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ABSTRACT 

Blind point-soilrce image restoration refers to the problem 
of high resolution recovery of point-like sources which are 
blurred by an unknown point spread function (psf). Appli- 
cations include astronomical star field localization, Inagnc- 
toericeplialograiri brain current imaging, and seismic decon- 
volntion. This paper shows t,liat with suitable constraints, 
the problem can be cast in the langnage of subspace dc- 
composition as used in blind signal copy algoritliins for dig- 
ital wirclcss communications. Assuming a separable psf, we 
propose a deterministic, noli-iterative ESPRIT-like soliition 
t,o the restoration problem. We next extend the algorit,lim 
to non-separable psf’s by approximating tliern ils a series 
expansion of a few separable componeIits. 

1. INTRODUCTION 

In this papcr wc consider the blind restoration of point- 
like source images that have been corrupted by noise and 
blurred by uriknown point, spread fniictions (psf). These 
problems arise in processing astronomical star field frames, 
iriagiietocnceplialograIns imaging of current dipole tlistri- 
lnitions of brain neural activity, and other targeting appli- 
cations where high resoliition localization of a few discrete 
sources is the primary aim. We assume one fraine of blurred 
observation d a h  is available with no knowledge of the blur- 
ring psf. 

Array processing algorit,hms, like ESPRIT [l] and MU- 
SIC, are related to  this problem because they inherently 
deal with point sonrces. Recently the MUSIC algorithm 
was used to restore point-source images with known ljliir 
[2] .  In this paper, we propose an ESPRIT-like algorithm 
for restoration with iinkiiown blur. The method is non- 
iterative, deterministic, and operates on a single image frame 
with unknown blur. This formulation requires the fairly 
stringent constraint, that  the blurring psf be separable along 
perpendicular axcs. This type of blur, however, is not nn- 
realizable. Long exposure atmospheric turbulence blur has 
been shown to be approximately circularly Gaussian, which 
is always separable. 

An application of particular interest to 11s is blind restora- 
tion of adaptive optics (AO) telescope images of star fields. 
The AO system removes much of the atmosplieric-tnrhulence- 
induced blurring, but a residual random, unknown blur re- 
mains. The general structure of the blur is known to be 
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Lorentzian [3], which is well approximated by the sum of 
two Gaussian blurs. Wit,li this motivation we study images 
blurred by non-separable psf’s which can be approximat,ed 
with a finite series expansion sum of separable blars. A 
Inethod is introduced for separakly estirnating the 2: and y 
positioiis of t.hc point soiirces in t,hc non-separable case. 

The assumed model for t,he iiipiit image, a point-like 
scciie with cl sonrccs, is 

d 

f (z ,  ?/) = nL:S(: t ;  - 2 k ) 6 ( ? /  - yk). (1) 

‘ t ~ i c  k‘” point soiirce 1ias aIriplitiic1c f l k  anc1 position (zk, yk). 
‘l’hc o1,servcd image is given by 

g(z, ?/) = h(z ,  y) * f ( Z ,  y) + I)(., y). ( 2 )  

k = l  

Hcrc the symbol ‘*I signifies two tlimciisiorial convolution, 
h(z ,  ?/) is tlic spatial domain psf, and ,ri(:c, y) is additive 
noise. The problem at liantl is to est,iniate point-source 
position pairs, (zk, yk), arid t,lieir ilssociatcd amplitudes. 

2. RESTORATION WITH SEPARABLE BLUR 

For a separable blur, h(z ,  y) = h . , . ( x ) h , ( y ) .  Assuming that 
(.lie output data is itvailablc in a sampled representation, 
g [ 7 n ,  n], the two-dimensional discrete Fourier tmnsforin of 
the output can be written as g(< ,<) ,  where < and C rep- 
resent the x and y spatial frequency variables respectively. 
Sampling this 2-D DFT with N spat*iid frequency samples 
along each axis, wit11 i = 1 . .  . N, leacis 
to a matrix representat,ion of the freqiicncy domain data: 
Gt,j = g((j,cZ). Incorporating equations (I)  and 2 )  into 
this sampled frequency domain model yields the following 
matrix representation, 

