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Radio astronomical observations of highly Doppler shifted spectral lines of neutral
hydrogen and the hydroxyl molecule must often be made at frequencies allocated to
pulsed air surveillance radar in the 1215-1350 MHz frequency range. The Green Bank
telescope (GBT) and many other observatories must deal with these terrestrial signals.
Even when strong radar fixed clutter echoes are removed, there are still weaker aircraft
echoes present which can corrupt the data. We present an algorithm which improves
aircraft echo blanking using a Kalman filter tracker to follow the path of a sequence of
echoes observed on successive radar antenna sweeps. Aircraft tracks can be used to
predict regions (in azimuth and range) for the next expected echoes, even before they are
detected. This data can then be blanked in real time without waiting for the pulse peak to
arrive. Additionally, we briefly suggest an approach for a new Bayesian algorithm which
combines tracker and pulse detector operations to enable more sensitive weak pulse
detection. Examples are presented for Kalman tracking and radar transmission blanking
using real observations at the GBT.

1. Introduction

The frequency bands of spectral line emissions of
neutral hydrogen (1420.4 MHz) and the hydroxyl
molecule (1612.2, 1665.4, 1667.4, and 1720.5 MHz)
from cosmic sources are protected by international
spectrum allocations, but observed radiation from
very distant objects is Doppler shifted to much lower
frequencies due to the expansion of the universe.
Some of this radiation is shifted into the 1215-1350
MHz frequency range allocated to radar transmis-
sions, such as from the ARSR-3 air surveillance sys-
tem. These radar signals can overwhelm astronomi-
cal observations, and have been reported to be a sig-
nificant problem at the Green Bank Telescope (GBT)
(see Zhang et al. [2003], Fisher [2001a] and Fisher
[2001b]), Arecibo (see Ellingson and Hampson [2003]
and Ellingson and Hampson [2002]) and other ob-
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servatories. However, the radar signal is impulsive
and transient, so for radio astronomy observation,
one solution is to “time-blank” by simply not includ-
ing radar corrupted data samples during spectrum
estimation (Ravier and Weber [2000] Zhang et al.
[2003]). Time blanking has also been used to miti-
gate the effect of transmissions from mobile wireless
communications services (see Leshem and v.d. Veen
[1999] Boonstra et al. [2000] Leshem et al. [1999]).
Additionally, a non-blanking approach to radar RFI
mitigation has been proposed where detected pulses
are removed by parametric signal subtraction with-
out discarding data (Ellingson and Hampson [2002]).

To illustrate the problem addressed in this pa-
per, Figures 1 and 2 present some 1292 MHz data
recorded at the GBT which clearly shows the radar
signal. A detailed description and analysis of this
real-world data is provided in Fisher [2001a] and
Fisher [2001b]. This ARSR-3 radar system is lo-
cated in Bedford VA, about 104 km from the GBT.
The rotating transmit antenna completes a full 360
degree sweep in 12 seconds, with a pulse repetition
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Figure 2. Typical radar sweep time frame as seen at
the GBT. Data are presented in range-azimuth (or equiv-
alently range-bearing) map form, with intensity corre-
sponding to echo signal power. Zero degrees corresponds
to the transmitter beam passing overhead at the GBT.

interval of approximately 2.93 ms and pulse length
of 3.5 µs.

Figure 1 shows pulse intensity as a function of
delay relative to the first arriving path for a single
transmitted pulse. Strong signal terms can be seen
out to a delay of 135 microseconds, most of which
are due to reflections from the hilly terrain around
the GBT (i.e. ground clutter). These can typically
be excised using fixed time window blanking. The
group of echo returns at 430 microseconds is from an
aircraft, and blanking it is more problematical since
it is not present at this same location during each
successive transmit antenna sweep.

