙̃X + υ ˙̃XT Υ̃Ẋ +
1

γ
˙̃ξT ˙̃ξ (4.7)

43

where

Υ̃
4
= Υ− Υ̂

is the difference between actual and estimated parameters A and B. Equation 4.7

may be rewritten as

V̇ = −k ˙̃XT ˙̃X + υ ˙̃XT Zξ̃ +
1

γ
˙̃ξT ξ̃

where

Z
4
=


−ṗ −ḣ

−ḣ ṗ




and

˙̃ξ = ξ̇ − ˙̂
ξ.

We assume that ξ is slowing varying enough that ξ̇ may be treated as zero. Then the

Lyapunov function derivative becomes

V̇ = −k ˙̃XT ˙̃X + υ ˙̃XT Zξ̃ +
1

γ
˙̂
ξT ξ̃.

By choosing the adaptive parameter update law as given in the statement of Theo-

rem 4.1, or in other terms

˙̂
ξT = γυ ˙̃XT Z

then

V̇ = −k ˙̃XT ˙̃X. (4.8)

Since V̇ is negative definite, ˙̃X → 0 by the theory of Lyapunov. LaSalle’s Invariance

Principle [24] will be used to show that X̃ → 0.

Let the set E be defined as

E
4
=








X̃

˙̃X

ξ̃


 : V̇ = 0





.

44

The derivative of the Lyapunov function is only 0 where ˙̃X = 0, so

E =








X̃

˙̃X

ξ̃


 : ˙̃X = 0





.

Let M be the largest invariant set in E. Then




X̃

˙̃X

ξ̃


 ∈ M ⇒ ˙̃X(t) = 0 ∀ t.

Therefore if X̃(0) = 0, or in other words if the reference model begins as the current

value of X, then

X̃(t) = 0 ∀ t

and X̃ is asymptotically stable.

Although using an adaptive controller is beneficial in that knowledge of system

parameters is not required, a host of new gains used in the algorithm are introduced

which must be then be tuned primarily by trial and error. In general, each of these

gains has a specific effect. The gain α determines how closely the reference model

tracks the desired trajectory, γ controls how fast the estimated parameters adapt,

and k determines how fast the actual values converge to the reference model.

4.5 Simulation Results

Each of the controllers was simulated in Matlab Simulink for both a hover-

to-level transition and a level-to-hover transition. The physics model used in the

simulations is described in Section 2.1.

45

4.5.1 Simple Controller Simulations

The results from the simple controller simulation are seen in Figure 4.5 for

hover-to-level and Figure 4.6 for level-to- hover. As described in Section 4.2, no

effort is being made to track the p trajectory. Although there are some deviations in

tracking the h trajectory, the controller approaches the final desired altitude for both

transition types. This controller’s primary benefit is its simplicity. When a transition

is desired but trajectory tracking is not a high priority, then the simple controller

should perform nicely.

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

350

400

time, sec

p,
 m

et
er

s

p
d

p

(a) p

0 5 10 15 20 25 30 35 40
48

50

52

54

56

58

60

62

time, sec

h,
 m

et
er

s

h
d

h

(b) h

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

time, sec

th
ru

st
d, N

(c) thrust

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time, sec

th
et

a d, r
ad

(d) θ

Figure 4.5: Simple controller hover-to-level trajectory tracking in simulation

46

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

time, sec

p,
 m

et
er

s

p
d

p

(a) p

0 5 10 15 20 25 30 35 40
48

50

52

54

56

58

60

62

time, sec

h,
 m

et
er

s

h
d

h

(b) h

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

time, sec

th
ru

st
d, N

(c) thrust

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time, sec

th
et

a d, r
ad

(d) θ

Figure 4.6: Simple controller level-to-hover trajectory tracking in simulation

47

4.5.2 Feedback Linearization Controller Simulations

Figure 4.7 shows the results of the feedback linearization controller simulation

for a hover-to-level transition. Level-to-hover transition results are shown in Fig-

ure 4.8. As is seen, the feedback linearization controller works very well for tracking

both trajectories during the entire course of the maneuver. During the level-to-hover

transition, it is seen that around t = 30 seconds a slight deviation in p tracking oc-

curs. To restore the tailsitter to the proper trajectory, a corresponding dip in pitch

can be seen. The controller pitches down the tailsitter in order to gain velocity in the

p direction and correct the deviation. When the tailsitter is once again tracking, the

tailsitter pitches back up to a vertical position.