= ci = 

arid where Diag(x} indicates a diagoiial matrix formed 
from vector x. H,, V(x), and v(:ck) are defined similarly. 
Note that the element, of x, : ch ,  is linked to correspond- 
ing element z /k  of y in specifying :t: arid y positions of a 
single source point. 
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Following the developrnent of Swindlchurst and Gun- 
ther (which they used for blind resolution of overlapping 
echoes in digital communications) [4], we computc the sin- 
gular value decomposition G = USVH, where U and V arc! 
N x d and S is d x d. In the noiseless case, signal subspace 
matrices are defined as 

E, = us1/', and E, = Vs1l2, (4) 

where V = co~zj(V). These matrices can be related to the 
model in the following fashion 

E, = H , v ( ~ ) A ~ / ~ T  

E, = H , V ( ~ ) A ' / ~ ( T ~ ) - ' ,  (5) 

where T is some unknown full rank matrix. Lct 11s define 
V,(x)  as the first N - 6 rows of V(x) and V2(x) as the 
last N - 6 rows of V(x). This is equivalent to selecting 
two shifted sensor sub-arrays in ESPRIT based direction of 
arrival estimation. Since the V niatrices are Vanderrrionde: 
V,(x) = VI (x)@, where 

@ s -  - Diag [ I '  1 ( , T J 2 n 6 x 2 1 N  1 . .  , , e  - ~ z r a , . i / N ]  , (6) 

Similarly defining 1 and 2 matrices for H,, H,, E,, E,, 
and V(y) Icads to the following relations: 

H?y,1Ey,2 Hy,~Ey,l'J"y, 
@, = T-'@?/T, (7) 

9, = T - ' ~ ~ T .  ( 8 )  

H,,iE.,,z = HS,zET,iQT, 

This obscrvation iniplics two equivalent constraints on the 
solution. First, qZ and 9, must have an equivalent, set of 
eigenvectors and second, 9, and 9, must, commute. 

2.1. The Opt imal  Solution 

An optimal solution t,o this problem (in thc least, sqnarcs 
sense) can be defined t,hc solution to a constrainPd niirli- 
mization problem. First, the following definitions are made 

A, = H ~ , ~ - ' H ~ , ~ ,  and A~ = H , , ~ - ~ H , ~ , ~ .  (9) 

The solut,ion is 

A,, A,, G,, 9, = 

subject to the constraint 

e igw{9 , }  = e i g { 9 , } ,  or qZqy - qY*, = 0, (11) 

whcre e ig{A}  tlcnotes the matrix of eigenvectors of A. Once 
the qZ and 9, matriccs are known, the position estimates 
are given by 

where XZ,% and Ay,% are the it'' eigcnvalues of 9, and 9, 
respectivcly. 

2.2. A Subopt imal  Solution 

Though the solution presented above is optimal, it is dif- 
ficult to compute the joint minimization of equation (10). 
The following suboptimal approach performs the minimiza- 
tions sequentially. Ignoring the constraint, it is easy to solve 
for 9, and Ay [4], 

8, = argIninS: [Pi,,, 0 (Ey,2E:z)T] 6,  (13) 

where S = d i u y ( A )  is the vector extracted from the diagonal 
of A,  P denotes a projection matrix with respect to the 
subscript, a n d  0 denotes a Scliur matrix product. Using 
A = Diag6 yiclds 

6 ,  

'ir, = (E:' E,J) -IE:l ~ , E , , z .  (14) 

The estimate for T is T = eZg{'ir,}-'. A, and @, are then 
estimated as 

With a little algebra and calculus, it can be shown [5] that  
cquation (15)is equivalent to 

iZ = C I D $ , ,  arid 
Jz = argmind:(E - DHC-'D)+, (16) 

dr 

where 4, = dicig(@,), 6,  = diug(A, ) ,  E = 1 0  RHR, 

E = , ~ ( T ) ~ .  I t  is easy to solve for 4, with a singular value 
decomposition. zi positions are computcd directly from qhZ 
using equation (6), and 5, is used to estimate H,. The point 
soiircc y posit,ions are similarly coinpiited by switching the 
rolcs of T and 9 in the derivation above. 

c = IO ( Q Q H ) ~ ,  D = R O  Q,  Q E,,,(T)T, and R %' 

