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ABSTRACT 

In this paper the maximum a posteriori (MAP) image re- 
construction of magnetoencephalograms (MEG) is investi- 
gated. A mathematical framework for vector Markov ran- 
dom field models (MRF) suitable for MEG modeling of 
brain neuron current dipole activity is developed. A new 
method for simulating an MRF over a non-uniformly spaced 
sample grid while approximating an arbitrary desired co- 
variance structure at these samples is also presented. Sim- 
ulation results validate the effectiveness of this random sam- 
pled field model, and clinical MEG evoked response data is 
processed to  demonstrate algorithm performance. 

1. INTRODUCTION 
In this paper the maximum a posteriori (MAP) reconstruc- 
tion of magnetoencephalograms (MEG) is investigated. A 
simple linear relationship between source current dipoles 
arising from neuron electrical activity and the resulting ex- 
tracranial magnetic fields is used so that the solution may 
be cast as a classical inverse imaging problem. A mathe- 
matical framework for Markov random field models (MRF) 
suitable for MEG will be developed. 

A new method for simulating an MRF over an arbitrary 
(non-uniform) sample grid is also presented. In this new 
technique the covariance matrix may be specified by the 
analyst to be consistent with expected spatial correlations 
in neural activity. The neighborhood weighting coefficients 
for the non-uniformly sampled Gaussian Markov random 
field (GMRF) are then computed to produce the desired co- 
variance at sample locations. Using these techniques, MAP 
reconstructions onto a hemispheric brain model are per- 
formed using simulated and real MEG data. 

Neuromagnetic imaging (NMI), the process of creating 
a source image consistent with the magnetic field observa- 
tions, was first performed on a single plane with constrained 
source orientations by Singh et al. [l]. Currently, one of 
the leading areas of research in NMI is in the Bayesian con- 
text, with MRF's used to represent any prior knowledge 
about source the distribution in the form of an image prior 
probability density function (pdf). In the NMI framework, 
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Phillips et al have developed a composite, dual MRF model 
using a binary indicator process and independent Gaussian 
random variables to represent whether a source is on or off 
and source amplitude respectively [2]. Their model assumes 
a prior knowledge of source orientation, so a scalar MRF 
may be used. 

In our proposed method, a single consistent vector field 
MRF source model is introduced. The associated potential 
function is designed to  both encourage solution sparseness 
and to permit MRF modeling on the non-uniformly sampled 
hemispherical surface used to  represent the brain cortex. 
Because this MRF models vector fields, dipole orientations 
are included in the model and are not required to be known 
a priori. 

2. SENSOR SYSTEM RESPONSE MODEL 

Neuron electrical activity in the brain will be modeled as 
a distribution of discrete current dipoles, Q s ,  each with an 
unknown magnitude and 3-D orientation. The goal of MEG 
imaging is to estimate the values of these dipole parameters 
on a sample grid throughout the tissue of interest. Neuron 
current dipole activity is observed indirectly using an array 
of sensitive magnetometers placed around the skull. These 
sensors employ Superconducting Quantum Interference De- 
vice (SQUID) circuitry coupled with a pickup coil wound in 
a gradiometer configuration, so as to be sensitive to locally 
induced magnetic fields only. 

We will use a linear observation model for data from the 
array of MEG sensors. We define the 3 x 1 element transfer 
vector, I'+, to satisfy the static Biot-Savart law for single 
sensor response to a single active dipole, 

where . and x represent vector inner and outer products 
respectively, bi is the ith MEG sensor output, ri is its 3-D 
position vector, C ( i )  is the unit direction vector normal to 
the plane containing the sensor's gradiometer coil, Q s  is the 
3-D current dipole vector at the sth pixel site, and rs is the 
position vector for this dipole. The entire array observation 
may be represented in matrix-vector product form 
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3. NON-UNIFORMLY SAMPLED 
GAUSS-MARKOV RANDOM FIELDS 

