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ABSTRACT

Radio astronomical observations of important L-band spec-
tral lines must often be made at frequencies allocated to
pulsed air surveillance RADAR in the 1215–1350 MHz band.
Such pulsed interference must be dealt with at the Green
Bank Telescope (GBT) and other observatories by “blank-
ing” to remove corrupted data. This paper presents a new
algorithm which improves aircraft echo detection by using
a Kalman tracker to follow the path of a sequence of echoes.
This Bayesian method enables more sensitive weak echo de-
tection. Track information is used to form a spatial prior
probability distribution for the presence of echoes in the
next antenna sweep. A lower detection threshold is used in
higher probability regions to pull out low level pulses with-
out increasing the overall probability of false alarm detec-
tion.

1. INTRODUCTION

Air surveillance RADAR transmissions such as those from
the ARSR-3 system occur at frequencies of importance for
radio astronomy. Red shifted Hydrogen line observations
range in frequency from 960 to 1400 MHz. These signals
may dramatically disturb radio astronomical observations,
and have been reported to be a significant problem at the
Green Bank Telescope (GBT) [1], Arecibo [2] [3], and other
observatories . However, the induced pollution is impulsive
and transient, so for radio astronomy observation, one solu-
tion is to “time-blank” by simply not including RADAR-
pulse-corrupted data samples during spectrum estimation
[4].

Though echoes from fixed terrain objects (like local moun-
tains) are easily anticipated and removed from observation
data, aircraft echoes are not stationary and must be detected
before they can be blanked. Aircraft hundreds of kilometers
from the telescope cause troublesome echoes. A window
of data surrounding each detected aircraft echo is removed,
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Fig. 1. Typical RADAR sweep snapshot frame as seen at the
GBT. Aircraft echoes detected using a constant threshold τ0

are marked by stars. Two additional weak echoes found
with the Bayesian detector are marked with circles.

including transmit antenna beampattern sidelobes. Because
astronomers observe deep space signals which can be 40
dB or more below the noise floor, impulsive aircraft echoes
weak enough to make detection difficult may still cause sig-
nificant corruption to the data set. Thus high performance
detection is a must.

Figure 1 shows 1292 MHz band time series data col-
lected at the GBT which has been reordered into range-
bearing bins by synchronizing with the transmitter pulse
repetition and antenna sweep rates. Both local terrain clutter
and aircraft echoes are seen.

This paper presents a new Bayesian method for pulse
detection based on Kalman filter tracking of aircraft echo
motion. Time-history information across multiple past RADAR
antenna sweeps is exploited to predict the location of the
next echo. This prediction is used to form a prior prob-
ability distribution for pulse arrivals, which in a Bayesian
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framework improves weak echo detection.

2. KALMAN TRACKER OVERVIEW

A classical Kalman filter approach as often used for RADAR
target following was implemented with some modifications
[5]. The full Kalman tracker design is described in [6] [7].
For this discussion we need know only the basic Kalman
prediction equations because they are used to form the echo
prior probability distribution.

The true state vector at the nth “snapshot” (correspond-
ing to an overhead pass of the transmit antenna beampattern
at tn) is defined as x(n) = [x(n) y(n) ẋ(n) ẏ(n)]T , where
x and y are a single aircraft’s position coordinates with ve-
locities ẋ and ẏ. The assumed aircraft dynamical model is
x(n+1) = Fx(n)+Ga(n), where F is the state transition
matrix, G is the process transfer matrix, and a(n) is the ac-
celleration vector which models non-linear maneuvers. For
each track, a new observation snapshot initiates an iteration
of the Kalman filter which produces an updated state vector
estimate, x̂(n|n), and state error covariance matrix P (n|n).
Then the predicted state at tn+1, x̂(n + 1|n), for the next
(as yet undetected) echo, is computed as

x̂(n + 1|n) = F x̂(n|n), and (1)

P (n + 1|n) = FP (n|n)F T + GQGT , (2)

where Q is the process (acceleration) covariance. We note
that the state vector is represented in Cartesian coordinates,
while the observation is in polar range and bearing. For this
reason an extended Kalman filter implementation is used
which linearizes about the observation at each snapshot.

