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Abstract 

This  paper introduces a B a y e s i a n  method f o r  blind 
restoration of images  of sparse, point- l ike  objects. Ex- 
amples  of such  images  include astronomical  s tar  field 
f rames  a n d  magnetoencephalogram imaging of current  
dipole dis tr ibut ions of brain neural  act iv i ty .  It i s  as- 
sumed that  ‘ t h e s e  images  are corrupted by u n k n o w n  
blurring f u n c t i o n s  and  noise .  B o t h  single and mul t i -  
ple f r a m e  observat ion cases are addressed. T h e  pro-  
posed method u s e s  m a x i m u m  a posteriori es t imat ion  
techniques t o  recover both t h e  u n k n o w n  object and blur. 
Markov  r a n d o m  field (MRF)  models  are used t o  repre- 
sen t  p r i o r  in format ion  about both t h e  sparse, point-like 
s tructure of the  object, a n d  t h e  smoothed r a n d o m  struc-  
ture of the  blur. A s  compared wi th  general purpose 
blind algori thms,  incorporating a sparse poin t  source 
M R F  model  enables m u c h  higher resolut ion restora- 
t ions,  improves  p o i n t  localization, and  aids in overcom- 
ing the ~on,volutionnl ambigui ty  in t h e  bland problem 

1. Introduction 

In this paper we consider the blind restoration of 
point-like source images that have been corrupted by 
noise and blurred by unknown point spread functions 
(psf). These problems arise in processing astronomi- 
cal star field frames, magnetoencephalograms imaging 
of current dipole distributions of brain neural activity, 
and other targeting applications where high resolution 
localization of a few discrete sources is the primary aim. 
We assume one or more frames of blurred observation 
data are available with no knowledge of the blurring 
psf, and that blur psf’s may be different from frame to 
frame if multiple observations are available 

An application of particular interest to us is blind 

restoration of adaptive optics (AO) telescope image se- 
quences of star fields. The AO system removes much 
of the atmospheric turbulence induced blurring, but a 
residual random, unknown blur remains that changes 
from frame to frame in an image sequence over a period 
of milliseconds. Though the gross structure of the blur 
is known on average [l], the specific form of each in- 
dividual blur cannot be easily ascertained, and is thus 
best modeled with the MRF approach, proposed in this 
paper. Identifying individual stars in dense star clus- 
ters, forming accurate photometry estimates, and com- 
puting star-positions to sub-pixel accuracy are primary 
goals. For example, precise measurement of relative po- 
sitions can help identify the “wobble” associated with 
stars orbited by massive planets. This situation lends 
itself well to the blind restoration technique presented 
in this paper. 

Bayesian maximum a posterior (MAP) estimation 
has been shown to be effective in blind restoration. In 
particular, Jeffs, Hong, and Christou [3] have recently 
demonstrated the effectiveness of generalized Gauss 
Markov random fields (GGMRF) in blind restoration 
of extended objects. Here both the source and blur 
were modeled as GGMRF’s which have a parametric 
form allowing a great variety of image representations, 
including hard edged fields typical of real images and 
smooth fields typical of blurring point spread func- 
tions. However, the GGMRF model is not well suited 
to point-like sparse images. A Markov random field 
model which favors sparse solutions is essential if high 
resolution restorations and accurate point localizations 
are to be achieved, particularly in the blind case. The 
ability to exploit known structure in the problem and 
impose a sparse form on the solution is essential in over- 
coming convolutional ambiguity in the blind problem. 
Blind restoration is a highly ill-posed inverse problem, 
and algorithms which incorporate known image struc- 
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ture in solutions will invariably perform better. 
Phillips and Leahy [SI, have presented an MRF 

model that exploits the sparse nature of point source 
input images in the context of MEG-based imaging. 
Their model involves a dual field representation: first, 
a binary activity process determines which pixels have 
non-zero amplitudes, then a Gaussian amplitude pro- 
cess represents active point intensity levels. We demon- 
strate that this model can be effectively extended to the 
blind point source restoration case. In fact, the prior 
information provided by this sparse model image prior 
pdf is the key to overcoming inherent ambiguity when 
blur psf’s are unknown. 