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

350

time, sec

p,
 m

et
er

s

p
d

p

(a) p

0 5 10 15 20 25 30 35 40
48

50

52

54

56

58

60

62

time, sec

h,
 m

et
er

s

h
d

h

(b) h

0 5 10 15 20 25 30 35 40
2

4

6

8

10

12

14

16

18

time, sec

th
ru

st
d, N

(c) thrust

0 5 10 15 20 25 30 35 40
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time, sec

th
et

a d, r
ad

(d) θ

Figure 4.7: Feedback linearization controller hover-to-level trajectory tracking in sim-
ulation

48

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

time, sec

p,
 m

et
er

s

p
d

p

(a) p

0 5 10 15 20 25 30 35 40
50

51

52

53

54

55

56

57

58

59

60

time, sec

h,
 m

et
er

s

h
d

h

(b) h

0 5 10 15 20 25 30 35 40
2

4

6

8

10

12

14

16

time, sec

th
ru

st
d, N

(c) thrust

0 5 10 15 20 25 30 35 40
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time, sec

th
et

a d, r
ad

(d) θ

Figure 4.8: Feedback linearization controller level-to-hover trajectory tracking in sim-
ulation

49

4.5.3 Adaptive Controller Simulations

Adaptive controller simulation results are seen in Figure 4.9 and Figure 4.10

for hover-to-level transition results and level-to-hover transition results, respectively.

Simulation results show favorable trajectory tracking for both p and h dimensions

with a maximum deviation of about 7 m in p and 4 m in h. The adaptively estimated

parameters Â and B̂ are also plotted and can be seen to adapt to changing conditions

as the tailsitter flies through its transitions. The true values of A and B are also

plotted. The estimated parameters are not guaranteed to track the actual values of

these parameters and are not seen to do so, although the estimates do generally move

in the same direction as the actual values.

During the first moments of the level to hover transition, there is poor tracking

as the estimated parameters change rapidly. The result is a large spike in both desired

thrust and desired pitch angle. Once the adaptive algorithm has been running for a

few iterations, the parameters stabilize resulting in a smoother transition in thrust

and pitch angle. This effect will be minimized in actual implementation by choosing

gains appropriately.

50

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

160

180

time, s

p,
 m

Pd
P actual
P model

(a) p

0 5 10 15 20 25 30 35 40
50

55

60

65

time, s

h,
 m

Hd
H actual
H model

(b) h

5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

time, s

th
ru

st
, N

(c) thrust

0 5 10 15 20 25 30 35 40
20

30

40

50

60

70

80

90

time, s

pi
tc

h,
 d

eg

(d) θ

0 5 10 15 20 25 30 35 40
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

time, s

A

true A
A hat

(e) Â

0 5 10 15 20 25 30 35 40
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

time, s

B

true B
B hat

(f) B̂

Figure 4.9: Adaptive controller hover-to-level trajectory tracking in simulation

51

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

time, s

p,
 m

Pd
P actual
P model

(a) p

0 5 10 15 20 25 30 35 40
48

50

52

54

56

58

60

62

time, s

h,
 m

Hd
H actual
H model

(b) h

0 5 10 15 20 25 30 35 40
3

4

5

6

7

8

9

10

time, s

th
ru

st
, N

(c) thrust

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

time, s

pi
tc

h,
 d

eg

(d) θ

0 5 10 15 20 25 30 35 40
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

time, s

A

true A
A hat

(e) Â

0 5 10 15 20 25 30 35 40
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

time, s

B

true B
B hat

(f) B̂

Figure 4.10: Adaptive controller level-to-hover trajectory tracking in simulation

52

4.6 Flight Test Results

Results from flight testing show the algorithms working, but performance is

only satisfactory. Trajectory tracking is not as good as simulation results. This is

attributable to a number of factors. Primarily, the reality of sensor noise and lag

hurts performance the most. In particular, GPS, which is used to measure position

and velocities, is known to be inaccurate as well as time delayed. Also, GPS updates

occur only a few times per second. Performance would undoubtedly be improved if

GPS readings were improved and the frequency of updates increased.

Along with sub-par sensors, the other factors contributing to deviations in

the flight results are the characteristics of the underlying controllers described in

Chapter 3. Both feedback linearization and adaptive controllers depend on being

able to command a desired pitch angle and desired thrust command. The quaternion

attitude controller and thrust controller are not able to perfectly match the desired

commands. Improvements to trajectory tracking through transitions will be seen as

these controllers are improved.

4.6.1 Simple Controller Flight Results

In actual flight on the tailsitter, the simple controller is able to complete the

desired transitions very quickly. For both types of maneuvers, however, altitude devi-

ation is very large, approaching 10 meters or more. For the hover-to-level transition,

shown in Figure 4.11, a drop in altitude is seen while for the level-to-hover transi-

tion, shown in Figure 4.12, altitude increases by about this same amount. During

the transitions, the altitude hold loop is enabled, which uses the throttle to achieve

a thrust that should balance the weight of the tailsitter while in a hover position.

For the time the tailsitter is taken out of a hover position by the simple controller,

the altitude controller has difficulty maintaining altitude with just the throttle. Also,

limitations of the thrust tracking controller must also be taken into account to explain

the evident altitude deviations.