Figure 2 gives a two dimensional view of the data
known as a range-azimuth map. The 1-D time se-
ries data has been broken into window blocks and
re-ordered so that each transmit pulse, with its asso-
ciated echoes, is plotted as a one pixel wide column in
the map. Each column thus contains a 2.93 ms win-
dow of received data. The vertical axis represents
time between the first detected arrival for a pulse
and its longer delayed echoes. Since the transmit an-
tenna is rotating, the coarse time horizontal axis can
be interpreted as corresponding to angle (azimuth)
of the transmit antenna pointing direction. A 60
degree segment of the full sweep is shown, centered
on the time when the transmit beam passes over-
head at the GBT. Again two types of radar signals

are seen. Bright regions in the range of 0 to 120
µs are fixed echoes from nearby mountainous ter-
rain. Bright points at longer delay times are aircraft
echoes. Note the wide transmit antenna sidelobe pat-
tern for the echo at 310 µs delay.
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Figure 1. Pulse intensity as a function of delay from
the directly arriving pulse

1.1. Approach

There are two basic approaches to blanking
which we will call respectively, “time window blank-
ing” (TWB) and “detected pulse blanking” (DPB).
Strong direct-path pulses and nearby fixed terrain
clutter echoes have a predictable repetition cycle and
can be removed by simple TWB. In this approach a
fixed set of time intervals, synchronized to the radar
pulse repetition rate, are removed from the data dur-
ing each transmit antenna sweep cycle. All data be-
tween the first arrival time and a fixed delay (of for
example 135 µs) is removed for each transmit pulse,
eliminating ground clutter echoes and their associ-
ated sidelobe structure. TWB is considered the base-
line minimum level of radar RFI blanking, and is per-
formed on all data sets presented in the remainder of
this paper. Its effect on the signal seen in Figure 2
would be to remove all data in the horizontal band
between 0 and 135 µs of delay.

On the other hand, aircraft echoes arrive at arbi-
trary times due to aircraft motion, and thus must
be detected before they can be blanked. DPB is
used in this case to remove a window of data in the
range-azimuth map surrounding each detected air-
craft echo, including transmit antenna beampattern
sidelobes which span many transmit pulses.

Two difficulties arise with DPB:
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1. It is very hard to perform blanking in real time
because aircraft echoes include wide sidelobe pat-
terns from the radar transmit beampattern which ex-
tend over tens of degrees before and after the central
peak and over several range bins due to the trans-
mit pulse length (see Figure 2). For real-time opera-
tion the echo must be anticipated and the full beam
sidelobe and pulselength structure must be removed
before and after the echo peak arrives.

2. Echoes weak enough to make detection of even
the peak amplitude difficult may still cause signif-
icant corruption to the data set. This is because
astronomical signals of interest are typically tens of
decibels below the noise floor.

This paper presents a Kalman filter tracker for
aircraft echo motion which can be used to resolve
both problems. The proposed method utilizes time-
history information across multiple past radar an-
tenna sweeps to predict detection locations in the
next upcoming antenna pass. The first problem
(real-time blanking) is solved by forming a predic-
tion region around an anticipated echo peak to guide
data removal for each affected transmit pulse. We
designate this algorithm the “Kalman Detected Pulse
Blanker” (KDPB).

In a fully digital radio telescope implementation
it would be possible to perform real-time blanking
without KDPB; you could blank pulses stored in
memory as they are detected. However, this requires
sufficient memory to handle several seconds of data
latency, and enough computational capacity to keep
up with echo detection and tracking while also per-
forming the desired scientific analysis. The long la-
tency requirement arises from transmit beampattern
sidelobes which can precede the detectable central
echo peak by several seconds (see Figure 2).

We propose the alternate solution illustrated in
Figure 3. The detection, tracking, and blanking win-
dow functions run in parallel with the original signal
processing path. Using track history information it
is possible to predict the next pulse arrival and form
a blanking window in advance. This architecture has
several advantages over a non-predictive “blank after
detection” approach.

1. This blanking system may be added to an exist-
ing telescope signal path with minimum disruption of
the current analytical instrumentation or software.

2. It can be applied to both analog or digital in-
strumentation because the sampled, digitized data
used for pulse detection and tracking need not be

used for downstream science analysis. The only re-
quired system output is the blanking (on – off) con-
trol signal.

3. No signal path latency is introduced.

4. Digital sample rates need only support the
radar pulse bandwidth. The analytical signal path
may be broader band, but detection processing re-
quires only about a 2 MHz sample rate.

Kalman
Tracker

Blanking
Window
Timing

CLEAN
Detector

A/D
Converter

Blanking
switch

s(t) s'(t)×
Original signal path

zn

)ˆ,ˆ( |1|1 nnnn yx ++
Sn+1

Parallel predictive blanking algorithm

Figure 3. Processing architecture for predictive real-
time blanking. The original instrumentation signal path
is interrupted only by insertion of a blanking switch and
tapping of a signal to feed the pulse detector.

