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Abstract-tn this paper we address the problem of 
resolving and localizing blurred point sources in 
intensity images. A new approach to image restoration is 
introduced which is a 2-D generalization of techniques 
originating from the field of direction of arrival 
estimation (DOA). It is shown that in the frequency 
domain, blurred point source images can he modeled 
with a structure anulogoirs to the response of linear 
sensor arrays to coheren! sources. Thus the problem 
may be cast into the form of DOA estimation, and 
modern eigenvector based subspace decomposition 
algorithms. such as MUSIC. may be adapted to search 
for these point sources. A generalization of array 
smoothing based on a regularization operator is 
introduced for 2-D arrays in order to achieve rank 
enhancement in the signal space of the covariance 
matrix. 

1. Introduction 
Point source localization (PSL as used in this work) is 

the problem of resolving individual points. or impulses. 
in a discrete data sequence, or image that have been 
corrupted by convolution with some finite support 
blurring fimction. It has been addressed in various forms 
[1]-[5]. PSL is pertinent to the fields of astronomical 
image restoration, biomedical imaging and echo 
resolution. Deblurring of star fields is one of the major 
applications of PSL in images. Blur in long exposure 
astronomical star images may be due to atmospheric 
turbulence. misfocus, poor telescope tracking, finite 
aperture size. or other optical distortion effects. 
Atmospheric turbulence can cause nearby stars to become 
blurred beyond resolution so as to appear as a single star. 
We will address the 2-D case. but the algorithm may be 
extended to 1-D and higher dimensional data. 

The PSL problem for a blurred image A i l  s :\I2 a 
"snap shot" at time t can be formulated in the following 
linear model: 
g(t> = Of + 40 (1) 

where g is the colexigraphically ordered (row- 
scanned) observation vector of length A i ,  x M2=hf. D is 
an Af x M circulant convolution matrix whose columns 
are formed from spatially shifted copies of the point 
spread function (PSF). f is the desired uncorrupted 
deterministic image vector of length hi, and n is the 
additive observation noise vector. It is assumed that the 
noise is uncorrelated among the elements. We may make 
the assumption that the columns of D are circularly 
shifted copies of one another if we assume that points 
that we are trying to locate are away from boundaries of 
our image. 

The new algorithm casts the PSL problem into a new 
form which can be viewed as a coherent source direction 
of arrival estimation problem. The benefits of any 
advances in the field of DOA estimation can be applied 
directly to this problem. Because our algorithm is based 
on eigenvector techniques it naturally inherits the 
property of super-resolution or interpixel resolution of 
points. We do not assume that the source amplitudes are 
time varying in order to build up rank in the signal space 
of our covariance matrix as other authors have assumed 
[4][5]. but introduce a new method of 2-D rank 
enhancement which is a generalization of the array 
smoothing technique [SI. Our method has an added 
benefit of allowing regularization of the spatial 
smoothing. 

2. Subspace Methods and Spatial Smoothing 
The usual observation model applied to DOA 

estimation is 

where x is the observed array data, A has columns 
corresponding to the array response for each of the P 
sources. and q is additive noise. Subspace DOA methods 
exploit the special structure of the covariance matrix R of 
the observed array data, by decomposing it into 
orthogonal subspaces. Eigenvector algorithms 
decomposes R into two orthogonal subspaces: E, and 

x = AU + 7. (2) 
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E,, , the "signal" and "noise subspaces" respectively, by 
solving the generalized eigenvector problem 

where A is the diagonal eigenvalue matrix with the 
eigenvalues in descending order and Z is the noise 
convariance matrix. Since E, and A span the same 
subspace and EnlEs, it is also true that E , U .  The 
algorithm searches for the steering vectors, a($), which 
are most orthogonal to the noise space, and these vectors 
correspond to the directions of arrival of the sources. 