3. NON-SEPARABLE BLURRING FUNCTIONS 

Wlicn h(2 ,  y) is not separable, the above method fails, which 
limits nse of the algorit,hrri to a specific class of images. 
This section introduces a method that works with non- 
separable blurs. Suppose we have a point-source image that 
is blurred by a psf with exactly p separable components, 
i.e. h (z ,y )  = C;='=, A,i(~)h,,(y). Note that for sampled 
images, such a finite series expansion of the blur into sepa- 
rable components is always possible by letting h,i(m) and 
h , i ( 7 ~ )  be the Fourier basis functions. The received image 
can be rriodeled as 

d P  

.9(",?/) == C ~ a b h , , ( z - Z k ) h y z ( Y - Y k )  (17) 
k=l z = 1  

Taking a 1-D DFT of the columns and taking N samples 
as before yiclds 

P 

G, = H,,V(y)A,, + N,. (18) 
2 = 1  
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Each of the scpariible components are of rank d ,  so the total 
rank in the noise free G ,  must be g < pd.  Letting E be the 
first g singular vcctors from the SVD of G, leads to  

Thus for each i there exists a q x d matrix Ti such that 

This can be recast into the least squares pro1)lem 

Using the suboptimal sequential cstiInation ii1)l)roadi to 
solve for Ti first gives 

Ileinserting this solution into equation (21) yirltls 

(22) 

(23) 

which can be expanded in c:xact,ly t,he same rnanrier as the 
previous section's soliition for 6 to obtain 

where 

If the vectors h,i are constrained t,o be of unit rnagnitjutle, 
the maxirniirn value of the quadratic form i n  equat,ion (24) 
will be the maximum cigenvaluc of O(y). Tliiis, re- 
gardless of tlhe values of tlie true h,, vectors, the solulion 
for positions can be expressed inctcpendent of tlie unknown 
blur with the following reformulation 

y = arg inax {inax e i g i d  (O(y)) j . (26) 
Y 

This appears to be a tlaunting equation to solve iinrneri- 
cally. At, first glance it, seems as though there is 110 hope 
without an exhaustive search over the d tlinieIisional paran- 
eter space in y, (ix.  compute 8 ( y )  for all possible configu- 
rations of d points positioned along the y axis, calculating 
eigenvalues a t  each step.) It is possible however to solve 
the problem with at most 2 scans over a onc dimensional 
parameter space by exploiting rinderlying stmcture. 

all d of the y positions for point sources, it also liolds for a 
shorter y containing at  least two elements (points). Corre- 
spondingly, equation (26) will achieve niiixinla for any size 
vector y as long as all the specified positions match some 
subset of points in t,ruth iniage f(x,?/). In particular, if 
only two points are chosen, the largest eigenvalue of O(y) 
will achieve a local maxiinuin whenever the two y param- 
eters are separated by any distance which exists between 
some actual point-source pair. We note thatp In any t,riily 
blind restoration, only relative distance between features 
can be recovered. Absolute position is irrclcvant, because 

While equation (20) holds for the vector y con 

global shifts with respect to a reference frame can also be 
interpreted as arising from a non-centralized blur psf. 

For example, consider an image with 5 points located 
at positions y = {10,20,25,37,39). The set of all pairwise 
differences in position is {2,5,10,12,14,15,17,19,27,29}. 
Defining a two point position vector as y = [0,yl7', turns 
equation (26) into the following I-D optimization problem 
in y 

f (y )  = inaxeigvnl(@(y)). (27) 

Thc plot of f as a function of y is called the dzflerencc scan, 
which will manifest peaks at each legitimate difference. It 
is possible to reduce tlie coinpiitation by appealing to a 
lemma found in [4] whereby we can retluce the matrix @(y) 
to a size of q x q,  which is smaller than an N x N .  