53

0 1 2 3 4 5
0

5

10

15

20

25

30

35

time, s

p,
 m

(a) p

0 1 2 3 4 5
4

6

8

10

12

14

16

18

20

time, s

h
(m

)

desired h
actual h

(b) h

0 1 2 3 4 5
−4

−2

0

2

4

6

8

10

time, s

ai
rs

pe
ed

 (
m

/s
)

(c) Airspeed

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

time, s

θ
(d

eg
)

desired pitch
actual pitch

(d) θ

Figure 4.11: Simple controller hover-to-level transition flight data

54

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

2

4

6

8

10

12

14

16

18

20

time, s

p,
 m

(a) p

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
10

12

14

16

18

20

22

24

time, s

h
(m

)

desired h
actual h

(b) h

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−3

−2

−1

0

1

2

3

4

5

6

7

time, s

ai
rs

pe
ed

 (
m

/s
)

(c) Airspeed

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
20

30

40

50

60

70

80

90

time, s

θ
(d

eg
)

desired pitch
actual pitch

(d) θ

Figure 4.12: Simple controller level-to-hover transition flight data

55

4.6.2 Feedback Linearization Controller Flight Results

As discussed in the derivation of the feedback linearization controller in Sec-

tion 4.3, values for the coefficients of lift and drag are required for generating desired

inputs for trajectory tracking. In the implementation of this controller, values for Cl

and Cd are obtained from Equations 2.7 and 2.8, both of which are functions of α,

the angle of attack. The method for measuring the current angle of attack of the

tailsitter is

α = tan−1(ḣ, ṗ)

where ḣ and ṗ, the velocities in the vertical and forward directions, are obtained

from GPS sensors. As mentioned previously, the quality and frequency of GPS de-

rived information are unfortunately not accurate or timely enough to obtain reliable

measurements. Thus, the formulation for α and therefore Cl and Cd are adversely

affected by the quality of GPS measurements. No satisfactory results were obtained

for the feedback linearization controller using the α derived values of Cl and Cd in

the algorithm. Instead, the values for Cl and Cd used by the controller were fixed

with average values of each parameter seen while performing the transitions in sim-

ulation. Making this modification allowed satisfactory trajectory tracking results to

be obtained.

Flight results for the feedback linearization controller performing a hover-to-

level transition are shown in Figure 4.13. There is significant deviation in trajectory

tracking of up to 20 meters in the p direction and 10 meters in the h direction.

However, it is possible to see the controller working to maintain tracking through the

transition by observing the desired thrust and desired pitch angle plots. If the thrust

matching controller and attitude controller were better able to match these desired

values, better results for trajectory tracking would be evident.

Flight results for the feedback linearization controller performing a level-to-

hover transition are shown in Figure 4.14. Tracking in the p direction has about 15

meters of error at the greatest point. The h trajectory tracking is off by 5 to 7 meters

at its greatest point. It is interesting to note the drop in pitch angle at about t = 3.

56

At this point, the tailsitter is deviating from the desired p trajectory. To compensate

for this, the tailsitter pitches down to move in the forward p direction and try to get

back on track.

0 5 10 15 20 25 30
−20

0

20

40

60

80

100

120

140

160

time, s

p

p desired
p actual

(a) p

0 5 10 15 20 25 30
15

20

25

30

35

40

45

time, s

h

h desired
h actual

(b) h

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

time, s

th
ru

st
, N

thrust d
thrust est

(c) desired thrust

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

time, s

θ
desired pitch
pitch

(d) θ

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

time, s

th
ro

ttl
e

(e) throttle

Figure 4.13: Feedback linearization controller hover-to-level trajectory tracking flight
data

57

0 1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

35

40

45

50

time, s

m

Pd
P actual

(a) p

0 1 2 3 4 5 6 7 8 9
30

35

40

45

50

55

time, s

m

Hd
H actual

(b) h

0 1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

time, s

D
es

ire
d

th
ru

st
, N

(c) desired thrust

0 1 2 3 4 5 6 7 8 9
−10

0

10

20

30

40

50

60

70

80

90

time, s

de
g

des theta
theta

(d) θ

0 1 2 3 4 5 6 7 8 9
40

50

60

70

80

90

100

time, s

%
 th

ro
ttl

e

(e) throttle

Figure 4.14: Feedback linearization controller level-to-hover trajectory tracking flight
data

58

4.6.3 Adaptive Controller Flight Results

Flight results of a hover to level transition using the adaptive controller are

shown in Figure 4.15. Tracking in the p direction is good at the start of the maneuver

but grows to nearly 40 meters at the end. Altitude tracking is much better, with

deviations of less than 3 meters until the end of the transition, when error reaches

about 10 meters. These errors are likely due to limitations in the attitude and thrust

controllers. Also, the adaptive parameters Â and B̂ also change rapidly at the end

of the maneuver. The adaptive controller will have a difficult time tracking a trajec-

tory while the estimated parameters are still being adjusted by the algorithm. This

problem might be lessened by increasing the γ gains somewhat.

The thrust plot for the hover-to-level transition shows interesting behavior.