The MUSIC algorithm is a common method that 
exploits this orthogonality property [6]. The MUSIC 
spectrum is defined as 

4's I E n ] = ~ 4 E s  I En], (3)  

where a(@ is a proposed steering vector at angle B. The 
8 values which correspond to the peaks of the spectrum, 
P,, (e), are the true direction of arrival angles. 

Simple eigenvector based methods fail if the sources 
are coherent, because the rank of R is less than P. 
However, this may be overcome in uniformly spaced line 
arrays using spatial smoothing [SI. This method 
increases the rank of the signal space of R by averaging 
together the autocovariance matrices of shorter subarrays, 
and takes advantage of the fact that the data in each 
subarray is just a phase shifted copy of the other 
subarrays. Pillai offers an excellent tutorial on 
eigenvector based methods and spatial smoothing [7]. 

3. Theoretical Development 
In this section we transform the problem expressed by 

(1) into a problem which can be solved with traditional 
DOA estimation techniques. 

3.1. Frequency Domain Signal Model 

Sincefis sparse we may replace Dfwith Au. where U 

contains all of the intensity coefficients of all the non- 
zero elements offt and A contains only those columns of 
D which correspond to the elements of U :  

g(t) = Au + n ( t ) .  ( 5 )  
This differs from the DOA problem in two ways: 1) U 

which contains the magnitudes of the sources is not time 
varying, and 2) the columns ofA are not cisoids but are 
shifted versions of the blur function which is of finite 
support. In order to map spatial shifts in source position 
to phase shfis, (5) can be transformed into the frequency 
domain by multiplying g( t )  by 'f . a truncated version 
of the 2-D DFT matrix. The observed image is real and 
its 2-D DFT has conjugate symmetry. thus half of the 

elements contain redundant information, and the order of 
the system can be reduced by half without loss of 
resolution. The truncated 2-D DFT matrix is formed 
from the upper N= M/2 rows of the standard [9] unitary 
DFT matrix 'f' which is defined as 

where 63 is a Kronecker product, and Fro" and Fcol 
are the 1-D DFT matrices whose elements are 

and 

M, f 2 5 i ,k 5 M2 1 2  - 1 ,  

'ft = Fro" @ FCO1, 

, A4, 1 2  5 i ,k  I M, 1 2  - 1 

respectfully. Thus 'f is M x Nand is defined as: 

for 0 I i I N and 0 I k I M .  Multiplying a vector 
containing a row scanned image by 'f results in a 
frequency unwrapped image. a condition which is 
necessary for fractional pixel resolution. The frequency 
domain version of (5) now becomes 

F r O W  = e-]b"TI/~bi, 
i,k 

r,k 
Fco1 = e- j 2 m k l M 2  

3 , k  = 3 : k  (6) 

' f g ( t )  = TAU + 'fw 
Z ( t )  = Au + i j ( t ) .  (7) 
where - designates the 2-D DFT of the row scanned 
images contained in g(t) .  n( t )  and each of the columns 
of the matrix A .  The vector g ( t )  has complex 
elements and length N. Since U is independent of the 
time index, equation (7) is in the form of a coherent 
DOA problem. All the columns of A have the same 
magnitude, but are phase shifted versions of one another, 
because the columns of A are spatially shifted versions of 
the blurring function. We can express A as the product 
of a diagonal matrix H whose elements correspond to the 
frequency domain PSF, and a matrix V which contains 
the phase information for each of the columns of A : 
2 = H[~x,,P,IV,l,Pll..~lVx~.~p] = H V .  (8) 

The column vectors V, ,y of V correspond to images 

with a single unblurred point at location (x,, y p )  which 

have been transformed into the frequency domain, and 
are expressed as 

P P  

M, M: , Mi M. , . . . , e  
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Figure 1. Row scanned subimage at (m,n). 

Substituting (8) into (7). 
(10) 

yielding an autocovariance matrix of 
(1 1) 

which is clearly of the same form as the DOA problem. 
The above formulation assumes that each of the blurred 
point sources in the observed image have integer pixel 
shifts in relation to the PSF. If the points in the blurred 
image have shifts which are a fraction of a pixel in 
relation to the PSF then (10) is a close approximation. 
The affects of fractional pixel shifts on this 
approximation will be discussed in the following section. 