This paper will focus on the Kalman tracker based
KDPB solution to the first (i.e. real-time blanking)
problem cited above. Its use on real radar transmis-
sion data recorded at the GBT will be demonstrated.
However, we note that the developed track history
can also be used to form a prior probability distribu-
tion for pulse arrivals. This distribution can be used
in a Bayesian framework to improve weak echo de-
tection and thus solve the second problem with DPB
mentioned above. An improved detection scheme
called “Bayesian-Kalman Detected Pulse Blanking”
(BKDPB) will be briefly introduced as another appli-
cation for the tracker. The detection theoretic basis
for, and performance analysis of BKDPB will be fully
developed in a following paper.

1.2. Data Preprocessing

Before echo pulse tracking can be accomplished
there are a number of data preprocessing steps which
must be performed. Details are beyond the scope of
this space-limited paper (see Dong [2004]), but the
basic operations are listed here for orientation:
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Figure 4. Bistatic geometry of radar signal seen at
the GBT. Echoes from nearby mountains are strong, and
have fixed timing relative to the antenna sweep. Aircraft
echoes are non-stationary.

1. Data acquisition was accomplished by sampling
a 10 MHz band from the GBT 1.15-1.17 GHz re-
ceivers at 20 Msamp/sec. The specifics for the data
sets used here are described in Fisher [2001a] and
Fisher [2001b].

2. A full digital radar receiver was implemented
for optimal pulse detection with unknown time of
arrival, amplitude, and phase. Processing included
complex baseband band shifting, band select filter-
ing, matched filtering (matched to the transmitted
pulse shape), and complex envelope detection.

3. Data was reformatted into time range and az-
imuth bins with synchronization to transmit pulse
interval timing. This required careful first arrival
pulse detection and was necessary in order to form
range-azimuth map data presentation for echo posi-
tion tracking. This process is fairly complex due to
irregular pulse repetition periods and because the re-
ceiver and transmitter are non cooperating processes.

4. TWB was applied to blank the first 135 µs of
every pulse to remove clutter from nearby terrain
features.

5. The large extent of an echo in range and az-
imuth dimensions can cause many pixels for a single
pulse to exceed the detection threshold. All these

threshold crossings from a single aircraft must be
grouped and represented by a single detection cen-
troid point. This was accomplished with a modified
version of the CLEAN algorithm (Högbom [1974])
which also permits discrimination of distinct echoes
whose sidelobe patterns overlap.

2. Kalman Tracking for Interfering
Aircraft Echoes

This section presents tracker implementation de-
tails. A classical Kalman filter approach as of-
ten used for radar target following (see for exam-
ple K.V.Ramachandra [2000], Zarchan and Musoff
[2000], and Mahafza [2000]) was used with some
modifications specific to the radio astronomy RFI
scenario. State equations for aircraft dynamics are
represented in Cartesian, x − y, coordinates and are
thus non-linearly related to the natural polar (range
and azimuth) coordinate system of the radar detec-
tor. This mismatch necessitates use of an extended
Kalman filter implementation to linearize the obser-
vation data points.

Also, in the RFI case we have a “bistatic” radar
scenario where the transmitter and receiver are
widely separated. The ARSR-3 signals seen at the
GBT originate at a transmitter site approximately
104 km south-southeast of the GBT, as shown in
Figure 4. This geometry complicates estimating true
physical range and azimuth relative to the GBT. Az-
imuth in all discussions to follow is taken to be rel-
ative to the transmitter location, with zero degrees
referenced to when the transmit beam passes directly
overhead at the GBT. On the other hand, range is
measured as the two–way bistatic pulse echo travel
time from radar transmitter to the GBT, and is not
directly proportional to actual distance of the air-
craft from either the transmitter or the GBT alone.
However, since the goal is not to precisely local-
ize each aircraft in real-world coordinates, but to
build a predictive tracker in any suitable coordi-
nate system, we make no attempt to estimate actual
range relative to the GBT. Using the bistatic “pseudo
range” measurement does not affect tracker perfor-
mance unless the (unknown) observed azimuth angle
from the GBT to the aircraft is changing rapidly.
Tracker computations, including the dynamical mo-
tion model, will treat the bistatic pseudo range as an
actual geometric range.