MEG imaging is known to  be a notoriously ill posed inverse 
problem, with a very large ambiguity in the solution space. 
The proposed algorithm is based on the Bayesian MAP im- 
age restoration method because of the natural means it 
provides for regularizing the inverse solution. The MAP 
estimate of q is given by 

q = arg min fQIB(qlb) = arg mF fBIQ(blq)fQ(q) (4) 

where f(.) represents a probability density function (pdf). 
The image prior pdf, fQ(q), must be chosen to model sta- 
tistical characteristics of the desired true image, so as to  
yield a unique solution. We will introduce a new non- 
uniformly sampled GMRF model for fq(q) which signifi- 
cantly improves reconstruction results. 

In the absence of detailed brain cortical structure infor- 
mation, and since brain tissue is homogeneous at the scale 
used for the dipole grid, we are obliged to adopt a homo- 
geneous model for the covariance structure of the current 
dipole distribution. We will assume that the underlying 
physical current distribution in brain tissue is a station- 
ary, zero mean, continuous Markov random field [3] with 
an isotropic covariance structure. 

This underlying stationary continuous MRF is sampled 
at arbitrary points to  provide elements of a discrete MRF 
for our reconstruction model. The correlations between 
these samples are set to match those of the underlying con- 
tinuous field, but the resulting discrete MRF will in general 
be neither stationary (with respect to the ordering of sample 
indices) nor isotropic, since samples at a uniform spacing, 
TO, will likely not be included in the discrete model. Note 
again that uniform sampling is impossible (and probably 
not desirable) on a hemispherical surface. 

A stationary discrete random field is easily synthesized 
using Markov random field models on a uniform lattice, 
but we must be able to  generate a MRF on a random 
grid overlying the isotropic, homogeneous, continuous co- 
variance model. Let l i $ ( $ , ~ )  be the covariance function 
between two continuous space points, $ and r ,  on the 
dipole hemisphere. By isotropic, we mean that li$($,r) 
is only a function of the Euclidean distance between $ 
and r. Now if s and t are points on the non-uniformly 
sampled lattice, S,  then we require that the covariance be- 
tween these samples in the discrete MRF, g, be given by 
E{&, . Q t }  = I?*($ = rs,rt = rt). 

We will first develop a method for approximating a de- 
sired covariance model on a non-uniformly sampled grid for 
scalar MRF's. This will be extended to vector field models 
in the following section. The joint log likelihood function 
of a scalar Gauss-Markov random field, x can be expressed 
as [4,51 

where q represents sensor error (noise), and M and S are 
the total number of sensor and pixel sites respectively. Fig- 
ure 1 shows the actual sensor geometry for the Neuromag 
model 122 SQUID detector head array that we will use. 
There are 122 conformal gradiometers, with two mutually 
orthogonal loop pairs at each of the 61 sites. The brain 
and skull are modeled as a conducting sphere encased in an 
insulating shell. No radial components of the dipole mo- 

Figure 1. Plot showing gradiometer locations and configu- 
rations for the Neuromag 122 system. 
ments can be detected under the conducting sphere model, 
so we assume these terms are zero. This assumption is in- 
corporated into our model by restricting current dipoles to  
be oriented tangentially to  a hemispherical surface which 
corresponds to the brain cortex, and lies about 3 cm below 
the sensor array shell. 