3.2. Generalized 2-D Array Smoothing 

g( t )  = Hvu + i j( 1 )  

Rg = HVR,VHHH +Io:, 

The signal space of Ri is of rank one because the 
magnitudes of the point sources are not time varying, 
resulting in a coherent problem. In addition. the 
elements in the data array are non-uniformly weighted by 
H. The rank of the signal space must be increased to P 
for eigenvector based methods to work and this can be 
accomplished by a new technique which is a 
generalization of spatial smoothing [8]. Rank 
enhancement is accomplished by averaging in the 
frequency domain over the autocovariance matrices of 
subimages. If we average vertically across an image by 
L ,  shifts and horizontally by L, shifts, then a total of 
L=L,L, subimages may be averaged together to build the 
sample covariance matrix. 

Figure 1 shows how the subimages are extracted from 
a larger image and how they are arranged into a vector. 
We will now introduce some notation that will aid us in 
annotating the colexigraphically ordered subimages. 
Note that in ( IO)  each of the columns of V. the diagonal 
of H, and the column vectors g and n are 
colexigraphically ordered images. The subscript [m.n] 
will be applied to these variables to refer to the subimage 
whose upper left corner is at the position (m.n) in the 

corresponding 2-D images. The subimages are of size 0 
Ix 0, where 0,= N-L,+l and O,=M,-L,+l. 
For example, in the case of the image contained in g( t) 
of (IO) the subimage vectors are then defined as: - 
g [ m , n l ( t )  = [ F m , n 7  i i m , n + l ) . .  - 7  gm.e,, - - - 

g m + l , n ,  gm+l .n+l7  * - 9  g m + 1 , 0 , 7 .  * ' 9  . 

g ~ , . n ~ g ~ , , n - 1 7 . . . ~ g ~ l . ~ ~ ~  
- -  - 

Using this notation we can express any subimage as 

Vis not Vandermonde as it is in the above formulation of 
array smoothing. but fortunately there exists a simple 

We can relationship between the all of the ym,nl. 
express the ym,nl in terms of the product of ql,ll and 

the diagonal matrices c"." whose elements are 

g [ m . n ] ( t )  H [ m . n l y m . n ]  + G [ m , n l ( t ) .  (12) 

+ ' [ X l ( m - ~ ) ;  W ) j  
.bfl MZ 

3 

Before these subimages can be averaged. the 
modulation introduced by H must be removed. An 
arbitrary diagonal regularization matrix, Q, may be 
chosen and corresponding weighting matrices, .y[m,nl, are 

computed such that Q=.!J[m,nlH[m,nl V [m.n], then 
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(a) (b) (C) (d) 
Figure 2. Synthetic star example. a) unblurred image. b) blurred image with 40dB SNR. c) MUSIC spectrum. 
peaks of spectrum. 

The .!$m,nl allow the Hr,,,,] to be pulled out of the 

summation. As in the traditional DOA problem it can be 
shown that the rank will increase to P for every 
additional subarray which is averaged in (see Appendix 
A). if subimages from the diagonal are used in the 
averaging. We shall refer to Q as the smoothing 
regularization matrix. 

3.3. Restoration Algorithm 

The matrix Q is selected depending upon the type of 
regularization desired, and the appropriate weighting 
matrices Sr,,,] are computed. The sample covariance 

matrix is computed as an estimate of R 
/ n  

(16) 
where T is the sample interval between snapshots. The 
algorithm is suitable for the single or multiple snapshot 
cases. If multiple snapshots are available. then a more 
accurate estimate of R is obtained. If only one is 
available and the image is of sufficient size so that the 
number of subimages is greater than the number of 
sources. then (19) will provide a estimate of R Rith 
necessaq rank to render a signal subspace of full rank. 