The desired thrust is plotted alongside the estimated thrust, which is measured by

accelerometers. Besides seeing the error in the thrust controller, the mechanism for

performing the transition is evident. Thrust drops rapidly in the beginning of the

maneuver, initiating a stall-tumble event causing the tailsitter’s pitch angle to drop

out of the hover position. Then thrust increases to steady the tailsitter and minimize

altitude tracking error. Finally thrust decrease once again as steady level flight is

assumed.

The results of a level-to-hover transition using the adaptive controller are

shown in Figure 4.16. Tracking error in p is up to 15 meters and is about the same

amount in h. However, some desirable characteristics are seen in these plots. Observ-

ing the data in the p plot, the tailsitter makes the transition too early and is hovering

several meters off of the desired forward trajectory. To rectify this situation, there is a

large momentary drop in pitch angle, which gives the tailsitter some forward airspeed

and allows it to better approach the desired p trajectory. Plots for Â and B̂ show

that the adaptive parameters reach steady state values by the time the maneuver is

finished.

59

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

time, s

p,
 m

Pd
P actual
P model

(a) p

0 2 4 6 8 10 12 14 16
5

10

15

20

25

30

35

40

time, s

h,
 m

Hd
H actual
H model

(b) h

0 2 4 6 8 10 12 14 16
4

5

6

7

8

9

10

11

12

13

14

time, s

th
ru

st
, N

thrust d
thrust est

(c) thrust

0 2 4 6 8 10 12 14 16
20

30

40

50

60

70

80

90

100

time, s

θ

desired pitch
pitch

(d) θ

0 2 4 6 8 10 12 14 16
60

65

70

75

80

85

90

95

100

time, s

th
ro

ttl
e

(e) throttle

0 2 4 6 8 10 12 14 16
−4

−2

0

2

4

6

8

10
x 10

−4

time, s

A
 h

at

(f) Â

0 2 4 6 8 10 12 14 16
−2

0

2

4

6

8

10

12

14

16

18
x 10

−4

time, s

B
 h

at

(g) B̂

Figure 4.15: Adaptive controller hover-to-level trajectory tracking flight data

60

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

time, s

m

Pd
P actual
P model

(a) p

0 2 4 6 8 10 12
30

35

40

45

50

55

time, s

m

Hd
H actual
H model

(b) h

0 2 4 6 8 10 12
2

4

6

8

10

12

14

time, s

N

des thrust
thrust est

(c) thrust

0 2 4 6 8 10 12
−80

−60

−40

−20

0

20

40

60

80

100

time, s

de
g

des pitch
pitch

(d) θ

0 2 4 6 8 10 12
40

50

60

70

80

90

100

time, s

%
 th

ro
ttl

e

(e) throttle

0 2 4 6 8 10 12
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0
x 10

−3

time, s

A
 h

at

(f) Â

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−4

time, s

B
 h

at

(g) B̂

Figure 4.16: Adaptive controller level-to-hover trajectory tracking flight data

61

4.7 Chapter Summary

After discussing the creation of the desired trajectory generation goals and

process, three algorithms for tracking those trajectories through both types of tail-

sitter transitions were presented in this chapter. First, the simple controller was

discussed, followed by the feedback linearization controller and the adaptive con-

troller. Simulation results and flight test results were presented. In the next chapter,

the autopilot state machine will be discussed. The autopilot state machine will use

the hover position controller and level waypoint controller described in Chapter 3

along with the transition controllers presented in this chapter to fly a waypoint path

consisting of a combination of level and hover waypoints.

62

Chapter 5

Autopilot State Machine

The highest level of autopilot control code is the state machine. It contains

logic necessary to navigate a waypoint path consisting of both hover and level way-

points. The structure of the autopilot state machine is described in this chapter.

Flight results for a sample waypoint path will also be shown.

5.1 Autopilot Structure

The autopilot state machine shown in Figure 5.1 retrieves waypoints uploaded

by the Virtual Cockpit ground station and sets appropriate navigational control,

throttle, and attitude control modes to achieve desired functionality. Possible flight

commands in this autopilot are hover waypoints and level waypoints. Various flight

modes include hover flight mode, level flight mode, and modes for transitioning be-

tween these modes. The autopilot state machine code is run in an autopilot function

running at about 5 Hz. For each execution of the loop, UAV states and timers are

checked to see if a move to another state is in order. A description of each autopilot

state will be given.

It should be noted that in the autopilot state machine, hover-to-level tran-

sitions are performed immediately but level-to-hover transitions are performed only

when close enough to the desired hover waypoint. This is because of the desire to

stay in the more energy efficient level flight mode for as long as possible.

63

Figure 5.1: Autopilot state machine

Initialization State

On start-up, the autopilot is in the Initialization state. In this state, any necessary

initialization is performed. The autopilot remains in the Initialization state for just

one cycle and then moves to the Ready state.

