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ABSTRACT

Blind point-source image restoration refers to the problem
of high resolution recovery of point-like sources which are
blurred by an unknown point spread function (psf). Appli-
cations include astronomical star field localization, magne-
toencephalogram brain current imaging, and seismic decon-
volution. This paper shows that with suitable constraints,
the problem can be cast in the language of subspace de-
composition as used in blind signal copy algorithms for dig-
ital wircless communications. Assuming a separable psf, we
propose a deterministic, non-iterative ESPRIT-like solution
to the restoration problem. We next extend the algorithm
to non-separable psf’s by approximating them as a series
expansion of a few separable components.

1. INTRODUCTION

In this paper we consider the blind restoration of point-
like source images that have been corrupted by noise and
blurred by unknown point spread functions (psf). These
problems arise in processing astronomical star field frames,
magnetoencephalograms imaging of current dipole distri-
butions of brain neural activity, and other targeting appli-
cations where high resolution localization of a few discrete
sources is the primary aim. We assume one frame of blurred
observation data is available with no knowledge of the blur-
ring psf.

Array processing algorithms, like ESPRIT [1] and MU-
SIC, are related to this problem because they inherently
deal with point sources. Recently the MUSIC algorithm
was used to restore point-source images with known blur
[2]. In this paper, we propose an ESPRIT-like algorithm
for restoration with unknown blur. The method is non-
iterative, deterministic, and operates on a single image frame
with unknown blur. This formulation requires the fairly
stringent constraint that the blurring psf be separable along
perpendicular axes. This type of blur, however, is not un-
realizable. Long exposure atmospheric turbulence blur has
been shown to be approximately circularly Gaussian, which
is always separable.

An application of particular interest to us is blind restora-
tion of adaptive optics (AO) telescope images of star fields.
The AO system removes much of the atmospheric-turbulence-
induced blurring, but a residual random, unknown blur re-
mains. The general structure of the blur is known to be
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Lorentzian [3], which is well approximated by the sum of
two Gaussian blurs. With this motivation we study images
blurred by non-separable psf’s which can be approximated
with a finite series expansion sum of separable blurs. A
method is introduced for separately estimating the « and y
positions of the point sources in the non-separable case.

The assumed model for the input image, a point-like
scene with d sources, is

d
Flay) = ardle —a)d(y — w). (1)

k=1

The k" point source has amplitude ay, and position (zx, yx ).
The observed image is given by

g(®,y) = h(x,y) * f(z,y) + =z, v). 2)

Here the symbol ‘4’ signifies two dimensional convolution,
h(z,y) is the spatial domain psf, and n(z,y) is additive
noise. The problem at hand is to estimate point-source
position pairs, (g, yx), and their associated amplitudes.

2. RESTORATION WITH SEPARABLE BLUR

For a separable blur, h(z,y) = he(x)hy(y). Assuming that
the output data is available in a sampled representation,
g[m,n], the two-dimensional discrete Fourier transform of
the output can be written as g({,(), where £ and ( rep-
resent the z and y spatial frequency variables respectively.
Sampling this 2-D DFT with N spatial frequency samples
along each axis, & = (; = Q—”;V_—l) with ¢ = 1--- N, leads
to a matrix representation of the frequency domain data:
Gi; = 9(&,¢). Incorporating equations (1) and 2) into
this sampled frequency domain mode] yields the following
matrix representation,

G = H,V(y)AV'x)HL, where (3)

H, = Diag{[hy (Cl)y Y h‘y(CN )]T}’
Viy) = [vly) - v(ya)l,
. - r
A = Diag{la:, - ,ad"}.

and where Diag{x} indicates a diagonal matrix formed
from vector x. H,, V(x), and v(z) are defined similarly.
Note that the k™ element of x, xy, is linked to correspond-
ing element yr of y in specifying « and y positions of a
single source point.
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Following the development of Swindlehurst and Gun-
ther (which they used for blind resolution of overlapping
echoes in digital communications) [4], we compute the sin-
gular value decomposition G = USV¥ | where U and V are
N xd and S is d X d. In the noiseless case, signal subspace
matrices are defined as

E, = US"? and E, = VS'/? 4)

where V = conj(V). These matrices can be related to the
model in the following fashion

It

H,V(y)A'Y?T
H,V(x)A*(TT)"!, (5)

Ey
E,

i

where T is some unknown full rank matrix. Let us define
Vi(x) as the first N — 4 rows of V(x) and Va(x) as the
last N — & rows of V(x). This is equivalent to selecting
two shifted sensor sub-arrays in ESPRIT based direction of
arrival estimation. Since the V matrices are Vandermonde,
Va(x) = Vi (x)®, where

&, = Diag [1,(37].27”5“/1\/, e ,esz"'sm"/N] . (6)
Similarly defining 1 and 2 matrices for H,, Hy, E., E,,
and V(y) leads to the following relations:

Hy By = Hy.QEy,l‘I’yv

v, = T 'aT, (7)
H, 1 Bep = HioBE, 0],

v, = T '&,T. (8)

This observation implies two equivalent constraints on the
solution. First, ¥, and ¥, must have an equivalent set of
eigenvectors and second, ¥, and ¥, must commute.