The dipole sample grid (i.e. set of all possible current 
dipole sites) must have non-uniform spacing due to the 
spherical surface geometry, and therefor our non-uniformly 
sampled MRF model is called for. Due to the tangen- 
tial constraint, and with the dipole hemisphere centered 
at the origin, dipoles may be completely described by mag- 
nitude and azimuth, given their latitude (elevation angle) 
and longitude on the hemisphere to locate the sample. Let 
tj = [&,. . . , QSIT be the vector of dipole magnitudes, with 
I& = IQs/, and let 0 = [el,.  . . , e,]' be the corresponding 
vector of tangentially constrained dipole azimuths. An az- 
imuth of zero is defined as the vector orientation tangent 
to the hemisphere that would have the largest positive pro- 
jection onto the positive z axis i.e. zero azimuth vectors 
point toward the z axis. The sih dipole vector element of 
q, as a function of g, and 8, can be expressed in Cartesian 
coordinates as 

- sin (A,) -sin (&)cos (A,) 
Q s =  [ cos (A,) - sin (6,) sin (A,) 

0 cos (6s 1 
where ra = A. is the elevation angle (angle relative to the 
2 - y plane) of the sth sample site, and 4, is the longi- 
tude (angle relative to the 2 = z plane). Equation (3) will 
be used in Section 4. as a constraint in our non-uniformly 
sampled vector field MRF dipole model. 

Neighborhood influence parameters (potential weights), b,t 
and U, in (5) must be chosen to model the desired covari- 
ance of the continuous spatial distribution. In uniformly 
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sampled MRF's, this is easily accomplished given a desired 
covariance matrix for x, R,. However, no such method is 
available in the literature for non-uniformly sampled fields, 
and it is impossible to  sample a hemisphere with a uniform 
lattice. Other authors go about choosing a Markov model 
by specifying fixed a, and bat values for their homogeneous 
uniformly sampled fields regardless of the site s [4, 5, 61. In 
the case where the sampling is somewhat less than uniform, 
this model does not produce homogeneous images because 
the potential function in (5) provides no means of reduc- 
ing the influence of distant neighbors or increasing the in- 
fluence of near neighbors. Perhaps a more important issue 
that arises under non-uniform sampling is the choice of sites 
to  include in the neighborhood of each pixel. Heuristically, 
those members of the neighborhood 6, which are very near 
to s should exact a greater penalty for dissimilarity than 
those neighbors which are more distant. The trouble with 
this intuitive argument is that the exact mathematical re- 
lationship between the neighborhood weighting coefficients 
and the sample distance is not readily apparent. 

Equation (5) can also be represented as a multivariate 
jointly normal density with covariance matrix R, = B-', 
where interaction matrix B has elements, {Bat}, which re- 
late to our GMRF influence parameters as follows: a, = 
&Bat and bst = -Bat [4]. This appears to  give us a 
direct method to calculate neighborhood influence param- 
eters from a specified covariance matrix. In a 1-D MRF, 
an exponential covariance function yields a tri-diagonal B, 
where most Bat = 0. Unfortunately, with non-uniform sam- 
pling, even the simplest of 2-D continuous covariance func- 
tions, R,(@,T), require nearly all the B,t to be non-zero 
[7]. An MRF model is only computationally useful if the 
neighborhood system is small, i.e. if each pixel has only a 
few neighbors. With most Bst # 0, every pixel is a neigh- 
bor of every other pixel, and the MRF model is useless 
for reconstruction algorithms. We will present a method 
for approximating B for a specified R,($, T )  such that the 
neighborhood system remains small, and the model matches 
the desired correlation structure much more closely than if 
conventional uniform sample grid metho$ were used. 

The goal is to-find an approximation, B, for B such that: 
a) most of the BSt = 0, i.e. the neighborhood structure is 
small, b) 11B-l - R.11~ 5 e,  i.e. the approximation er- 
ror is bounded, c) the element-wise variances of x match 
the desired values, and d) B is positive definite, inevitable. 
Positive definiteness is required for the corresponding prob- 
ability distribution to be well defined. We have shown that 
the following approximation meets these criteria [7] 

1 1  

B = DTADZ, (6) 
A = MOR;'+E, 
D = diag{A}diag, {R,} 

where 0 indicates the Schur element-by-element matrix 
product, diag{ } is a diagonal matrix formed from the di- 
agonal of the argument. M is a selection matrix which 
controls the size of the neighborhood for each pixel, and 
has elements mat given by 
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Figure 2. Pseudo-randomly sampled field used in the ex- 
periment of Figure 3. 