The CLEAN algorithm provides isolated detec-
tions in range and azimuth, zn = [rn, θn]T , for each
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radar antenna sweep. These detections serve as in-
puts to the tracker. Here n is the antenna sweep,
“snapshot” index for time tn. Also for notational
simplicity in this discussion we focus on detections
from a single track. The desired tracker outputs at
snapshot n are a prediction point, (x̂n+1|n, ŷn+1|n),
where the next detection is expected, and shape pa-
rameters for an elliptical uncertainty region, Sn+1,
centered on this point (see Figure 5). The size of
Sn+1 depends on the quality of the track, and gets
larger with an increase in observation noise, missed
snapshot detections, or rapid acceleration of the tar-
get. Sn+1 selects the region for predictive real-time
blanking, or the region of increased prior probability
for an arriving echo pulse for the detection step in
snapshot n + 1.

2.1. Dynamic and Observation Models

The tracker employs a position-and-velocity state
space model to describe dynamics of motion for the
aircraft. Constant velocity motion perturbed by a
correlated–in–time zero mean Gaussian random pro-
cess acceleration vector, an, is assumed. Measure-
ments are obtained at discrete sample “snapshot”
times, tn, separated by intervals of T seconds. The
dynamic motion model is

xn+1 = Fxn + Gan, where (1)

xn =
[
xn yn ẋn ẏn

]T
,

F =




1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1


 ,

G =

[
T 2

2 0 T 0
0 T 2

2 0 T

]T

.

xn is the state vector for a single aircraft, and xn

and ẋn represent position and velocity respectively
in the x direction, F is the state transition matrix,
and G is the input distribution matrix used to prop-
erly update the state vector in response to accelera-
tion. an = [ax,n, ay,n]T is the acceleration vector at
time snapshot n. Acceleration is viewed as the un-
known driving input process to the system modeled
by the state equations. In the absence of accelera-
tion, the state is updated each snapshot to increment
positions consistent with constant velocity motion.

The measurement model relates polar observa-
tions, zn, to the state equation coordinates and in-

cludes observation measurement noise:

zn = h(xn) + vn, where (2)

h(xn) =
[√

x2
n + y2

n

tan−1 yn

xn

]
,

vn = [vr,n, vθ,n]T ,

rn and θn are the measured range and azimuth re-
spectively at snapshot n, with corresponding mea-
surement noise vr,n and vθ,n.

2.2. Kalman Prediction Equations

Given echo detections and associated track history
up to snapshot n, the first step in a Kalman filter it-
eration is to predict the next state vector and update
the prediction error covariance estimate as follows:

x̂n+1|n = F x̂n|n, (3)

P n+1|n = FP n|nF T + GQGT , (4)
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Figure 5. An example of Kalman tracking perfor-
mance for data acquired at the GBT. Four aircraft tracks
have been automatically established and plotted, includ-
ing a pair of crossing tracks. Data from five snapshots
is shown spanning approximately 24 seconds. The fi-
nal point plotted for each track is the prediction point,
(x̂n+1|n, ŷn+1|n). Prediction regions, Sn+1, shown by the
dashed ellipses vary in size according to track quality.
Note that the center track has a large Sn+1 due to a
missed detection. Predictive real-time blanking is accom-
plished by excising the prediction region data.



6 DONG, JEFFS, AND FISHER: RADAR INTERFERENCE BLANKING

where

x̂n|n = filtered state estimate at tn

given data through tn,

P n|n = filtered state error covariance,
x̂n+1|n = predicted state estimate,
P n+1|n = predicted state error covariance,

Q = acceleration covariance.

x̂n|n and P n|n are computed using filter equations,
(5)–(7), presented in Section 2.3. Note that the pre-
diction point, (x̂n+1|n, ŷn+1|n), is given by the first
two elements of x̂n+1|n. We define the elliptical re-
gion, Sn+1 to be centered on this point and to have
radii rx and ry proportional to

√
[P n+1|n]1,1 and√

[P n+1|n]1,1 respectively. Thus the larger the pre-
diction error variance, the larger Sn+1 grows to rep-
resent our uncertainty as to where the next radar
echo will be detected.

Figure 5 illustrates this behavior. The plot shows
track evolution for real GBT data over five snapshots
for a dense scene with multiple, overlapping aircraft
tracks. The ellipses show prediction regions, S6, for
each established track. Note the variety of sizes cor-
responding to variations in track quality. For real-
time processing these prediction regions are blanked
for the next expected echoes, even before they are
detected. In the BKDPB Bayesian scheme the prior
information that detections are more likely inside
these ellipses is used for a combined tracking-with-
detection algorithm to improve sensitivity to weak
pulses.