2.1. The Optimal Solution

An optimal solution to this problem (in the least squares
sense) can be defined as the solution to a constrained mini-
mization problem. First, the following definitions are made

Ay =H,, "H,,, and A, = H,» "H, ;. (9)
The solution is

2

(10)

AyEy,'Z _ Ey.l\py
AmE:c,Q E:n,l\IIZ

argmina, . v, .. ’
F

subject to the constraint
eigu{¥y} = eig{¥s.}, or ¥, ¥, — ¥, ¥, =0, (11)

where eig{ A} denotes the matrix of eigenvectors of A. Once
the ¥, and ¥, matrices are known, the position estimates
are given by

= NZLAzi o JVZ)\y‘i
T om0 YT Tons

(12)

h

where X, ; and ),,; are the i'" eigenvalues of ¥, and ¥,

respectively.

2.2. A Suboptimal Solution

Though the solution presented above is optimal, it is dif-
ficult to compute the joint minimization of equation (10).
The following suboptimal approach performs the minimiza-
tions sequentially. Ignoring the constraint, it is easy to solve
for ¥, and A, [4],

5, = argmins; [Péy'1 © (Ey,zE;{2)T] 5, (13)
v

where § = diag(A) is the vector extracted from the diagonal
of A, P denotes a projection matrix with respect to the
subscript, and © denotes a Schur matrix product. Using
A = Diagé yields

¥, = (B E, 1) "B \AE, . (14)

The estimate for T is T = eig{¥,}~!. A, and ®, are then
estimated as

~ ~ 2
ALE, 1T — B, TT®,
F

Ay, &, = arg Ami;)x

s P

(15)

With a little algebra and calculus, it can be shown [5] that
cquation (15)is equivalent to

8, = C*]qum, and

$: = agming/(E-DYC'D)g.  (16)

|

where ¢, = diag(®,), 6, = diag(A,), B = 1 © RYR,

C=16(QQ")",D=R6Q, Q™ E,»(T)7, and R &

E. . (T)T. 1t is easy to solve for ¢, with a singular value
decomposition. z; positions are computed directly from b
using equation (6), and d, is used to estimate H,. The point
source y positions are similarly computed by switching the
roles of z and y in the derivation above.

3. NON-SEPARABLE BLURRING FUNCTIONS

When h(x,y) is not separable, the above method fails, which
limits use of the algorithm to a specific class of images.
This section introduces a method that works with non-
separable blurs. Suppose we have a point-source image that
is blurred by a psf with exactly p separable components,
ie. h(z,y) = > 7, hyi(x)hei(y). Note that for sampled
images, such a finite series expansion of the blur into sepa-
rable components is always possible by letting hyi(m) and
hei(n) be the Fourier basis functions. The received image
can be modeled as

g(x)y) :ZZakhm(z—xk)hyi(y~yk) (17)

d
k=11i=1

Taking a 1-D DFT of the columns and taking N samples

as before yields

P
Gy =Y HuV(y)Ay +N,. (18)

i=1
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Each of the separable components are of rank d, so the total
rank in the noise free G, must be g < pd. Letting E be the
first ¢ singular vectors from the SVD of G leads to

[Hyi V(y)l-- - [HypV(y)] € span{E}. (19)
Thus for each i there exists a ¢ X d matrix T'; such that
ET; = H,,V(y). (20)
This can be recast into the least squares problem

Ay, T:,§ = arg min |Hy;V(y) — ETi|[3 . (21)
s LY

Using the sub-optimal sequential estimation approach to
solve for T; first gives

~ —1
T = (EB") E"H,V(y). (22)

Reinserting this solution into equation (21) yields

2
Hyi, ¥ = arg min HPEHyiV(y)“l , (23)
WY o

which can be expanded in exactly the same manner as the
previous section’s solution for § to obtain

flyi, V= arg max hf,-@(y)hyi, (24)
L,y
where
-
o) = (EE") o (V)V'(y)) . (25)

If the vectors hy; are constrained to be of unit magnitude,
the maximum value of the quadratic form in equation (24)
will be Ajpaz, the maximum cigenvalue of &(y). Thus, re-
gardless of the values of the true hy; vectors, the solution
for positions can be expressed independent of the unknown
blur with the following reformulation

¥ = arg max {maxcigval (0(y))}. (26)
v

This appears to be a daunting equation to solve numeri-
cally. At first glance it seems as though there is no hope
without an exhaustive search over the d dimensional param-
eter space in y, (i.c. compute O(y) for all possible configu-
rations of d points positioned along the y axis, calculating
eigenvalues at each step.) It is possible however to solve
the problem with at most 2 scans over a one dimensional
parameter space by exploiting underlying structure.