Estimates of the signal and noise subspaces, E, and 

E,, are found by solving the generalized eigenvector 
oroblem: 

A 

where v,,? is the position vector corresponding to a point 

at location (.,U). Once source locations are found, a 
simple least squares fit can be made for the amplitudes of 
the peaks, because solving for the location and amplitude 
are separable problems [ 51. 

4. Results 
Figure 1 demonstrates the case of deblurring a 

synthetic star cluster using eigenvector based methods. 
The star image is blurred by a Gaussian shaped PSF and 
i.i.d. Gaussian noise is added for a S N R  of 40 dF3. where 

d 
0; 

SNR = lolog+ (19) 

and o i i s  the variance of the observed image. The 
upper-left cluster contains two stars which are separated 
by only one half of a pixel. Figure 1.c is the processed 
image showing the MUSIC spectrum at a resolution of 4 
times the original image. Figure 1.d shows the locations 
of the peaks of the MUSIC spectrum. Note that the 
original source positions are located correctly and that 
high resolution is obtained. The Q used in the example 
is 

In addition. the values of Q corresponding to certain high 
frequency regions of the H which have large modeling 
error were set to zero. 

and the MUSIC spectrum is defined as: 
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5. Conclusions 
We have shown that there exists a duality between the 

PSL and the coherent DOA problems. Indeed. if the 
point sources are not blurred the two problems are 
frequency domain duals of one another. In the coherent 
DOA problem the aim is to determine the linear 
combination of cisoids that are superimposed on the 
linear array. while in PSL it is to determine the linear 
combination of shifts of a particular finite support 
function. Transforming the PSL problem into the 
frequency domain causes the spatial shifted blurred 
points to become a linear combination of cisoids 
modulated by the frequency domain blurring function. 
The benefit of showing the duality of the problems is that 
advances in one field can be applied to the other. 
Eigenvector based techniques are desirable because they 
allow for super-resolution. approximate the ML estimate, 
and are computationally tractable. 

Since the resulting frequency domain problem is 
coherent, a means of rank enhancement of the covariance 
function was introduced. This technique is a 
generalization of smoothing because it introduces a 
regularization operator Q with its associated weighting 
matrices S. These weighting matrices compensate for the 
affects of the modulation introduced by the blurring 
function. and allow regularization to reduce noise 
amplification in the system which is caused by the 
division of small values of the frequenq domain blurring 
function. Model error from fractional pixel shfts in the 
blurring function can also be reduced by proper selection 
of Q. Previously. rank enhancement through smoothing 
had only been treated for 1-D uniform linear arrays. Our 
technique generalizes this to the case of arbitrarily placed 
elements on a uniform 2-D lattice. 

Our algorithm could also be particularly useful in the 
1-D case of finding the location of overlapping echoes. 
There is no requirement that the sources be time varying, 
and the case of data consisting of a single snap-shot is 
easily dealt with. 

Appendix A 
In this appendix we wish to prove that generalized 
smoothing in (15) leads to a covariance matrix R, of 
rank P. if f.2 and if the averaging is done along the 
diagonal of the obsened image. i.e. m=n in R[n,,,,l. For 

the fully coherent case R,, = aa H .  thus R ,  = HIH. 
where 

- 

B =[a  I arc'.' I I C L " a ] .  (20) 

The matrix B may then be separated into the product 
of a diagonal matrix and a Vandermonde matrix. 

[a ,  U l[l w; Wf -.. w;-'l 

where 
.12z[ h 3 )  

= e "'. 
P 
Clearly the rank of B is the minimum of P and L .  If 

the number of vertical subimages is less than P and if 
averaging is done across other sections of the image in 
addition to the diagonal, then the rank may or may not 
increase depending upon the location of the sources. For 
example it is easy to show that if the stars are all located 
in a single row then smoothing across a set of vertical 
subarrays will not increase the rank of E,. While 
averaging in offdiagonal subimages may not increase 
rank. it is useful in creating a better estimate of R. 
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