Ready State

The Ready state retrieves the next waypoint command from the waypoint stack up-

loaded from Virtual Cockpit, described in Section 3.2. Depending on the current

orientation of the tailsitter and the type of waypoint received, it then moves to the

next appropriate state. If the tailsitter is hovering and the waypoint is a hover way-

point, the next state is the Hover state. If hovering but the next waypoint is a level

waypoint, then the state machine moves to the Hover-to-Level state. If the tailsitter

is level and a level waypoint is received, the state machine enters the Level state. Oth-

64

erwise, if level and the next waypoint is a hover waypoint, the Level-Level-to-Hover

state is entered.

Hover State

In this state, the hover position controller described in Section 3.4 is turned on. Also,

the throttle from altitude loop is enabled, which uses the throttle to control the

tailsitter’s altitude. When the tailsitter has arrived at the desired hover waypoint,

the state machine moves to the Maintain Hover state.

Maintain Hover State

Upon entering the Maintain Hover state a timer is initialized. Each hover waypoint

has a hover time associated with it. When this time has expired, the state machine

will move to the Ready state.

Level State

When flying between level waypoints the level flight controller described in Section 3.5

is used. Throttle is controlled along with pitch angle to maintain a desired altitude.

To control tailsitter attitude, the quaternion attitude controller is used as in the hover

flight mode, although different gains are loaded.

Rotate-to-Heading State

The Rotate to Heading state is entered before a hover to level transition is performed.

Since the transition is to be performed along a straight line, it is necessary to first

rotate the tailsitter in the direction of the new level waypoint. When the tailsitter is

within a certain angle threshold of the desired heading, the Hover to Level state is

entered.

65

Hover-to-Level State

While in the Hover-to-Level state, the desired trajectory is created and one of the

transition path following algorithms described in Chapter 4 is executed. Which algo-

rithm to perform is selectable by the user. Once the tailsitter achieves a level flight

attitude, the Level state is entered, which will take the tailsitter to its waypoint.

Level-Level-to-Hover State

This state functions just like the Level state, but will switch to the Level to Hover state

when the tailsitter arrives within a certain distance threshold of the hover waypoint.

This is to allow the tailsitter to fly in level flight mode for as long as possible to

conserve battery life.

Level-to-Hover State

The desired trajectory is created and one of the transition path following algorithms is

executed. Once the tailsitter reaches a near-hover position, the Hover state is entered.

5.2 Autopilot Flight Results with Simple Controller

Flight results are shown in Figure 5.2 for a flight path composed of two level

waypoints and two hover waypoints. The transitions in and out of the hover waypoint

are done with the simple controller described in Section 4.2. In this experiment, the

waypoints at (0,0) and (-30,-30), the first and last points of the path, are both hover

waypoints while the remaining two points are level waypoints. The autopilot state

is numbered, with the corresponding state names listed in Table 5.1. It can be seen

that the state machine successfully navigates the tailsitter in level and hover flight

modes as well as through transitions. It should be noted that the desired airspeed

has a positive value for the hover waypoints which should be corrected to read zero.

An examination of the GPS waypoint path reveals poor tracking on first in-

spection, but much of this is due to the confined flight area in which flight testing

was done. The tailsitter takes very wide turns in these results. If a larger flight test

66

area were available and longer flight path legs were flown, then the turns would not

be as noticeable and better waypoint tracking would be seen. Waypoint tracking for

the tailsitter will be much better given a long, straight level flight path rather than a

flight path with almost constant turns as is shown in the results.

The tailsitter hovers on takeoff up to its first waypoint. The tailsitter comes

within a threshold value of desired altitude at about t = 12 seconds. At that time,

the next waypoint is interpreted. Since it is a level waypoint, an immediate hover-to-

level transition is commanded, as can be seen in the plot of pitch angle. The tailsitter

switches to the level flight controller and flies to the next waypoint. During the time

the tailsitter is in level flight mode, pitch and throttle are adjusted to try to achieve

desired altitude and airspeed. At t = 50 seconds, the tailsitter is close enough to

the final hover waypoint to perform a level-to-hover transition. The tailsitter then

descends to the ground.

Table 5.1: Autopilot state machine state numbers
Number State

0 Initialization
1 Ready
2 Hover
3 Maintain Hover
4 Init Maintain Hover
5 Level
6 Rotate to Heading
7 Hover to Level
8 Init Hover to Level
9 Level to Hover
10 Init level to Hover
11 Level-Level to Hover

67

−120 −100 −80 −60 −40 −20 0 20 40
−140

−120

−100

−80

−60

−40

−20

0

20

East (m)

N
or

th
 (

m
)

measured
desired

(a) N-E GPS path

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

time, s

A
lti

tu
de

 (
m

)

desired
actual

(b) Altitude

0 10 20 30 40 50 60 70
−5

0

5

10

time, s

A
irs

pe
ed

 (
m

/s
)

desired
actual

(c) Airspeed

0 10 20 30 40 50 60 70
−20

0

20

40

60

80

100

time, s

P
itc

h
an

gl
e

(d
eg

)

desired
actual

(d) Pitch angle

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

time, s

au
to

pi
lo

t s
ta

te

(e) Autopilot state

Figure 5.2: State machine flight results with simple controller

68

5.3 Autopilot Flight Results with Feedback Linearization Controller

Flight results of the tailsitter flying a waypoint path composed of level and

hover waypoints with the transitions handled by the feedback linearization controller

is shown in Figure 5.3. The path begins with a hover waypoint at (0,0). Then the

tailsitter transitions to level flight and flies through two level waypoints. Finally the

tailsitter hovers at (20,20). For the transitions, the p and h trajectories are plotted.