2.3. Kalman Update (Filter) Equations

When a new snapshot of detections, zn+1, from
CLEAN is available, the Kalman update step com-
pletes the iteration begun with equations (3) and (4)
as follows:

x̂n+1|n+1 = x̂n+1|n + Kn+1

×
[
zn+1 − h

(
x̂n+1|n

)]
, (5)

P n+1|n+1 =
[
I − Kn+1Hn+1

]
,

×P n+1|n (6)

Kn+1 = P n+1|nHT
n+1 (7)

×[
Hn+1P n+1|nHT

n+1 + R
]−1

,

where the extended Kalman filter linearization about
tn+1 is provided by

Hn+1 =
[

∂h

∂x

]
x=x̂n+1|n

(8)

=


 1√

x2
n+1|n + y2

n+1|n




×
[

xn+1|n yn+1|n 0 0
−yn+1|n xn+1|n 0 0

]
,

and where Kn+1 is the Kalman gain matrix.
Range estimation error standard deviation is pro-

portional to the pulse length. Azimuth error devi-
ation is proportional to antenna beamwidth and is
statistically independent of range error. Thus range
and azimuth measurement error are properly mod-
eled with a measurement error covariance of the sim-
ple form

R =
[
σ2
r 0
0 σ2

θ

]
, (9)

where there are no cross correlation terms and vari-
ances are constant with respect to range and az-
imuth. We note that measurement error (noise) mod-
eled in the (x, y) domain would not have this simple
structure, would be correlated between x and y, and
would be a function of r. However, with the extended
Kalman filter approach the above update equations
take care of this transformation and the proper corre-
lated structure is found in error covariance matrices
P n+1|n+1 and P n+1|n. After computing (5), (6), and
(7), index n is incremented to complete the iteration
which started with prediction equations (3) and (4).

2.4. Track Initialization and Management

The prediction and update equations include sev-
eral parameters that are either assumed known and
must be estimated externally (i.e. Q and R), or are
iteratively estimated but need good initial values for
stable track start up (P n|n and x̂n|n). Also, in prac-
tical multiple target automatic tracking applications
it is necessary to deal with a number of ambigui-
ties when interpreting the pulse detection data. We
have developed a set of rule–based procedures (more
fully described in Dong [2004]) to address these is-
sues. The following list describes our approach for
initializing and managing tracks.

1. State Parameter Initialization. Two succes-
sive associated pulse detections are required before
a track can be initiated. x̂0|0 is initialized with the
position of the second detection, and a two-sample



DONG, JEFFS, AND FISHER: RADAR INTERFERENCE BLANKING 7

velocity estimate is computed from the position dif-
ference between the detections.
To find a practical initialization for P 0|0, we ran the
tracker on synthetic detection data which simulated
the aircraft motion seen in real GBT data. After
a large number of Monte Carlo random trials, P n|n
converged on average to P∞|∞ ≈ (2 × 103)I. This
value was used to initialize P 0|0 when processing real
data from the GBT.

2. Constant Parameter Estimates. The accelera-
tion process covariance is modeled as a constant ma-
trix of the form

Q = E{anaT
n} =

[
σ2

x σ2
xy

σ2
xy σ2

y

]
. (10)

Values of σ2
x = σ2

y = 12.0 and σ2
xy = σ2

yx = 0 were
used in the results described below and were estab-
lished by qualitative analysis of flight paths in the
real GBT data. Parameters were set so that syn-
thetically generated tracks in random trials by the
state space model had acceleration rates (turn radii)
comparable to what was observed in the real aircraft
detection data. an was generated by lowpass filtering
two mutually independent Gaussian white noise time
sequences (one each for ax(n) and ax(n)). A filter
cutoff frequency of fc = 1

100T produced smooth sim-
ulated aircraft turning maneuvers which were quali-
tatively consistent with real track paths seen in the
GBT data.
Tracking performance did not appear in practice to
be critically dependent on the values set for σ2

x and
σ2

y. However, settings significantly higher (by a fac-
tor of two or more) increase the size of the prediction
region, Sn+1 and thus increases likelihood of associ-
ating a new detection with the wrong track. Setting
these terms too small results in tracks failing to asso-
ciate the new detection with a track when there has
been some maneuver, or direction change.
For initializing R we note that σ2

r is proportional
to both the receiver noise variance and the square of
the transmit pulse length. σ2

θ is proportional to noise
and to the square of transmit antenna angular rota-
tion rate divided by transmit pulse repetition rate.
We have estimated these parameters empirically for
the GBT data and treat them as constants in the
Kalman update.