2 Problem Formulation 

We adopt the following image observation model for 
both single and multiple frame data representation 

g =  I f l f + i j  (1) 
g -= [ g l , g 2 , - , g M l T I i j  = [771,7721.-111MlT 

‘L! = [HT,...IHT,]T 

where M is the number of frames, g,, f ,  and 77, are vec- 
tors formed by column scanning the 2-D images of the 
ith observation frame, the true image, and the i th  noise 
frame respectively. H,, is the doubly block Toeplitz 
convolution matrix formed from the i th  frame psf, hi. 
g is the extended vector formed by concatenating all M 
column scanned observation frames, and 3t represents 
all A4 distinct frame blur psf’s as a single system ma- 
trix. This formulation also works for the single frame 
case by setting M = 1.  

Assuming f and 3t are statistically independent, the 
blind MAP restoration problem may be stated as 

We will assume that p, ( i j )  is zero mean, i.i.d. Gaus- 
sian. This implies that pgl f ,h (g ( f , I f l )  is i.i.d. Gaussian 
with a mean of Iflf. 

In order to model f as a sparse MRF, we follow the 
development of Phillips and Leahy by defining 

f = X z  (3) 
where X is a diagonal matrix with elements of either 
0 or 1. The vector z is vector of amplitudes. The 
vector x = diag{X} ,  represents an indicator process 
that determines whether or not a particular pixel is 
active. In the solution of equation (2) we make the 
replacement 

where we assume the indicator process and the ampli- 
tude process are independent. The indicator function 
can be modeled as a binary Markov random field whose 
probability density function follows a Gibb’s distribu- 
tion, 

( 5 )  
1 

P(X) = exp (-V(X)),  xi E {0,1> 

where K is a normalizing constant and the Gibbs dis- 
tribution potential function, V(x) ,  is given by 

V(x)  = ~ Q , ~ ,  + P z C 2 { x z , x 3 , j  E Nz} (6) 

where a, and fl, are weighting constants and C, is a 
clustering function that operates on pixels in the neigh- 
borhood N, [6 ] .  Arguing that there is no reason to 
suspect any clustering a przorz of adjacent, pixels in 
star images (clusters may exist, but individual stars 
would be separated by some black space, which is dif- 
ferent from the Phillips-Leahy clustering model) , we 
have omitted the clustering term and focused on the 
first term in equation (6) which enforces sparseness in 
the final image. 

The density function for the amplitudes is assumed 
to be Gaussian in the Phillips-Leahy approach. They 
are dealing with MEG processing in which the ampli- 
tudes can be either positive or negative and thus intro- 
duce a zero mean Gaussian. In star images, where we 
deal only with intensities, negative amplitudes are un- 
acceptable. This can be enforced by adding a mean to 
the Gaussian, m,. Another method is to simply draw 
the amplitudes from a uniform distribution over some 
positive range and let the noise term in Equation (2) 
dictate the final values. 

The blur pdf is modeled as a GGMRF with density 

2 

<s , t>ECh I 
where c h  is the set of all cliques for the blur neigh- 
borhood system, q is the blur GGMRF shape param- 
eter, s h  is the set of all points in the blur lattice over 
all frames and cs,t and d, are neighborhood influence 
weights. 

It has been shown in previous publications, for ex- 
ample (31, that q > 2 does a good job modeling smooth 
features such as those found in a typical blur psf. The 
mean, /.Ah,s, allows the restoration to maintain fidelity 
with prior knowledge about the blur. For example, in 
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Figure 1. Image to  be restored. Top left: Actual 
blur psf formed as an elliptical Lorentzian func- 
tion on a GGMRF residual halo producing a real- 
istic A 0  low-pass “mottled” halo field. Top right: 
Circularly symmetric Lorentzian blur model to 
be used as the reference mean, ph. Bottom left: 
Actual truth image. Bottom right: Observed 
blurred, noisy output data. 

astronomical imaging isolated stars in a nearby field 
can be averaged to give a reference mean. 