It should be noted, however, that the desired values for p and h do not change once

the transition is complete. Only the portions of the desired trajectories that occur

during each transition state should be considered.

For this flight, the GPS track plot shows large turns after reaching the desired

level waypoints. If larger flight path legs could be flown, these large deviations would

not be as noticeable. Once the tailsitter completes the turn and is heading for the

next waypoint, it is able to fly in a straight line.

As seen in the altitude and pitch plots, the tailsitter takes off from ground

level in a hover position. At just before t = 10 seconds, the tailsitter begins a hover-

to-level transition. This maneuver can be seen in the p and h plots from t = 10

until t = 20. Both of these plots show good tracking during the maneuver. Once the

tailsitter is level, the level flight controller is engaged and level waypoints are flown,

with altitude and airspeed being controlled by pitch angle and throttle. At t = 45

seconds the tailsitter is approaching its final waypoint, which is designated as a hover

waypoint. The transition is performed and the tailsitter descends to the ground.

69

−50 0 50
−80

−60

−40

−20

0

20

40

60

East (m)

N
or

th
 (

m
)

(a) N-E GPS path

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

45

50

time, s

h

h desired
h actual

(b) Altitude

0 10 20 30 40 50 60 70
−10

0

10

20

30

40

50

60

70

time, s

p

p desired
p actual

(c) p trajectory

0 10 20 30 40 50 60 70
−40

−20

0

20

40

60

80

100

time, s

P
itc

h
an

gl
e

(d
eg

)

desired
actual

(d) Pitch angle

0 10 20 30 40 50 60 70
−6

−4

−2

0

2

4

6

8

10

time, s

A
irs

pe
ed

 (
m

/s
)

(e) Airspeed

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

time, s

au
to

pi
lo

t s
ta

te

(f) Autopilot state

Figure 5.3: State machine flight results with feedback linearization controller

70

5.4 Autopilot Flight Results with Adaptive Controller

The adaptive controller is used to negotiate transitions for the flight path

plotted in Figure 5.4. The desired flight path is the same as that used in Section 5.3,

with an initial hover waypoint followed by two level waypoints and a final hover

waypoint. Like the desired trajectories for p and h, the adaptive parameters Â and

B̂ only change during the transition state.

The GPS tracking plot looks considerably worse than the plots shown for the

simple and feedback linearization controllers. This is due to the same effects from

having short flight path legs as well as from an increase in wind during this flight.

In any case, however, the autopilot state machine as well as the adaptive controller-

managed transitions can be seen to work properly despite the poor performance of

the level and hover controllers themselves.

The tailsitter begins on the ground and hovers up to a desired altitude, where-

upon a hover-to-level transition is commanded. The pitch angle plot shows that the

transition is completed successfully, but the p plot shows that tracking in the forward

direction exhibited error of about 20 m. Tracking is off by about 10 m in the h direc-

tion during the transition, which lasts from about t = 15 seconds to t = 25 seconds.

Once in a level orientation, the level flight controller is engaged and level waypoints

are flown. At about t = 55 seconds a level-to-hover transitions is performed. Tracking

during this transition is much better in p but about the same in h.

The plots for Â and B̂ show the adaptive parameters changing during each

transition type. The values of these parameters are not changed during times when

the tailsitter is not in a transition state. These plots should only be considered for

the times when a transition is in progress. It can be seen that both parameters

approach much different values for the two different transitions, which is indicative

of the changing flight conditions when each is encountered.

71

−60 −50 −40 −30 −20 −10 0 10 20
−100

−80

−60

−40

−20

0

20

40

60

80

100

East (m)

N
or

th
 (

m
)

(a) N-E GPS path

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

time, s

h

h desired
h actual

(b) Altitude

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

45

time, s

p

p desired
p actual

(c) p trajectory

0 10 20 30 40 50 60 70 80
−60

−40

−20

0

20

40

60

80

100

time, s

P
itc

h
an

gl
e

(d
eg

)

desired
actual

(d) Pitch angle

0 10 20 30 40 50 60 70 80
−6

−4

−2

0

2

4

6

8

10

12

time, s

A
irs

pe
ed

 (
m

/s
)

(e) Airspeed

0 10 20 30 40 50 60 70 80
−12

−10

−8

−6

−4

−2

0

2
x 10

−4

time, s

A
 h

at

(f) Â

0 10 20 30 40 50 60 70 80
−4

−2

0

2

4

6

8

10
x 10

−4

time, s

B
 h

at

(g) B̂

Figure 5.4: State machine flight results with adaptive controller

72

5.5 Chapter Summary

The autopilot state machine receives waypoint commands and engages appro-

priate flight modes to navigate the desired path. The state machine receives level or

hover waypoints and appropriately commands either the level flight controller, hover

position controller, or one of the transition controllers, depending on what is cur-

rently required. Flight results were given for flying a waypoint path with each of the

transition controllers described in Chapter 4.