3. Track Association. For each new snapshot the
CLEAN algorithm produces a set of detections. Each
of these must be classified as being a newly de-
tected aircraft for which a track must be created,

or as belonging to an existing track. Detections
which lie within a fixed distance, da, from an ex-
isting track’s prediction point, (x̂n+1|n, ŷn+1|n), are
associated with that track. To avoid ambiguities, de-
tections which satisfy this criterion for two or more
distinct tracks are assigned to the track whose pre-
diction point is closest.

4. Track Creation. New detections which are not
within a distance da of any existing prediction point
are designated candidate starting points. The track
is created if in the succeeding snapshot, n + 1, a de-
tection within distance dn of the candidate point is
found which is not associated with any existing track.
da serves as a bound on how much prediction error
is to be tolerated and is proportional to the maxi-
mum radius of Sn+1. dn is a bound on the maximum
distance an aircraft can travel in T seconds, and is
typically much larger than da since prediction points
are expected to be close to the true location. Since
no velocity or direction information is available from
a single candidate point, there will be no prediction
point at time n + 1, and the candidate track must
accept any unassociated detection within a radius of
dn from the initial detection.

5. Missed Detections. If in a given snapshot no
new detection is associated with a particular track,
it is assumed that the aircraft is still present, but that
the detection was missed due to random variation in
echo amplitude. Consider missing k successive detec-
tions for a given track. In this case, Kalman predic-
tion equations (1), (3), and (4) from prior snapshot,
tn−k, are recomputed as a multi–step prediction by
replacing T with kT . This produces the desired k–
step prediction point (x̂n+1|n−k, ŷn+1|n−k) but the
prediction error covariance, P n+1|n−k, increases and
the size of Sn+1 grows as compared to a normal single
step prediction.

6. Track Dropping. A track which has no associ-
ated detections in three successive snapshots is ter-
minated.

7. Track Splitting. If two or more new detec-
tions are associated with a single track then the
track is split into separate tracks for each new de-
tection. These split tracks have a common history
for t ≤ tn−1 but for t ≥ tn are computed as distinct
tracks. This scenario arises when aircraft paths cross
or when a new aircraft detection occurs close to an
existing track prediction point of a different aircraft.
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3. A Combined Kalman Tracker and
Bayesian Detector

In a conventional radar detector, all range-azimuth
bins are assumed to be equally likely to contain an
echo. Detections are made when the magnitude–
squared matched filter output exceeds a predeter-
mined constant threshold, τ . Thresholds are set to
yield a specified probability of false alarm (PFA). For
a fixed PFA, the probability of detection (PD) is a
function of the receiver design and signal statistics,
such as signal to noise ratio.

In the context of the Kalman tracker, one need not
assume all bins have the same probability of detec-
tion. The track histories provide prior information
which indicates a higher probability of echoes being
detected in prediction regions, Sn+1. We propose a
Bayesian detection scheme where a spatially depen-
dent prior probability density function for the pres-
ence of an echo, f(x, y), is computed using the Sn+1

ellipses to designate areas of increased density. With
this approach it is possible to increase the overall PD
without an increase in PFA. A detailed theoretical
development of this detector is found in Dong [2004]
and in a forthcoming paper. When used for RFI re-
moval we refer to the method as Bayesian-Kalman
Detected Pulse Blanking (BKDPB).

Here it is simply noted in summary that with a
rigorous detection theoretic development it can be
shown that the net effect of the Bayesian detector
is to make the detection threshold, τ(x, y), spatially
varying, with local minima at the prediction point
centroids of the Sn+1 regions, as illustrated in Figure
8. Section 4 presents a comparison of spectral density
estimates with conventional DPB and the proposed

τ0 τ0

τ(x,y)

τ(x,y)

Prediction point

Figure 8. The threshold τ is determined by the prior
distribution f(x, y) of the presence of a pulse. τ0 is the
constant threshold outside the elliptical regions, Sn+1.
τ(x, y) is at a local minimum corresponding to each pre-
diction point. The two concavities represent decreased
threshold according to the prior probability inside two
different sized Sn+1.

BKDPB. The new method produces less radar pulse
bias in the spectral estimate.