The desired tracker outputs are a prediction point where
the next detection is expected (x̂n+1|n, ŷn+1|n) which is just
the first two elements of x̂(n + 1|n), and shape parame-
ters for an elliptical uncertainty region, S, centered on this
point (see Figure 2). The size of S depends on the quality
of the track, and gets larger with an increase in observation
noise, missed snapshot detections, or acceleration of the tar-
get. S selects the region of increased prior probability for
an arriving echo pulse in snapshot n + 1. S has radii rx

and ry proportional to prediction error standard deviations√
P 1,1(n + 1|n) and

√
P 2,2(n + 1|n) respectively.

Figure 2 illustrates this behavior. The plot shows track
evolution for real GBT data over eight snapshots with mul-
tiple, overlapping aircraft tracks. The ellipses show predic-
tion regions, S for each established track. Note the variety
of sizes, corresponding to variations in track quality.

3. PULSE ARRIVAL PRIOR DISTRIBUTION

We assume that for each existing track, exactly one echo
will occur (with probability one) at tn+1, somewhere in the
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Fig. 2. Typical Kalman tracking performance for GBT data.
Tracks have been automatically established and plotted for
five aircraft. Prediction regions for the next snapshot, S,
are shown by dashed ellipses centered on prediction points,
(x̂n+1|n, ŷn+1|n). One track has been dropped due to lack
of detections, and has no prediction point.

field, Ω, of all range-bearing bins of interest. Let E be the
event that this echo occurs in partition A ∈ Ω. We define
a spatial probability density function, fE(x, y), such that
P (E) =

∫∫
A

fE(x, y) dxdy. The following truncated two-
dimensional Gaussian distribution is proposed,

fE(x, y) = (3)⎧⎨
⎩

1
2πβrxry

e
−[

(x−x̂n+1|n)2

2β r2
x

+
(y−ŷn+1|n)2

2β r2
y

]
, (x, y) ∈ S

1−PS
|Ω|−|S| , (x, y) ∈ S̄

,

where

S =
{

(x, y)
∣∣∣∣ (x − x̂n+1|n)2

r2
x

+
(y − ŷn+1|n)2

r2
y

≤ 1
}

,

Ω = S ∪ S̄ (i.e. entire range-bearing map),

Ps =
∫∫

S
fE(x, y)dxdy, and |S| =

∫∫
S

dxdy.

β is set by design to control the height of the probability
discontinuity at the boundary of S. This model is illustrated
in Figure 3.

The shape of fE(x, y) was selected as an arbitrary de-
sign choice, but it possesses the following desirable char-
acteristics: 1) probability decreases with distance from the
prediction point, 2) the distribution is smooth over S, 3)
density surface shape depends on prediction error covari-
ance, P n+1|n, so higher prediction error leads to lower prob-
ability density, and 4) there is a low, uniform probability of
echoes arriving outside the prediction region.
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Fig. 3. f(x, y) around S. (x, y) ∈ Sp defines a range-
bearing bin centered on a point, (xp, yp), p = 1, inside S.

Let H1 and H0 represent respectively the events that an
echo is or is not present in the range-bearing bin patch, Sp,
centered on (xp, yp). xp = Rp cos θp and yp = Rp sin θp

where (Rp, θp) is the pth sample point in range-bearing space.
The corresponding probabilities can be shown to be [6]

P (H1) =
∫∫

Sp

fE(x, y) dydx,

≈ |Sp|
2παβr2

y

e
− r2

yp

2βr2
y , , (4)

P (H0) ≈ 1 − |Sp|
2παβr2

y

e
− r2

yp

2βr2
y , (5)

where α = rx

ry
and r2

yp = (xp−x̂n+1|n)2

α2 + (yp − yn+1|n)2.
α determines the orientation and elongation of S, and ryp

is the y axis radius of an ellipse concentric with S which
passes through (xp, yp). All parameters are known and these
expressions are easily evaluated at all range-bearing bins for
any prediction region size.