73

74

Chapter 6

Conclusion

6.1 Summary of Results

Flight test results show the three transition trajectory tracking algorithms

working satisfactorily. The simple controller can be used in cases where a specific

trajectory does not require tracking and only a flight mode transition is desired.

When further control over the tailsitter’s path is desired, the feedback linearization

controller or adaptive controller can be used. These two controllers exhibit similar

performance, but the adaptive controller requires knowledge of fewer parameters and

therefore is the more useful of the two.

There is much room for improvement in the actual flight results. The difficul-

ties in tracking trajectories well are attributable to a number of factors. Tailsitter

position and velocity measurements are required for both feedback linearization and

adaptive controllers. Both of these measurements are obtained by GPS readings, but

these readings are subject to inaccuracies and time delays. A faster, more precise

measure of position and velocity would be needed to track the transition trajectories

well. Along with imperfect sensors, limitations in the attitude and thrust controllers

also lead to tracking error in the transition trajectory tracking algorithms. Finally,

wind of almost any strength at all is enough to disturb the tailsitter away from its

desired flight trajectory. If these limitations were addressed, the algorithms presented

in this thesis should perform much better.

6.2 Future Work

In this thesis the trajectories to track were limited to transition maneuvers

performed with the tailsitter travelling straight, with the nose/belly always facing

75

the direction of travel. However, the tailsitter is a very agile and flexible aircraft.

Tailsitter maneuverability is much greater than a fixed wing aircraft due to its ability

to hover. With a quaternion attitude representation and controller, it is theoretically

possible to command the tailsitter to any conceivable attitude. Of course, some

attitudes will be very hard to maintain for an extended period of time if they are

outside of a near hover position or in the stall region. However, future research could

focus on creating and tracking trajectories for any number of flight paths, such as

spirals, curved paths, or even aerobatic flight maneuvers.

Furthermore, each type of maneuver, like the transitions described in this

thesis or other possible maneuvers that could be developed for the tailsitter, has many

possibilities for execution. For example, a hover-to-hover maneuver with a climb

in altitude could be performed by climbing in hover mode to the correct altitude

and pitching slightly in hover mode to transition to the desired position. Or, the

same maneuver could be accomplished by transitioning to level flight, spiraling up

to the appropriate altitude, getting close to the final desired hover waypoint, and

transitioning back to hover mode. It would be a beneficial study to see what maneuver

types are more energy efficient or otherwise beneficial in different situations.

It has been suggested that the tailsitter could benefit greatly by the addition

of a downward pointing optic flow or other vision sensor. With such a sensor, hover

stabilization techniques would be possible by adjusting the control surfaces to cancel

out optic flow movements in all directions caused by wind or other factors. For

example, the tailsitter could use vision processing algorithms to identify a landing

platform and land in the proper orientation to recharge batteries. With the ability to

take-off from the ground, the tailsitter equipped with autonomous landing technology

could fly several consecutive missions without a need for human interaction.

76

Bibliography

[1] N. B. Knoebel, S. R. Osborne, J. S. Matthews, A. M. Eldredge, and R. W.
Beard, “Computationally simple model reference adaptive control for miniature
air vehicles,” Proceedings of the 2006 American Control Conference, pp. 5978–
5983, 2006. 3

[2] N. B. Knoebel, S. R. Osborne, D. O. Snyder, T. W. McLain, R. W. Beard,
and A. M. Eldredge, “Preliminary modeling, control, and trajectory design for
miniature autonomous tailsitters,” AIAA Conference on Guidance, Navigation,
and Control, 2006. 3

[3] H. Stone and K. C. Wong, “Preliminary design of a tandem-wing tail-sitter UAV
using multi-disciplinary design optimisation,” International Aerospace Congress,
pp. 707–720, 2004. 3

[4] H. Stone and G. Clarke, “The t-wing: A VTOL UAV for defense and civilian
applications,” UAV Australia Conference, 2001. 4

[5] R. H. Stone, “Control architecture for a tail-sitter unmanned air vehicle,” Pro-
ceedings of the 5th Asian Control Conference, pp. 736–744, 2004. 4

[6] H. Stone and G. Clarke, “Optimization of transition maneuvers for a tail-sitter
unmanned air vehicle (UAV),” Australian International Aerospace Congress,
2001. 4

[7] http://www.aerovironment.com/. 4

[8] T. J. Cord and S. Newbern, “Unmanned air vehicles: New challenges in design,”
Proceedings of the 2001 IEEE Aerospace Conference, vol. 6, pp. 2699–2704, 2001.
4