Arincrd wit,li the differerice scan, wc: ran obtain a solu- 
tion lor the position est,imates. The two points that  are 
separated by t,he niaximuni difference itre uniqucly deter- 
mined. To prove this property, assirme t,here are two sets 
of point pairs, ( V I ,  y2) a i d  (!IS, U',), which are separated by 
t,he same (maximum) clistaiicc:, D,,,,,. . For this condition 

~z - ?/I U,,,, and 94 - ?/3  = D,,,,,. (28) 

If 1 ~ 1  5 y:$ 5 y 2  then clearly y4 - y1 > D,,,,, wliich vio- 
lates the premise that D,,,,, was the rnaxirnuin difference. 
The other possible relative position cases lead to ii simi- 
lar conclusion. Therefore, the local peak in equation (27) 
c:orresporiding to the largest y value localizes the unique 
point pair dist,ance L?,,,, . With this first pair separation 
uniqudy determined, t:ach other position can be uniquely 
detcmninecl between t,hern. Now, define the single parame- 
t,er point triple 

Y = [O, D I I L I L 1 . ,  ; ! / I T ,  (29) 

and tlie solution spectrum, f ( y ) ,  will have nnique peaks at 
d l  correct positions, including 0 and D,,,,c, when scanning 
t,he single scalar parameter y. 

4. RESULTS 

The first exarnplc shown in Figure 1 is for tlie separable 
blur method. The observed image contains six stars con- 
volved with a circularly syrnrnetric Gaussian blurring func- 
tion with a standard deviation of 3.5 pixels. Two sets of 
stars are very much blurred togetlicr. The top left frame 
shows the blurred ( fah  with white Gaussian noise added at  
a level of 40 dB peak SNR. The top right, frame shows the 
position estimates as aterisks, and the correct positions as 
diarnontls. These results are obtained with the y positions 
estirnatcd without regard to the constraint of equation (11). 
The botkmri left image shows the converse case, where es- 
t,ima.tes of t,lie x positions do not include the constraint. 
Note that position estimates are quite accurate (average 
error Icss than t,wo pixels), which is remarkable given the 
noisc level and complete lack of knowledge about the blur, 
h(z ,  y), ot81ier than that it. is separable. 

The second example shown in Figurc: 2 illustrates the 
non-separable niethod. The same inpiit image is used, ex- 
cept, this time the blur is a non-separable Lorentzian func- 
tion. The top left, frame shows the bliirred image, while the 
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top right shows the input image itself. Note that the t,his 5. CONCLUSIONS 
truth image corresponds to  a smaller window centered on 
the blurred points in tlie observed image, and is thus pre- 
scnted at a lower resolution scale. The bottom two graphs 
=e the solution spectra for the y and 5 positioIls respec- 
tively. We see that the peaks of the spectra indeed cor- 
respond to  the actual positions represented in the input 
image. 

w e  have preSe1lted two methods of blind point-source image 
restoration based on deterministic, subspace decomposition 
algorithms. The underlying point-source image is recovered 
from a single observation franie without any prior knowl- 
edge about the blurririg function (in the case of the non- 
separable algorithm). If it is known that the blur psf is 
separable, then an even more computationally efficient al- 
gorithm is available. Other known point source restoration 
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methods are iterative, or require knowledge of the blur, or 
require rniiltiple observation frames with distinct blur, or 
are based on statistical signal models, or involve lengthy 
simulated annealing opt,imization codes [2 ,  5, 6, 71. We be- 
lieve the new methods presented here are superior, first, in 
elegance and second in speed. We know of no other deter- 
ministic blind method which is optimized for point-source 
images. The new methods involve extension and adaptation 
of digital communications algorithms, originally developed 
for resolving overlapping multipath echoes, so that they can 
be used in 2-D blind imaging problems. F‘liture work should 
include further att,erition to the issue of linking the scpn- 
rate z and y spectrum sca.nned position estimates in t,he 
non-separable algorithni. Methods of cxt,ractirig blur psf 
arid point amplitude estimates from the nori-separable al- 
gorithrn are also under study. 
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Figure 1: Six star example at  PSNR=40 dB. Top left: 
Blurred, noisy output. Top right: Position estimates wit,h ?J 

fixed. Bottom left: Position estimates with z fixed. Bottom 
right: Blur estimate. 
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Figure 2: Six star example 200 dB. Top left: Blurred, noisy 
image. T~~ right: Truth image. Bottom left: positions 
solution spectrum. Bottom right: z position solution spec- 
trum. 
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