6, is the set of all sites which are neighbors of pixel s. A sim- 
ple threshold test is used to  form this set. For a given pixel 
s, t is a neighbor of s if I Bat I 2 7. 7 is manually selected to 
be just large enough to achieve the desired neighborhood 
size, and thus the order of the approximation. E is a di- 
agonal matrix with elements e,, = Bat. The effect 
of E is to insure B will be positive definite and to assist in 
keeping the pixel marginal variances at the desired level. 

It may be noted that forming B requires computing the 
inverse of a potential very large matrix, R,. In the MEG 
imaging problem addressed here, the number of voxels in 
the image space is relatively small (on the order of loo's 
of voxels), so this issue is not a problem. On the other 
hand, even when the number of pixels is very large, B 
need be evaluated only once for a given imaging geome- 
try, and all subsequent reconstructions can use the same 
precomputed value. Further simplification is possible by 
noting that typically R.(@,T) drops off rapidly with dis- 
tance, so neighborhood influence parameters, 6,t for distant 
pixels will undoubtedly be, set to zero. The image field, and 
correspondingly R, and B can therefor be partitioned into 
smaller, overlapping regions such that the inverses are easy 
t o  compute. 

The effectiveness of the above approximation was 
demonstrated on a non-uniformly sampled Gauss-Markov 
random field. A simple 2-D isotropic exponential covari- 
ance was used for the underlying continuous field, 

tgs. 

R.($,T) = p11q-T112. (8) 

The corresponding desired discrete interaction matrix, B, 
is given by 

Figure 2 shows positions off 144 random samples sites which 
overlay the exponential correlation continuous MRF. Using 
these sample locations, the approximation of equation (6) 
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- sample covarlance 
desired covarlance 

the approximation model, the hemisphere surface curvature 
between neighbor pixels is small. The tangent constrained 
dipoles can have approximately equal vectors. This prefer- 
ence in the model for neighboring dipole vectors to be as 
similar as possible within the orientation constraints agrees 
with our notions of what a correlated vector field should be. 

Assuming white Gaussian noise, adopting the vector 
GMRF model of equation (10) for fQ(q), and confining 
dipoles to  lie tangential to  the cortex surface hemisphere, 
leads to the MAP reconstruction solution 

q = argmin(b - Gq)T(b - Gq) 
4,Q 

+ bst(Qs - QdT(Qs - Q t )  + X S E S  U , Q T Q ~  
8 , t E C  

50 100 where Q S  and Q t  are evaluated using equation (3) as a con- 
straint, and X is the regularization weight which controls the site number 

Figure 3. Sample covariance vs. desired covariance for an 
interior pixel in the field with high sampling randomness. 

was applied to compute the GMRF neighborhood weights, 
with p = 0.5, and T set to  give approximately four neigh- 
bors for each pixel site. Chen’s algorithm [8] was used to  
generate 2000 realizations of the GMRF random field so 
that sample covariances could be computed between pixel 
sites and compared with the desired values given by R,. 
Figure 3 compares covariance values (relative to  an inte- 
rior pixel at s = 30) for a synthesized non-uniform GMRF 
with the corresponding desired values. Note that the syn- 
thesized data has sample cross covariance values that track 
the ideal desired values remarkably closely, with a model 
neighborhood the same size as a uniformly sampled first 
order neighborhood. Experiments (not shown) using the 
best match uniform weighting (i.e. as in uniform rectilin- 
ear sampling) produced dramatically higher error. 