[9] W. E. Green and P. Y. Oh, “A MAV that flies like an airplane and hovers like a
helicopter,” Proceedings of the 2005 IEEE/ASME International Conference on
Advanced Intelligent Mechatronics, pp. 693–698, 2005. 4

[10] ——, “A fixed-wing aircraft for hovering in caves, tunnels, and buildings,” Pro-
ceedings of the 2006 American Control Conference, pp. 1092–1097, 2006. 4

[11] ——, “Autonomous hovering of a fixed-wing micro air vehicle,” Proceedings of
the 2006 IEEE International Conference on Robotics and Automation, pp. 2164–
2169, 2006. 4

77

http://www.aerovironment.com/

[12] ——, “Optic flow based collision avoidance on a hybrid MAV,” IEEE Robotics
and Automation Magazine, in press. 4

[13] ——, “Flying insect inspired vision for autonomous aerial robot maneuvers in
near-earth environments,” Proceedings of the 2004 IEEE International Confer-
ence on Robotics and Automation, pp. 2347–2352, 2004. 4

[14] P. Y. Oh and W. E. Green, “CQAR: Closed quarter aerial robot design for recon-
naissance, surveillance and target acquisition tasks in urban areas,” International
Journal of Computational Intelligence, vol. 1, no. 4, pp. 353–360, 2004. 4

[15] A. Ailon, “Control of a VTOL aircraft: Motion planning and trajectory track-
ing,” Proceedings of the 13th Mediterranean Conference on Control and Automa-
tion, pp. 1493–1498, 2005. 4

[16] P. Martin, S. Devasia, and B. Paden, “A different look at output tracking: control
of a VTOL aircraft,” Proceedings of the 33rd Conference on Decision and Control,
pp. 2376–2381, 1994. 4

[17] P. Setlur, D. Dawson, Y. Fang, and B. Costic, “Nonlinear tracking control of
the VTOL aircraft,” Proceedings of the 40th IEEE Conference on Decision and
Control, pp. 4592–4597, 2001. 4

[18] B. T. Costic, D. M. Dawson, M. S. de Queiroz, and V. Kapila, “Quaternion-based
adaptive attitude tracking controller without velocity measurements,” AIAA
Journal of Guidance, Control, and Dynamics, vol. 24, no. 6, pp. 1214–1222,
2001. 4

[19] J. Hauser and R. Hindman, “Aggressive flight maneuvers,” Proceedings of the
36th Conference on Decision and Control, pp. 4186–4191, 1997. 4

[20] M. D. Shuster, “A survey of attitude representations,” The Journal of the As-
tronautical Sciences, vol. 41, no. 4, pp. 439–517, 1993. 4, 22

[21] N. B. Knoebel, Master’s Thesis. Brigham Young University, 2007. 19, 37

[22] http://www.procerusuav.com/. 20

[23] D. R. Nelson, D. B. Barber, T. W. McLain, and R. W. Beard, “Vector field path
following for small unmanned air vehicles,” Proceedings of the 2006 American
Control Conference, pp. 5788–5794, 2006. 27

[24] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, New Jersey:
Prentice Hall, 2002. 37, 40, 44

78

http://www.procerusuav.com/

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Background and Motivation
	1.2 Literature Review
	1.3 Contributions
	1.4 Document Organization

	2 Tailsitter Physics
	2.1 Three-dimensional Model
	2.1.1 Quaternion Motivation and Definition
	2.1.2 Quaternion/Euler Conversions
	2.1.3 Navigation Equations
	2.1.4 Kinematic Equations
	2.1.5 Force Equations

	2.2 Two-dimensional Model
	2.3 Chapter Summary

	3 Experimental Platform
	3.1 Simulation
	3.2 Flight Test Setup
	3.3 Quaternion Attitude Control
	3.4 Hover Position Control
	3.5 Level Flight Control
	3.6 Chapter Summary

	4 Trajectory Tracking Algorithms
	4.1 Desired Trajectories
	4.2 Simple Controller
	4.3 Feedback Linearization Controller
	4.4 Adaptive Controller
	4.4.1 Lyapunov Stability
	4.4.2 Equations of Motion
	4.4.3 Reference Model
	4.4.4 Controller Derivation

	4.5 Simulation Results
	4.5.1 Simple Controller Simulations
	4.5.2 Feedback Linearization Controller Simulations
	4.5.3 Adaptive Controller Simulations

	4.6 Flight Test Results
	4.6.1 Simple Controller Flight Results
	4.6.2 Feedback Linearization Controller Flight Results
	4.6.3 Adaptive Controller Flight Results

	4.7 Chapter Summary

	5 Autopilot State Machine
	5.1 Autopilot Structure
	5.2 Autopilot Flight Results with Simple Controller
	5.3 Autopilot Flight Results with Feedback Linearization Controller
	5.4 Autopilot Flight Results with Adaptive Controller
	5.5 Chapter Summary

	6 Conclusion
	6.1 Summary of Results
	6.2 Future Work

	Bibliography