While equation (20} holds for the vector y consisting of
all d of the y positions for point sources, it also holds for a
shorter y containing at least two clements (points). Corre-
spondingly, equation (26) will achieve maxima for any size
vector y as long as all the specified positions match some
subset of points in truth image f(z,y). In particular, if
only two points are chosen, the largest eigenvalue of O(y)
will achieve a local maximum whenever the two y param-
eters are separated by any distance which exists between
some actual point-source pair. We note that in any truly
blind restoration, only relative distance between features
can be recovered. Absolute position is irrelevant because
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global shifts with respect to a reference frame can also be
interpreted as arising from a non-centralized blur psf.

For example, consider an image with 5 points located
at positions y = {10, 20, 25, 37,39}. The set of all pairwise
differences in position is {2,5,10,12,14,15,17,19, 27, 29}.
Defining a two point position vector as y = [O,y]T, turns
equation (26) into the following 1-D optimization problem
ny

f(y) = maxeigval(O(y)). (27)

The plot of f as a function of y is called the difference scan,
which will manifest peaks at each legitimate difference. It
is possible to reduce the computation by appealing to a
lemma found in [4) whereby we can reduce the matrix O(y)
to a size of g X ¢, which is smaller than an N x N.

Armed with the difference scan, we can obtain a solu-
tion for the position estimates. The two points that are
separated by the maximum difference are uniquely deter-
mined. To prove this property, assume there are two sets
of point pairs, (y1,y2) aud (y3,y4), which are separated by
the same (maximum) distance, Dy,q,. For this condition

Y2 — Y1 = Dma:n and Y4 — Yz = Dinae. (28)

If 1 < ys3 < y2 then clearly ya — y1 > Diper which vio-
lates the premise that D;n., was the maximum difference.
The other possible relative position cases lead to a simi-
lar conclusion. Therefore, the local peak in equation (27)
corresponding to the largest y value localizes the unique
point pair distance Dy,q,. With this first pair separation
uniquely determined, each other position can be uniquely
determined between them. Now, define the single parame-
ter point triple

Yy = [07 Dinaa, Z‘J}Ta (29)

and the solution spectrum, f(y), will have unique peaks at
all correct positions, including 0 and Djpe., when scanning
the single scalar parameter y.

4. RESULTS

The first example shown in Figure 1 is for the separable
blur method. The observed image contains six stars con-
volved with a circularly symietric Gaussian blurring func-
tion with a standard deviation of 3.5 pixels. Two sets of
stars are very much blurred together. The top left frame
shows the blurred data with white Gaussian noise added at
a level of 40 dB peak SNR. The top right frame shows the
position estimates as asterisks, and the correct positions as
diamonds. These results are obtained with the y positions
estimated without regard to the constraint of equation (11).
The bottom left image shows the converse case, where es-
timates of the = positions do not include the constraint.
Note that position estimates are quite accurate (average
error less than two pixels), which is remarkable given the
noise level and complete lack of knowledge about the blur,
I(z,y), other than that it is separable.

The second example shown in Figure 2 illustrates the
non-separable method. The same input immage is used, ex-
cept this time the blur is a non-separable Lorentzian func-
tion. The top left frame shows the blurred image, while the



top right shows the input image itself. Note that the this
truth image corresponds to a smaller window centered on
the blurred points in the observed image, and is thus pre-
sented at a lower resolution scale. The bottom two graphs
are the solution spectra for the y and z positions respec-
tively. We see that the peaks of the spectra indeed cor-
respond to the actual positions represented in the input
image.
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Figure 1: Six star example at PSNR=40 dB. Top left:
Blurred, noisy output. Top right: Position estimates with y
fixed. Bottom left: Position estimates with z fixed. Bottom
right: Blur estimate.
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Figure 2: Six star example 200 dB. Top left: Blurred, noisy
image. Top right: Truth image. Bottom left: y positions
solution spectrum. Bottom right: z position solution spec-
trum.
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5. CONCLUSIONS

We have presented two methods of blind point-source image
restoration based on deterministic, subspace decomposition
algorithms. The underlying point-source image is recovered
from a single observation frame without any prior knowl-
edge about the blurring function (in the case of the non-
separable algorithm). If it is known that the blur psf is
separable, then an even more computationally efficient al-
gorithm is available. Other known point source restoration
methods are iterative, or require knowledge of the blur, or
require multiple observation frames with distinct blur, or
are based on statistical signal models, or involve lengthy
simulated annealing optimization codes [2, 5, 6, 7]. We be-
lieve the new methods presented here are superior, first in
elegance and second in speed. We know of no other deter-
ministic blind method which is optimized for point-source
images. The new methods involve extension and adaptation
of digital communications algorithms, originally developed
for resolving overlapping multipath echoes, so that they can
be used in 2-D blind imaging problems. Future work should
include further attention to the issue of linking the scpa-
rate z and y spectrum scanned position estimates in the
non-separable algorithm. Methods of extracting blur psf
and point amplitude estimates from the non-separable al-
gorithm are also under study.
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