4. Experimental Results

Two sets of real data recorded at the GBT for a 10
MHz wide band around 1292 MHz were used to test
the echo detection algorithm, tracking, and blanking
performance. Set one was collected in April of 2002,
and set two in January of 2003.

Figure 6 presents a typical Kalman tracking result
for data set one. This example illustrates success-
fully tracking 11 aircraft, including crossing tracks
and track splitting. A number of other detections
are seen which have not yet been associated with
tracks. Conventional fixed threshold detection was
used here. Throughout this entire data set, the track
prediction regions formed good estimates of the next
echo location, and were suitable for real-time predic-
tive blanking (KDPB).
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Figure 6. Tracking result example for five antenna
sweep snapshots, t34 to t38. Note that not ever sweep
was used, so the snapshot interval, T , in this case is 60
seconds. Ellipses indicate prediction regions for the final
snapshot.

Figure 7 illustrates effectiveness of the real-time
blanking technique (KDPB). Though processing was



DONG, JEFFS, AND FISHER: RADAR INTERFERENCE BLANKING 9

actually performed on recorded data set two, blank-
ing regions were based (as they would be for real-
time operation) on the Kalman tracker predictions
using only past history data. This data set includes
50 radar antenna rotations. All blanking was imple-
mented by “zero-stuffing” , that is, placing zeros into
the time samples where radar transmissions are de-
tected (Zhang et al. [2003]). The lower curve shows
that the power spectrum after KDPB is dramatically
improved, with lower bias due to radar aircraft echo
contamination.
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Figure 7. Power spectrum estimates for two approaches
to radar pulse blanking. Only TWB was used for the up-
per curve. Both TWB and KDPB were used for the lower
curve. The 1292 MHz radar pulse carrier frequency has
been mixed down to about 4 MHz in this plot.

Figure 9 illustrates how the Bayesian-Kalman de-
tector in BKDPB can find weaker echoes that would
be missed with conventional constant threshold de-
tection. These tracks come from data set one and
were computed using BKDPB. The three echoes

marked by rectangles were not detected when the
same data was processed with KDPB.
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Figure 9. Real data detection results for both algo-
rithms for five snapshots from the GBT. Note that 3
weaker pulses (inside the rectangles) are missed by the
constant threshold algorithm (DPB), and picked up with
BKDPB detection.
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Figure 10. Power spectrum estimate for a segment
of data set two containing two weak echoes. The con-
stant threshold detection of KDPB was used for the up-
per curve, but no echoes were found. In the lower curve
the Bayesian-Kalman detector in BKDPB located and
blanked three echoes and thus reduced radar bias near
5.5 MHz.
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Figure 10 shows the differnece between spectral
estimates computed using the KDPB and BKDPB
blanking algorithms. In this particular data window
from data set two there were no strong aircraft echoes
so KDPB made no detections. There are two weak
aircraft echoes which were detected with BKDPB
and the corresponding time samples were blanked
(set to zero) when computing a power spectrum. The
resulting curve shows reduced bias near 5.5 MHz cor-
responding to the radar pulse center frequency. The
larger deviations at 0 and 10 MHz are not fully un-
derstood, but are assumed to be band edge effects.

5. Conclusions

Detected pulse blanking using Kalman filter track-
ing techniques has been shown to be an effective ap-
proach for real-time radar RFI mitigation. Bias due
to radar pulses in GBT observations was reduced as
compared to to simple fixed time window blanking
(TWB). Also, the new Bayesian combined tracking
and detection algorithm has been shown to improve
blanking of weak aircraft echo pulses, leading to a
further reduction in bias in power spectrum estimates
of the noise floor (see Figures 7 and 10). Multiple si-
multaneous tracks were managed (as many as 11) for
aircraft seen in real observations at the GBT. Cross-
ing tracks, congested traffic regions, and intermittent
track detections were all handled satisfactorily. The
computational load for the tracker is modest since it
operates on detections only and is updated only at
the transmit antenna sweep rate. We have run the
tracking portion of the code in MATLAB faster than
real time using a modest PC. However, the required
digital radar receiver and pulse detector operate at
the raw baseband signal sample rate and require a
significant digital signal processing platform, though
such systems are widely in use. This paper presented
the system development and analyzed performance
by post processing previously recorded data. A next
step is to implement this in a true real-time envi-
ronment on our experimental RFI mitigation DSP
test platform. This will permit us to evaluate the
true impact this system can have on improve radio
astronomical observation science.
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