4. CONSTANT TOTAL PROBABILITY OF FALSE
ALARM DETECTION

The conventional detection approach is to threshold the mag-
nitude squared output samples, z(xp, yp), of a baseband
quadrature digital matched filter receiver. z is distributed
central or noncentral χ2 with two degrees of freedom under
H0 or H1 respectively. A threshold, τ , is fixed so the prob-
ability of false alarm detection, PFA =

∫ ∞
τ

fz(z|H0)dz is
some small constant, e.g. PFA = 10−7. Note that PFA is
defined conditionally under H0. z > τ indicates an echo
detection.

We propose a new Bayesian framework for improved
detection performance. The unconditional “total probability
of false alarm” is defined as the joint probability that the
threshold was crossed and no echo was present,

PTFA
�
= P (z > τ ∩ H0) = P (H0)PFA,

= P(xp,yp)(H0)
∫ ∞

τ(xp,yp)

f(z|H0) dz, (6)

where the sampled spatial dependences of P (H0) and τ
have been explicitly indicated.

We define the constant PTFA detector (CTFA) with the
following steps:

1. Set PTFA = a small constant.

2. Solve (6) for the spatially varying τ(xp, yp).

3. Decide H1 if z(xp, yp) > τ(xp, yp).

The effect of this approach is that the threshold is low-
ered in the predictions regions, S where based on prior track
history it is known that echoes are more likely. This leads to
more reliable detection of weak aircraft echoes. By proper
design of the parameters of fE(x, y), the probability of de-
tection, PD, is increased while false alarms are kept low.
Figure 4 illustrates how the variable threshold τ(x, y), might
look along a 1-D slice through predictions regions for two
tracks. Note that the lower quality track has a wider predic-
tion region, leading to a more shallow, dispersed threshold
depression. This corresponds to greater uncertainty about
the next echo location, so less emphasis on detection is gen-
erated here. The decreased threshold regions should also not
significantly increase PFA while it improves PD. This is as-
sured by carefully selecting larger values of β for fE(x, y).

τ0 τ0

τ(x,y)

τ(x,y)

Prediction point

Fig. 4. Constant PTFA spatially varying detection thresh-
old. τ(x, y) is at a local minimum corresponding to each
prediction point.

5. RESULTS

To evaluate the detection performance improvement of the
Bayesian CTFA algorithm under known, controlled condi-
tions, a careful set of Monte Carlo simulation trials were
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completed. The simulation used realistic signal models (match-
ing the ASR-3 RADAR, GBT receiver and aircraft motion),
with the following simplifications. Only one echo track is
simulated in each randomly generated trail. Pulse echo am-
plitude follows a Swirling distribution IV model for a square
law receiver. Echo amplitudes are uncorrelated from pulse
to pulse.

Figure 5 presents a set of ROC curves which demon-
strate that the CTFA Bayesian algorithm has higher PD for
a given PFA across all tested SNR levels. SNR is computed
as an expectation at the matched filter ouptput.
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Fig. 5. PFA vs. PD for new Bayesian CTFA and “old”
constant threshold algorithms. Top curve for each algorithm
is 29.08 dB SNR, bottom is 25.45 dB SNR.

A set of real data recorded at the GBT for a 10 MHz
wide band around 1292 MHz was used to test the echo de-
tection algorithm, tracking, and blanking performance. By
using the tracker information, the new Bayesian CTFA al-
gorithm is able to detect some weaker echoes which were
not detected by the conventional method. This was accom-
plished without increasing the false alarm rate. Figure 6
shows how each method performed in a data set with dense
aircraft traffic. All detections were made by both algorithms,
except those marked by rectangles, which only the Bayesian
CTFA algorithm found. These detections are clearly in le-
gitimate track positions.
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Fig. 6. Real data detection results for both algorithms. Note
that 3 weaker pulses (inside the rectangles) are missed by
the constant threshold algorithm, and picked up by CTFA.
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