4. EXTENSION TO VECTOR FIELD MODELS 
FOR MEG RECONSTRUCTION 

The vector GMRF model is an obvious extension of scalar 
equation (5). Note that the second term in this equation 
is a penalty (in the exponent of fz(x)) for dissimilar in- 
tensity values between pixels xs and zt. The penalty is 
proportional to the square of the difference. For a vector 
field, we wish to  penalize (in a square law sense) differ- 
ences in the vectors at sites s and t .  This penalty should 
encourage neighboring dipoles to  have similar magnitudes 
and orientations. We propose the following model, which 
simply replaces scalar arithmetic in equation (5) with the 
corresponding 3-D vector operations, 

logfq(q) bst(Qs - Qt)*(Qs - Q t )  + asQTQs .  

(10) 
S , t E C  SES 

On the cortex hemisphere sample surface, it is not pos- 
sible in general for two sample sites to  have exactly the 
same arbitrary dipole orientation, because the two corre- 
sponding constraint tangent plans are not necessarily par- 
allel. however, since only local neighbors are considered in 

relative influence on the solution of the image prior fQ(q). 
Though in theory X could be calculated exactly given B, 
this is difficult, and in practice X is adjusted manually for 
best restoration results. C is the set of all pixel cliques 
in the MRF neighborhood system, and S is the set of all 
sample points on the dipole hemisphere lattice. This formu- 
lation does an excellent job of producing realistic solutions 
such that neighboring dipoles have similar orientations (az- 
imuths). Equation (11) can be solved using a stochastic 
search algorithm (e.g. Metropolis), or a simple gradient 
descent technique. 

5. RESULTS WITH CLINICAL DATA 

Figure 5 shows results of image reconstruction using equa- 
tion (11) on clinical data collected using the Neuromag 122 
array. This data represents the somatosensory evoked re- 
sponse from piezoelectric stimulation of the right ring fin- 
ger. Data is averaged over 109 trials to  increase SNR, which 
even after averaging is less than 10 dB. Figure 4 presents 
an aggregate plot of the averaged data from all 122 sensors 
overlaid on a single axis. The sampling interval is 0.8 ms, 
and the spikes at about sample 125 are induced noise from 
the shock stimulus. The evoked response occurs a t  about 
sample 180. Note the poor SNR even in this averaged data, 
which makes the results of Figure 5(a,b) the more impres- 
sive. 

Figure 5 shows two reconstructions of the data. The 
reconstruction was formed using a single time sample (for 
each sensor) 36 ms after the stimulus. This time corre- 
sponded to  the largest evoked signal response. 5(c,d) depict 
a reconstruction with a smaller weighting (A) on the image 
prior term. The active region of the brain for this exper- 
iment should be the left somatosensory cortex, located in 
the region above the left ear canal. Figure 5(a,b), shows a 
strong preference of our model to select this region. On the 
other hand, less dependence on the irregular lattice GMRF 
image prior creates an image which is not as definitive, as 
shown in Figure 5(c,d). Both solutions are equally consis- 
tent with the observed data, b, which illustrates the need 
for a strong regularizing term in the reconstruction. 
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Figure 4. Plot of MEG data evoked by right ring finger 
stimulus. 

6. CONCLUSIONS 
This paper has demonstrated the effectiveness of a vector 
form Gauss-Markov random field model for Maximum a 
posteriori reconstruction, from external magnetic field mea- 
surements, of brain current dipole distributions . A tech- 
nique was presented for achieving (approximately) an arbi- 
trary desired covariance structure for a non-uniformly sam- 
pled Markov random field while keeping the neighborhood 
structure small. The experiments with real MEG data are 
encouraging. Solutions have reduced random noise, reduced 
canceling dipole content (i.e. dipole configuration compo- 
nents that are invisible at the sensors), and better resolution 
of isolated dipoles than an unregularized image reconstruc- 
tion. These results suggest that further development of the 
technique is warranted. 
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Figure 5. (a,b) Side and top views of vector GMRF re- 
construction of clinical MEG data and (c,d) reconstruction 
with a lesser emphasis on the GMRF prior (i.e. X smaller 
than in (a,b)). The top of (b) and (d) corresponds to the 
forward section of the brain. 
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