Combining the density functions we can re-express 

equation (2) by taking the logarithm of both sides and 
dropping the additive constants 

M 

k,k,$i  = arg min lIgi - H ~ X Z I ~ ~ +  (8) 
i=l X J > + l  

YC”j + 412 - P A 2  
j 

+a & l h s  - Ph,S14 + 
S E S h  

Q: cs,tl(hs - Ps, t )  - (ht - Ph,t) I4 
< S $ > E C h  

Here &?,a control the relative influence as regularizing 
terms that the activity matrix, amplitudes, and blur 
have on the solution. 

Equation (8) represents a very complicated nonlin- 
ear minimization problem. The approach taken to  
solve it is simulated annealing [2, 41, specifically the 
Metropolis algorithm [5]. X,y,a are set manually and 
adjusted for best restoration performance. 

3 Results 

In this section we present examples of the new blind 
algorithm using simulated adaptive optics telescope 
data. In Figure (l), the actual data for the first ex- 
ample is presented. This shows a blur with region of 
support that is 15 x 15 pixels. The blur is a rotated 
Lorentzian function with an elongated axis. This has 
been shown to be an excellent model for A 0  residual 
blur [l]. The reference mean used for the blur is a 
circularly symmetric Lorentzian shape, with different 
radius than either axis of the actual blur. The truth 
image is also shown consisting of ten isolated points. 
The bottom right image shows the resulting blurred, 
noise corrupted output. The noise is zero-mean white 
Gaussian noise at  a level of 32 dB peak SNR. 

Note that only one observed frame is used in this 

scribed above. The blur has been estimated quite ac- 
Figure 2. Restoration results. Top left: Esti- curately. The main axis is quite clearly defined in 
mated blur. Top right: Restored activity ma- the restoration and the extent of the restored blur 
trix. Bottom left: Restored input image. Bottom matches the actual blur very well. The source restora- 
right: Restored image blurred with restored blur tion matches the actual image to a high degree. How- 
psf. Compare with Figure 1. ever, two points in the L-shaped structure of the orig- 

inal source were blurred into a single point in the SO- 
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lution and some positions are inaccurate by a single 
pixel. 

Figure 3. Second example. Top left: Observed 
blurred, noisy output data. Top right: Actual 
truth image. Bottom left: Actual blur psf. Bot- 
tom right: Circularly symmetric Lorentzian ref- 
erence mean. 

The actual data for the second example is found in 
Figure (3). Here we have a similar blur with a input 
image. Figures (4) and ( 5 )  show two different restora- 
tions on the data. In each of the restorations, the blur 
is only slightly elongated suggesting too much weight 
on the blur self term (i.e. on ph). Each of the input 
image restorations are fairly good. The first misses a 
point to  the bottom right of the input image and some 
other positions are off by about a pixel. The second get 
all points but in the upper portion of the input image, 
one of the points is split. This is likely due to very 
circular restoration of the blur. These problems would 
likely be solved with better weights on the various pri- 
ors. 

4 Conclusions 

The restoration example shown above demonstrates 
the power of the model described in this paper to  em- 
phasize the sparse character of a source image. Though 
GGMRFs have been shown to work well for restoring 
extended objects, the model does not allow the user to  
explicitly enforce point-like structure on the solution. 
The specific point-source prior of Phillips and Leahy in 
conjunction with the GGMRF prior for the psf leads 
to blind restoration solutions which are truly sparse 

Figure 4. Second example, first restoration. Top 
left: Restored image blurred with restored blur 
psf. Top right: Restored activity matrix. Bot- 
tom left: Restored input image. Bottom right: 
Restored blur psf. 

and are an excellent estimate of the truth. We have 
demonstrated that the Phillips - Leahy MRF model 
for point sources is well suited, with minor modifica- 
tions, to  blind star field image restoration. Previously 
this model had been used only with known blurring or 
system functions. 
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